%PDF- %PDF-
Direktori : /proc/thread-self/root/usr/include/Imath/ |
Current File : //proc/thread-self/root/usr/include/Imath/PyImathVec3Impl.h |
// // SPDX-License-Identifier: BSD-3-Clause // Copyright Contributors to the OpenEXR Project. // // clang-format off #ifndef _PyImathVec3Impl_h_ #define _PyImathVec3Impl_h_ // // This .C file was turned into a header file so that instantiations // of the various V3* types can be spread across multiple files in // order to work around MSVC limitations. // #include <Python.h> #include <boost/python.hpp> #include <boost/python/make_constructor.hpp> #include <boost/format.hpp> #include <ImathVec.h> #include <ImathVecAlgo.h> #include "PyImath.h" #include "PyImathMathExc.h" #include "PyImathVec.h" #include "PyImathDecorators.h" namespace PyImath { using namespace boost::python; using namespace IMATH_NAMESPACE; template <class T> struct Vec3Name { static const char *value(); }; // create a new default constructor that initializes Vec3<T> to zero. template <class T> static Vec3<T> * Vec3_construct_default() { return new Vec3<T>(T(0),T(0),T(0)); } template <class T> static Vec3<T> * Vec3_object_constructor1(const object &obj) { Vec3<T> w; extract<Vec3<int> > e1(obj); extract<Vec3<float> > e2(obj); extract<Vec3<double> > e3(obj); extract<tuple> e4(obj); extract<double> e5(obj); extract<list> e6(obj); if(e1.check()) { w = e1(); } else if(e2.check()) { w = e2(); } else if(e3.check()) { w = e3(); } else if(e4.check()) { tuple t = e4(); if(t.attr("__len__")() == 3) { w.x = extract<T>(t[0]); w.y = extract<T>(t[1]); w.z = extract<T>(t[2]); } else throw std::invalid_argument ("tuple must have length of 3"); } else if(e5.check()) { T a = e5(); w.setValue(a, a, a); } else if(e6.check()) { list l = e6(); if(l.attr("__len__")() == 3) { w.x = extract<T>(l[0]); w.y = extract<T>(l[1]); w.z = extract<T>(l[2]); } else throw std::invalid_argument ("list must have length of 3"); } else throw std::invalid_argument ("invalid parameters passed to Vec3 constructor"); Vec3<T> *v = new Vec3<T>; *v = w; return v; } template <class T> static Vec3<T> * Vec3_object_constructor2(const object &obj1, const object &obj2, const object &obj3) { extract<double> e1(obj1); extract<double> e2(obj2); extract<double> e3(obj3); Vec3<T> *v = new Vec3<T>; if(e1.check()) { v->x = e1();} else { throw std::invalid_argument ("invalid parameters passed to Vec3 constructor"); } if(e2.check()) { v->y = e2();} else { throw std::invalid_argument ("invalid parameters passed to Vec3 constructor"); } if(e3.check()) { v->z = e3();} else { throw std::invalid_argument ("invalid parameters passed to Vec3 constructor"); } return v; } // Implementations of str and repr are same here, // but we'll specialize repr for float and double to make them exact. template <class T> static std::string Vec3_str(const Vec3<T> &v) { std::stringstream stream; stream << Vec3Name<T>::value() << "(" << v.x << ", " << v.y << ", " << v.z << ")"; return stream.str(); } template <class T> static std::string Vec3_repr(const Vec3<T> &v) { std::stringstream stream; stream << Vec3Name<T>::value() << "(" << v.x << ", " << v.y << ", " << v.z << ")"; return stream.str(); } template <class T> static IMATH_NAMESPACE::Vec3<T> Vec3_cross(const IMATH_NAMESPACE::Vec3<T> &v, const IMATH_NAMESPACE::Vec3<T> &other) { MATH_EXC_ON; return v.cross(other); } template <class T> static FixedArray<IMATH_NAMESPACE::Vec3<T> > Vec3_cross_Vec3Array(const IMATH_NAMESPACE::Vec3<T> &va, const FixedArray<IMATH_NAMESPACE::Vec3<T> > &vb) { MATH_EXC_ON; size_t len = vb.len(); FixedArray<IMATH_NAMESPACE::Vec3<T> > f(len); for (size_t i = 0; i < len; ++i) f[i] = va.cross(vb[i]); return f; } template <class T> static T Vec3_dot(const IMATH_NAMESPACE::Vec3<T> &v, const IMATH_NAMESPACE::Vec3<T> &other) { MATH_EXC_ON; return v.dot(other); } template <class T> static FixedArray<T> Vec3_dot_Vec3Array(const IMATH_NAMESPACE::Vec3<T> &va, const FixedArray<IMATH_NAMESPACE::Vec3<T> > &vb) { MATH_EXC_ON; size_t len = vb.len(); FixedArray<T> f(len); for (size_t i = 0; i < len; ++i) f[i] = va.dot(vb[i]); return f; } template <class T> static T Vec3_length(const IMATH_NAMESPACE::Vec3<T> &v) { MATH_EXC_ON; return v.length(); } template <class T> static T Vec3_length2(const IMATH_NAMESPACE::Vec3<T> &v) { MATH_EXC_ON; return v.length2(); } template <class T> static const Vec3<T> & Vec3_normalize(IMATH_NAMESPACE::Vec3<T> &v) { MATH_EXC_ON; return v.normalize(); } template <class T> static const Vec3<T> & Vec3_normalizeExc(IMATH_NAMESPACE::Vec3<T> &v) { MATH_EXC_ON; return v.normalizeExc(); } template <class T> static const Vec3<T> & Vec3_normalizeNonNull(IMATH_NAMESPACE::Vec3<T> &v) { MATH_EXC_ON; return v.normalizeNonNull(); } template <class T> static Vec3<T> Vec3_normalized(const IMATH_NAMESPACE::Vec3<T> &v) { MATH_EXC_ON; return v.normalized(); } template <class T> static Vec3<T> Vec3_normalizedExc(const IMATH_NAMESPACE::Vec3<T> &v) { MATH_EXC_ON; return v.normalizedExc(); } template <class T> static Vec3<T> Vec3_normalizedNonNull(const IMATH_NAMESPACE::Vec3<T> &v) { MATH_EXC_ON; return v.normalizedNonNull(); } template <class T> static Vec3<T> closestVertex(Vec3<T> &p, const Vec3<T> &v0, const Vec3<T> &v1, const Vec3<T> &v2) { MATH_EXC_ON; return IMATH_NAMESPACE::closestVertex(v0, v1, v2, p); } template <class T> static const Vec3<T> & Vec3_negate(IMATH_NAMESPACE::Vec3<T> &v) { MATH_EXC_ON; return v.negate(); } template <class T> static Vec3<T> orthogonal(const Vec3<T> &v, const Vec3<T> &v0) { MATH_EXC_ON; return IMATH_NAMESPACE::orthogonal(v, v0); } template <class T> static Vec3<T> project(const Vec3<T> &v, const Vec3<T> &v0) { MATH_EXC_ON; return IMATH_NAMESPACE::project(v0, v); } template <class T> static Vec3<T> reflect(const Vec3<T> &v, const Vec3<T> &v0) { MATH_EXC_ON; return IMATH_NAMESPACE::reflect(v, v0); } template <class T> static void setValue(Vec3<T> &v, T a, T b, T c) { v.x = a; v.y = b; v.z = c; } template <class T> static Vec3<T> Vec3_add (const Vec3<T> &v, const Vec3<T> &w) { MATH_EXC_ON; return v + w; } template <class T> static Vec3<T> Vec3_sub (const Vec3<T> &v, const Vec3<T> &w) { MATH_EXC_ON; return v - w; } template <class T> static Vec3<T> Vec3_neg (const Vec3<T> &v) { MATH_EXC_ON; return -v; } template <class T, class U> static Vec3<T> Vec3_mul (const Vec3<T> &v, Vec3<U> &w) { MATH_EXC_ON; Vec3<T> w2 (w); return v * w2; } template <class T> static Vec3<T> Vec3_mulT (const Vec3<T> &v, T t) { MATH_EXC_ON; return v * t; } template <class T> static FixedArray<IMATH_NAMESPACE::Vec3<T> > Vec3_mulTArray (const Vec3<T> &v, const FixedArray<T> &t) { MATH_EXC_ON; size_t len = t.len(); FixedArray<IMATH_NAMESPACE::Vec3<T> > retval(len); for (size_t i=0; i<len; ++i) retval[i] = v*t[i]; return retval; } template <class T> static FixedArray<IMATH_NAMESPACE::Vec3<T> > Vec3_rmulTArray (const Vec3<T> &v, const FixedArray<T> &t) { return Vec3_mulTArray(v,t); } template <class T,class S> static Vec3<T> Vec3_div (Vec3<T> &v, Vec3<S> &w) { MATH_EXC_ON; return v / w; } template <class T> static Vec3<T> Vec3_rmulT (Vec3<T> &v, T t) { MATH_EXC_ON; return t * v; } template <class T, class U> static const Vec3<T> & Vec3_imulV(Vec3<T> &v, const Vec3<U> &w) { MATH_EXC_ON; return v *= w; } template <class T> static const Vec3<T> & Vec3_imulT(IMATH_NAMESPACE::Vec3<T> &v, T t) { MATH_EXC_ON; return v *= t; } template <class T, class U> static Vec3<T> Vec3_mulM33 (Vec3<T> &v, const Matrix33<U> &m) { MATH_EXC_ON; return v * m; } template <class T, class U> static Vec3<T> Vec3_mulM44 (Vec3<T> &v, const Matrix44<U> &m) { MATH_EXC_ON; return v * m; } template <class T> static const Vec3<T> & Vec3_idivObj(IMATH_NAMESPACE::Vec3<T> &v, const object &o) { MATH_EXC_ON; Vec3<T> v2; if (PyImath::V3<T>::convert (o.ptr(), &v2)) { return v /= v2; } else { extract<double> e(o); if (e.check()) return v /= e(); else throw std::invalid_argument ("V3 division expects an argument" "convertible to a V3"); } } template <class T> static Vec3<T> Vec3_subT(const Vec3<T> &v, T a) { MATH_EXC_ON; Vec3<T> w; w.setValue(v.x - a, v.y - a, v.z - a); return w; } template <class T,class BoostPyType> static Vec3<T> Vec3_subTuple(const Vec3<T> &v, const BoostPyType &t) { MATH_EXC_ON; Vec3<T> w; if(t.attr("__len__")() == 3) { w.x = v.x - extract<T>(t[0]); w.y = v.y - extract<T>(t[1]); w.z = v.z - extract<T>(t[2]); } else throw std::invalid_argument ("tuple must have length of 3"); return w; } template <class T> static Vec3<T> Vec3_rsubT(const Vec3<T> &v, T a) { MATH_EXC_ON; Vec3<T> w; w.setValue(a - v.x, a - v.y, a - v.z); return w; } template <class T, class BoostPyType> static Vec3<T> Vec3_rsubTuple(const Vec3<T> &v, const BoostPyType &t) { MATH_EXC_ON; Vec3<T> w; if(t.attr("__len__")() == 3) { w.x = extract<T>(t[0]) - v.x; w.y = extract<T>(t[1]) - v.y; w.z = extract<T>(t[2]) - v.z; } else throw std::invalid_argument ("tuple must have length of 3"); return w; } template <class T, class BoostPyType> static Vec3<T> Vec3_addTuple(const Vec3<T> &v, const BoostPyType &t) { MATH_EXC_ON; Vec3<T> w; if(t.attr("__len__")() == 3) { w.x = v.x + extract<T>(t[0]); w.y = v.y + extract<T>(t[1]); w.z = v.z + extract<T>(t[2]); } else throw std::invalid_argument ("tuple must have length of 3"); return w; } template <class T> static Vec3<T> Vec3_addT(const Vec3<T> &v, T a) { MATH_EXC_ON; Vec3<T> w; w.setValue(v.x + a, v.y + a, v.z + a); return w; } template <class T, class U> static Vec3<T> Vec3_addV(const Vec3<T> &v, const Vec3<U> &w) { MATH_EXC_ON; return v + w; } template <class T, class U> static const Vec3<T> & Vec3_iaddV(Vec3<T> &v, const Vec3<U> &w) { MATH_EXC_ON; return v += w; } template <class T, class U> static Vec3<T> Vec3_subV(const Vec3<T> &v, const Vec3<U> &w) { MATH_EXC_ON; return v - w; } template <class T, class U> static const Vec3<T> & Vec3_isubV(Vec3<T> &v, const Vec3<U> &w) { MATH_EXC_ON; return v -= w; } template <class T> static Vec3<T> mult(const Vec3<T> &v, tuple t) { MATH_EXC_ON; Vec3<T> w; if(t.attr("__len__")() == 1){ w.x = v.x*extract<T>(t[0]); w.y = v.y*extract<T>(t[0]); w.z = v.z*extract<T>(t[0]); } else if(t.attr("__len__")() == 3){ w.x = v.x*extract<T>(t[0]); w.y = v.y*extract<T>(t[1]); w.z = v.z*extract<T>(t[2]); } else throw std::invalid_argument ("tuple must have length of 1 or 3"); return w; } template <class T, class U> static const Vec3<T> & Vec3_imulM44 (Vec3<T> &v, const Matrix44<U> &m) { MATH_EXC_ON; return v *= m; } template <class T, class BoostPyType> static Vec3<T> Vec3_divTuple(const Vec3<T> &v, const BoostPyType &t) { if(t.attr("__len__")() == 3) { T x = extract<T>(t[0]); T y = extract<T>(t[1]); T z = extract<T>(t[2]); if(x != T(0) && y != T(0) && z != T(0)) return Vec3<T>(v.x / x, v.y / y, v.z / z); else throw std::domain_error ("Division by zero"); } else throw std::invalid_argument ("Vec3 expects tuple of length 3"); } template <class T, class BoostPyType> static Vec3<T> Vec3_rdivTuple(const Vec3<T> &v, const BoostPyType &t) { MATH_EXC_ON; Vec3<T> w; if(t.attr("__len__")() == 3) { T x = extract<T>(t[0]); T y = extract<T>(t[1]); T z = extract<T>(t[2]); if(v.x != T(0) && v.y != T(0) && v.z != T(0)){ w.setValue(x / v.x, y / v.y, z / v.z); } else throw std::domain_error ("Division by zero"); } else throw std::invalid_argument ("tuple must have length of 3"); return w; } template <class T> static Vec3<T> Vec3_divT(const Vec3<T> &v, T a) { MATH_EXC_ON; Vec3<T> w; if(a != T(0)){ w.setValue(v.x / a, v.y / a, v.z / a); } else throw std::domain_error ("Division by zero"); return w; } template <class T> static Vec3<T> Vec3_rdivT(const Vec3<T> &v, T a) { MATH_EXC_ON; Vec3<T> w; if(v.x != T(0) && v.y != T(0) && v.z != T(0)){ w.setValue(a / v.x, a / v.y, a / v.z); } else throw std::domain_error ("Division by zero"); return w; } template <class T> static Vec3<T> Vec3_Vec3_mulT(const Vec3<T>& v, const Vec3<T>& w) { MATH_EXC_ON; return v*w; } template <class T> static Vec3<T> Vec3_Vec3_divT(const Vec3<T>& v, const Vec3<T>& w) { MATH_EXC_ON; return v/w; } template <class T> static bool lessThan(const Vec3<T> &v, const object &obj) { extract<Vec3<T> > e1(obj); extract<tuple> e2(obj); Vec3<T> w; if(e1.check()) { w = e1(); } else if(e2.check()) { tuple t = e2(); T x = extract<T>(t[0]); T y = extract<T>(t[1]); T z = extract<T>(t[2]); w.setValue(x,y,z); } else throw std::invalid_argument ("invalid parameters passed to operator <"); bool isLessThan = (v.x <= w.x && v.y <= w.y && v.z <= w.z) && v != w; return isLessThan; } template <class T> static bool greaterThan(const Vec3<T> &v, const object &obj) { extract<Vec3<T> > e1(obj); extract<tuple> e2(obj); Vec3<T> w; if(e1.check()) { w = e1(); } else if(e2.check()) { tuple t = e2(); T x = extract<T>(t[0]); T y = extract<T>(t[1]); T z = extract<T>(t[2]); w.setValue(x,y,z); } else throw std::invalid_argument ("invalid parameters passed to operator >"); bool isGreaterThan = (v.x >= w.x && v.y >= w.y && v.z >= w.z) && v != w; return isGreaterThan; } template <class T> static bool lessThanEqual(const Vec3<T> &v, const object &obj) { extract<Vec3<T> > e1(obj); extract<tuple> e2(obj); Vec3<T> w; if(e1.check()) { w = e1(); } else if(e2.check()) { tuple t = e2(); T x = extract<T>(t[0]); T y = extract<T>(t[1]); T z = extract<T>(t[2]); w.setValue(x,y,z); } else throw std::invalid_argument ("invalid parameters passed to operator <="); bool isLessThanEqual = (v.x <= w.x && v.y <= w.y && v.z <= w.z); return isLessThanEqual; } template <class T> static bool greaterThanEqual(const Vec3<T> &v, const object &obj) { extract<Vec3<T> > e1(obj); extract<tuple> e2(obj); Vec3<T> w; if(e1.check()) { w = e1(); } else if(e2.check()) { tuple t = e2(); T x = extract<T>(t[0]); T y = extract<T>(t[1]); T z = extract<T>(t[2]); w.setValue(x,y,z); } else throw std::invalid_argument ("invalid parameters passed to operator >="); bool isGreaterThanEqual = (v.x >= w.x && v.y >= w.y && v.z >= w.z); return isGreaterThanEqual; } template <class T> static bool equalWithAbsErrorObj(const Vec3<T> &v, const object &obj1, const object &obj2) { extract<Vec3<int> > e1(obj1); extract<Vec3<float> > e2(obj1); extract<Vec3<double> > e3(obj1); extract<tuple> e4(obj1); extract<double> e5(obj2); Vec3<T> w; if(e1.check()) { w = e1(); } else if(e2.check()) { w = e2(); } else if(e3.check()) { w = e3(); } else if(e4.check()) { tuple t = e4(); if(t.attr("__len__")() == 3) { w.x = extract<T>(t[0]); w.y = extract<T>(t[1]); w.z = extract<T>(t[2]); } else throw std::invalid_argument ("tuple of length 3 expected"); } else throw std::invalid_argument ("invalid parameters passed to equalWithAbsError"); if(e5.check()) { return v.equalWithAbsError(w, e5()); } else throw std::invalid_argument ("invalid parameters passed to equalWithAbsError"); } template <class T> static bool equalWithRelErrorObj(const Vec3<T> &v, const object &obj1, const object &obj2) { extract<Vec3<int> > e1(obj1); extract<Vec3<float> > e2(obj1); extract<Vec3<double> > e3(obj1); extract<tuple> e4(obj1); extract<double> e5(obj2); Vec3<T> w; if(e1.check()) { w = e1(); } else if(e2.check()) { w = e2(); } else if(e3.check()) { w = e3(); } else if(e4.check()) { tuple t = e4(); if(t.attr("__len__")() == 3) { w.x = extract<T>(t[0]); w.y = extract<T>(t[1]); w.z = extract<T>(t[2]); } else throw std::invalid_argument ("tuple of length 3 expected"); } else throw std::invalid_argument ("invalid parameters passed to equalWithRelError"); if(e5.check()) { return v.equalWithRelError(w, e5()); } else throw std::invalid_argument ("invalid parameters passed to equalWithRelError"); } template <class T> static bool equal(const Vec3<T> &v, const tuple &t) { Vec3<T> w; if(t.attr("__len__")() == 3) { w.x = extract<T>(t[0]); w.y = extract<T>(t[1]); w.z = extract<T>(t[2]); return (v == w); } else throw std::invalid_argument ("tuple of length 3 expected"); } template <class T> static bool notequal(const Vec3<T> &v, const tuple &t) { Vec3<T> w; if(t.attr("__len__")() == 3) { w.x = extract<T>(t[0]); w.y = extract<T>(t[1]); w.z = extract<T>(t[2]); return (v != w); } else throw std::invalid_argument ("tuple of length 3 expected"); } // Trick to register methods for float-only-based vectors template <class T, IMATH_ENABLE_IF(!std::is_integral<T>::value)> void register_Vec3_floatonly(class_<Vec3<T>>& vec3_class) { vec3_class .def("length", &Vec3_length<T>,"length() magnitude of the vector") .def("normalize", &Vec3_normalize<T>,return_internal_reference<>(), "v.normalize() destructively normalizes v and returns a reference to it") .def("normalizeExc", &Vec3_normalizeExc<T>,return_internal_reference<>(), "v.normalizeExc() destructively normalizes V and returns a reference to it, throwing an exception if length() == 0") .def("normalizeNonNull", &Vec3_normalizeNonNull<T>,return_internal_reference<>(), "v.normalizeNonNull() destructively normalizes V and returns a reference to it, faster if lngth() != 0") .def("normalized", &Vec3_normalized<T>, "v.normalized() returns a normalized copy of v") .def("normalizedExc", &Vec3_normalizedExc<T>, "v.normalizedExc() returns a normalized copy of v, throwing an exception if length() == 0") .def("normalizedNonNull", &Vec3_normalizedNonNull<T>, "v.normalizedNonNull() returns a normalized copy of v, faster if lngth() != 0") .def("orthogonal", &orthogonal<T>) .def("project", &project<T>) .def("reflect", &reflect<T>) ; } template <class T, IMATH_ENABLE_IF(std::is_integral<T>::value)> void register_Vec3_floatonly(class_<Vec3<T>>& vec2_class) { } template <class T> class_<Vec3<T> > register_Vec3() { typedef PyImath::StaticFixedArray<Vec3<T>,T,3> Vec3_helper; class_<Vec3<T> > vec3_class(Vec3Name<T>::value(), Vec3Name<T>::value(),init<Vec3<T> >("copy construction")); vec3_class .def("__init__",make_constructor(Vec3_construct_default<T>),"initialize to (0,0,0)") .def("__init__",make_constructor(Vec3_object_constructor1<T>)) .def("__init__",make_constructor(Vec3_object_constructor2<T>)) .def_readwrite("x", &Vec3<T>::x) .def_readwrite("y", &Vec3<T>::y) .def_readwrite("z", &Vec3<T>::z) .def("baseTypeEpsilon", &Vec3<T>::baseTypeEpsilon,"baseTypeEpsilon() epsilon value of the base type of the vector") .staticmethod("baseTypeEpsilon") .def("baseTypeMax", &Vec3<T>::baseTypeMax,"baseTypeMax() max value of the base type of the vector") .staticmethod("baseTypeMax") .def("baseTypeLowest", &Vec3<T>::baseTypeLowest,"baseTypeLowest() largest negative value of the base type of the vector") .staticmethod("baseTypeLowest") .def("baseTypeSmallest", &Vec3<T>::baseTypeSmallest,"baseTypeSmallest() smallest value of the base type of the vector") .staticmethod("baseTypeSmallest") .def("cross", &Vec3_cross<T>,"v1.cross(v2) right handed cross product") .def("cross", &Vec3_cross_Vec3Array<T>,"v1.cross(v2) right handed array cross product") .def("dimensions", &Vec3<T>::dimensions,"dimensions() number of dimensions in the vector") .staticmethod("dimensions") .def("dot", &Vec3_dot<T>,"v1.dot(v2) inner product of the two vectors") .def("dot", &Vec3_dot_Vec3Array<T>,"v1.dot(v2) array inner product") .def("equalWithAbsError", &Vec3<T>::equalWithAbsError, "v1.equalWithAbsError(v2) true if the elements " "of v1 and v2 are the same with an absolute error of no more than e, " "i.e., abs(v1[i] - v2[i]) <= e") .def("equalWithAbsError", &equalWithAbsErrorObj<T>) .def("equalWithRelError", &Vec3<T>::equalWithRelError, "v1.equalWithAbsError(v2) true if the elements " "of v1 and v2 are the same with an absolute error of no more than e, " "i.e., abs(v1[i] - v2[i]) <= e * abs(v1[i])") .def("equalWithRelError", &equalWithRelErrorObj<T>) .def("length2", &Vec3_length2<T>,"length2() square magnitude of the vector") .def("__len__", Vec3_helper::len) .def("__getitem__", Vec3_helper::getitem,return_value_policy<copy_non_const_reference>()) .def("__setitem__", Vec3_helper::setitem) .def("closestVertex", &closestVertex<T>) .def("negate", &Vec3_negate<T>, return_internal_reference<>()) .def("setValue", &setValue<T>) .def("__neg__", &Vec3_neg<T>) .def("__mul__", &Vec3_mul<T, int>) .def("__mul__", &Vec3_mul<T, float>) .def("__mul__", &Vec3_mul<T, double>) .def("__mul__", &Vec3_mulT<T>) .def("__mul__", &Vec3_mulTArray<T>) .def("__rmul__", &Vec3_rmulT<T>) .def("__rmul__", &Vec3_rmulTArray<T>) .def("__imul__", &Vec3_imulV<T, int>,return_internal_reference<>()) .def("__imul__", &Vec3_imulV<T, float>,return_internal_reference<>()) .def("__imul__", &Vec3_imulV<T, double>,return_internal_reference<>()) .def("__imul__", &Vec3_imulT<T>,return_internal_reference<>()) .def("__div__", &Vec3_Vec3_divT<T>) .def("__truediv__", &Vec3_Vec3_divT<T>) .def("__mul__", &Vec3_mulM33<T, float>) .def("__mul__", &Vec3_mulM33<T, double>) .def("__mul__", &Vec3_mulM44<T, float>) .def("__mul__", &Vec3_mulM44<T, double>) .def("__mul__", &Vec3_Vec3_mulT<T>) .def("__div__", &Vec3_div<T,int>) .def("__div__", &Vec3_div<T,float>) .def("__div__", &Vec3_div<T,double>) .def("__div__", &Vec3_divTuple<T,tuple>) .def("__div__", &Vec3_divTuple<T,list>) .def("__div__", &Vec3_divT<T>) .def("__truediv__", &Vec3_div<T,int>) .def("__truediv__", &Vec3_div<T,float>) .def("__truediv__", &Vec3_div<T,double>) .def("__truediv__", &Vec3_divTuple<T,tuple>) .def("__truediv__", &Vec3_divTuple<T,list>) .def("__truediv__", &Vec3_divT<T>) .def("__rdiv__", &Vec3_rdivTuple<T,tuple>) .def("__rdiv__", &Vec3_rdivTuple<T,list>) .def("__rdiv__", &Vec3_rdivT<T>) .def("__rtruediv__", &Vec3_rdivTuple<T,tuple>) .def("__rtruediv__", &Vec3_rdivTuple<T,list>) .def("__rtruediv__", &Vec3_rdivT<T>) .def("__idiv__", &Vec3_idivObj<T>,return_internal_reference<>()) .def("__itruediv__", &Vec3_idivObj<T>,return_internal_reference<>()) .def("__xor__", &Vec3_dot<T>) .def("__mod__", &Vec3_cross<T>) .def(self == self) // NOSONAR - suppress SonarCloud bug report. .def(self != self) // NOSONAR - suppress SonarCloud bug report. .def("__add__", &Vec3_add<T>) .def("__add__", &Vec3_addV<T, int>) .def("__add__", &Vec3_addV<T, float>) .def("__add__", &Vec3_addV<T, double>) .def("__add__", &Vec3_addT<T>) .def("__add__", &Vec3_addTuple<T,tuple>) .def("__add__", &Vec3_addTuple<T,list>) .def("__radd__", &Vec3_addT<T>) .def("__radd__", &Vec3_addTuple<T,tuple>) .def("__radd__", &Vec3_addTuple<T,list>) .def("__radd__", &Vec3_add<T>) .def("__iadd__", &Vec3_iaddV<T, int>, return_internal_reference<>()) .def("__iadd__", &Vec3_iaddV<T, float>, return_internal_reference<>()) .def("__iadd__", &Vec3_iaddV<T, double>, return_internal_reference<>()) .def("__sub__", &Vec3_sub<T>) .def("__sub__", &Vec3_subV<T, int>) .def("__sub__", &Vec3_subV<T, float>) .def("__sub__", &Vec3_subV<T, double>) .def("__sub__", &Vec3_subT<T>) .def("__sub__", &Vec3_subTuple<T,tuple>) .def("__sub__", &Vec3_subTuple<T,list>) .def("__rsub__", &Vec3_rsubT<T>) .def("__rsub__", &Vec3_rsubTuple<T,tuple>) .def("__rsub__", &Vec3_rsubTuple<T,list>) .def("__isub__", &Vec3_isubV<T, int>, return_internal_reference<>()) .def("__isub__", &Vec3_isubV<T, float>, return_internal_reference<>()) .def("__isub__", &Vec3_isubV<T, double>, return_internal_reference<>()) .def("__mul__", &mult<T>) .def("__rmul__", &mult<T>) .def("__imul__", &Vec3_imulM44<T, float>, return_internal_reference<>()) .def("__imul__", &Vec3_imulM44<T, double>, return_internal_reference<>()) .def("__lt__", &lessThan<T>) .def("__gt__", &greaterThan<T>) .def("__le__", &lessThanEqual<T>) .def("__ge__", &greaterThanEqual<T>) .def("__eq__", &equal<T>) .def("__ne__", ¬equal<T>) //.def(self_ns::str(self)) .def("__str__",&Vec3_str<T>) .def("__repr__",&Vec3_repr<T>) ; register_Vec3_floatonly<T>(vec3_class); decoratecopy(vec3_class); //add_swizzle3_operators(v3f_class); return vec3_class; } } // namespace PyImath #endif // _PyImathVec3Impl_h_