%PDF- %PDF-
Direktori : /proc/self/root/usr/src/node-v0.10.4/deps/uv/src/unix/ |
Current File : //proc/self/root/usr/src/node-v0.10.4/deps/uv/src/unix/darwin.c |
/* Copyright Joyent, Inc. and other Node contributors. All rights reserved. * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "uv.h" #include "internal.h" #include <assert.h> #include <stdint.h> #include <errno.h> #include <ifaddrs.h> #include <net/if.h> #include <CoreFoundation/CFRunLoop.h> #include <mach/mach.h> #include <mach/mach_time.h> #include <mach-o/dyld.h> /* _NSGetExecutablePath */ #include <sys/resource.h> #include <sys/sysctl.h> #include <unistd.h> /* sysconf */ /* Forward declarations */ void uv__cf_loop_runner(void* arg); void uv__cf_loop_cb(void* arg); typedef struct uv__cf_loop_signal_s uv__cf_loop_signal_t; struct uv__cf_loop_signal_s { void* arg; cf_loop_signal_cb cb; ngx_queue_t member; }; int uv__platform_loop_init(uv_loop_t* loop, int default_loop) { CFRunLoopSourceContext ctx; int r; if (uv__kqueue_init(loop)) return -1; loop->cf_loop = NULL; if ((r = uv_mutex_init(&loop->cf_mutex))) return r; if ((r = uv_sem_init(&loop->cf_sem, 0))) return r; ngx_queue_init(&loop->cf_signals); memset(&ctx, 0, sizeof(ctx)); ctx.info = loop; ctx.perform = uv__cf_loop_cb; loop->cf_cb = CFRunLoopSourceCreate(NULL, 0, &ctx); if ((r = uv_thread_create(&loop->cf_thread, uv__cf_loop_runner, loop))) return r; /* Synchronize threads */ uv_sem_wait(&loop->cf_sem); assert(ACCESS_ONCE(CFRunLoopRef, loop->cf_loop) != NULL); return 0; } void uv__platform_loop_delete(uv_loop_t* loop) { ngx_queue_t* item; uv__cf_loop_signal_t* s; assert(loop->cf_loop != NULL); CFRunLoopStop(loop->cf_loop); uv_thread_join(&loop->cf_thread); loop->cf_loop = NULL; uv_sem_destroy(&loop->cf_sem); uv_mutex_destroy(&loop->cf_mutex); /* Free any remaining data */ while (!ngx_queue_empty(&loop->cf_signals)) { item = ngx_queue_head(&loop->cf_signals); s = ngx_queue_data(item, uv__cf_loop_signal_t, member); ngx_queue_remove(item); free(s); } } void uv__cf_loop_runner(void* arg) { uv_loop_t* loop; loop = arg; /* Get thread's loop */ ACCESS_ONCE(CFRunLoopRef, loop->cf_loop) = CFRunLoopGetCurrent(); CFRunLoopAddSource(loop->cf_loop, loop->cf_cb, kCFRunLoopDefaultMode); uv_sem_post(&loop->cf_sem); CFRunLoopRun(); CFRunLoopRemoveSource(loop->cf_loop, loop->cf_cb, kCFRunLoopDefaultMode); } void uv__cf_loop_cb(void* arg) { uv_loop_t* loop; ngx_queue_t* item; ngx_queue_t split_head; uv__cf_loop_signal_t* s; loop = arg; uv_mutex_lock(&loop->cf_mutex); ngx_queue_init(&split_head); if (!ngx_queue_empty(&loop->cf_signals)) { ngx_queue_t* split_pos = ngx_queue_next(&loop->cf_signals); ngx_queue_split(&loop->cf_signals, split_pos, &split_head); } uv_mutex_unlock(&loop->cf_mutex); while (!ngx_queue_empty(&split_head)) { item = ngx_queue_head(&split_head); s = ngx_queue_data(item, uv__cf_loop_signal_t, member); s->cb(s->arg); ngx_queue_remove(item); free(s); } } void uv__cf_loop_signal(uv_loop_t* loop, cf_loop_signal_cb cb, void* arg) { uv__cf_loop_signal_t* item; item = malloc(sizeof(*item)); /* XXX: Fail */ if (item == NULL) abort(); item->arg = arg; item->cb = cb; uv_mutex_lock(&loop->cf_mutex); ngx_queue_insert_tail(&loop->cf_signals, &item->member); uv_mutex_unlock(&loop->cf_mutex); assert(loop->cf_loop != NULL); CFRunLoopSourceSignal(loop->cf_cb); CFRunLoopWakeUp(loop->cf_loop); } uint64_t uv__hrtime(void) { mach_timebase_info_data_t info; if (mach_timebase_info(&info) != KERN_SUCCESS) abort(); return mach_absolute_time() * info.numer / info.denom; } int uv_exepath(char* buffer, size_t* size) { uint32_t usize; int result; char* path; char* fullpath; if (!buffer || !size) { return -1; } usize = *size; result = _NSGetExecutablePath(buffer, &usize); if (result) return result; path = (char*)malloc(2 * PATH_MAX); fullpath = realpath(buffer, path); if (fullpath == NULL) { free(path); return -1; } strncpy(buffer, fullpath, *size); free(fullpath); *size = strlen(buffer); return 0; } uint64_t uv_get_free_memory(void) { vm_statistics_data_t info; mach_msg_type_number_t count = sizeof(info) / sizeof(integer_t); if (host_statistics(mach_host_self(), HOST_VM_INFO, (host_info_t)&info, &count) != KERN_SUCCESS) { return -1; } return (uint64_t) info.free_count * sysconf(_SC_PAGESIZE); } uint64_t uv_get_total_memory(void) { uint64_t info; int which[] = {CTL_HW, HW_MEMSIZE}; size_t size = sizeof(info); if (sysctl(which, 2, &info, &size, NULL, 0) < 0) { return -1; } return (uint64_t) info; } void uv_loadavg(double avg[3]) { struct loadavg info; size_t size = sizeof(info); int which[] = {CTL_VM, VM_LOADAVG}; if (sysctl(which, 2, &info, &size, NULL, 0) < 0) return; avg[0] = (double) info.ldavg[0] / info.fscale; avg[1] = (double) info.ldavg[1] / info.fscale; avg[2] = (double) info.ldavg[2] / info.fscale; } uv_err_t uv_resident_set_memory(size_t* rss) { struct task_basic_info t_info; mach_msg_type_number_t t_info_count = TASK_BASIC_INFO_COUNT; int r = task_info(mach_task_self(), TASK_BASIC_INFO, (task_info_t)&t_info, &t_info_count); if (r != KERN_SUCCESS) { return uv__new_sys_error(errno); } *rss = t_info.resident_size; return uv_ok_; } uv_err_t uv_uptime(double* uptime) { time_t now; struct timeval info; size_t size = sizeof(info); static int which[] = {CTL_KERN, KERN_BOOTTIME}; if (sysctl(which, 2, &info, &size, NULL, 0) < 0) { return uv__new_sys_error(errno); } now = time(NULL); *uptime = (double)(now - info.tv_sec); return uv_ok_; } uv_err_t uv_cpu_info(uv_cpu_info_t** cpu_infos, int* count) { unsigned int ticks = (unsigned int)sysconf(_SC_CLK_TCK), multiplier = ((uint64_t)1000L / ticks); char model[512]; uint64_t cpuspeed; size_t size; unsigned int i; natural_t numcpus; mach_msg_type_number_t msg_type; processor_cpu_load_info_data_t *info; uv_cpu_info_t* cpu_info; size = sizeof(model); if (sysctlbyname("machdep.cpu.brand_string", &model, &size, NULL, 0) < 0 && sysctlbyname("hw.model", &model, &size, NULL, 0) < 0) { return uv__new_sys_error(errno); } size = sizeof(cpuspeed); if (sysctlbyname("hw.cpufrequency", &cpuspeed, &size, NULL, 0) < 0) { return uv__new_sys_error(errno); } if (host_processor_info(mach_host_self(), PROCESSOR_CPU_LOAD_INFO, &numcpus, (processor_info_array_t*)&info, &msg_type) != KERN_SUCCESS) { return uv__new_sys_error(errno); } *cpu_infos = (uv_cpu_info_t*)malloc(numcpus * sizeof(uv_cpu_info_t)); if (!(*cpu_infos)) { return uv__new_artificial_error(UV_ENOMEM); } *count = numcpus; for (i = 0; i < numcpus; i++) { cpu_info = &(*cpu_infos)[i]; cpu_info->cpu_times.user = (uint64_t)(info[i].cpu_ticks[0]) * multiplier; cpu_info->cpu_times.nice = (uint64_t)(info[i].cpu_ticks[3]) * multiplier; cpu_info->cpu_times.sys = (uint64_t)(info[i].cpu_ticks[1]) * multiplier; cpu_info->cpu_times.idle = (uint64_t)(info[i].cpu_ticks[2]) * multiplier; cpu_info->cpu_times.irq = 0; cpu_info->model = strdup(model); cpu_info->speed = cpuspeed/1000000; } vm_deallocate(mach_task_self(), (vm_address_t)info, msg_type); return uv_ok_; } void uv_free_cpu_info(uv_cpu_info_t* cpu_infos, int count) { int i; for (i = 0; i < count; i++) { free(cpu_infos[i].model); } free(cpu_infos); } uv_err_t uv_interface_addresses(uv_interface_address_t** addresses, int* count) { struct ifaddrs *addrs, *ent; char ip[INET6_ADDRSTRLEN]; uv_interface_address_t* address; if (getifaddrs(&addrs) != 0) { return uv__new_sys_error(errno); } *count = 0; /* Count the number of interfaces */ for (ent = addrs; ent != NULL; ent = ent->ifa_next) { if (!(ent->ifa_flags & IFF_UP && ent->ifa_flags & IFF_RUNNING) || (ent->ifa_addr == NULL) || (ent->ifa_addr->sa_family == AF_LINK)) { continue; } (*count)++; } *addresses = (uv_interface_address_t*) malloc(*count * sizeof(uv_interface_address_t)); if (!(*addresses)) { return uv__new_artificial_error(UV_ENOMEM); } address = *addresses; for (ent = addrs; ent != NULL; ent = ent->ifa_next) { bzero(&ip, sizeof (ip)); if (!(ent->ifa_flags & IFF_UP && ent->ifa_flags & IFF_RUNNING)) { continue; } if (ent->ifa_addr == NULL) { continue; } /* * On Mac OS X getifaddrs returns information related to Mac Addresses for * various devices, such as firewire, etc. These are not relevant here. */ if (ent->ifa_addr->sa_family == AF_LINK) { continue; } address->name = strdup(ent->ifa_name); if (ent->ifa_addr->sa_family == AF_INET6) { address->address.address6 = *((struct sockaddr_in6 *)ent->ifa_addr); } else { address->address.address4 = *((struct sockaddr_in *)ent->ifa_addr); } address->is_internal = ent->ifa_flags & IFF_LOOPBACK ? 1 : 0; address++; } freeifaddrs(addrs); return uv_ok_; } void uv_free_interface_addresses(uv_interface_address_t* addresses, int count) { int i; for (i = 0; i < count; i++) { free(addresses[i].name); } free(addresses); }