%PDF- %PDF-
Direktori : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/base/ |
Current File : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/base/atomicops.h |
// Copyright 2010 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // The routines exported by this module are subtle. If you use them, even if // you get the code right, it will depend on careful reasoning about atomicity // and memory ordering; it will be less readable, and harder to maintain. If // you plan to use these routines, you should have a good reason, such as solid // evidence that performance would otherwise suffer, or there being no // alternative. You should assume only properties explicitly guaranteed by the // specifications in this file. You are almost certainly _not_ writing code // just for the x86; if you assume x86 semantics, x86 hardware bugs and // implementations on other archtectures will cause your code to break. If you // do not know what you are doing, avoid these routines, and use a Mutex. // // It is incorrect to make direct assignments to/from an atomic variable. // You should use one of the Load or Store routines. The Relaxed versions // are provided when no fences are needed: // Relaxed_Store() // Relaxed_Load() // Although there are currently no compiler enforcement, you are encouraged // to use these. // #ifndef V8_BASE_ATOMICOPS_H_ #define V8_BASE_ATOMICOPS_H_ #include <stdint.h> #include <atomic> // Small C++ header which defines implementation specific macros used to // identify the STL implementation. // - libc++: captures __config for _LIBCPP_VERSION // - libstdc++: captures bits/c++config.h for __GLIBCXX__ #include <cstddef> #include "src/base/base-export.h" #include "src/base/build_config.h" #include "src/base/macros.h" #if defined(V8_OS_STARBOARD) #include "starboard/atomic.h" #endif // V8_OS_STARBOARD namespace v8 { namespace base { #ifdef V8_OS_STARBOARD using Atomic8 = SbAtomic8; using Atomic16 = int16_t; using Atomic32 = SbAtomic32; #if SB_IS_64_BIT using Atomic64 = SbAtomic64; #endif #else using Atomic8 = char; using Atomic16 = int16_t; using Atomic32 = int32_t; #if defined(V8_HOST_ARCH_64_BIT) // We need to be able to go between Atomic64 and AtomicWord implicitly. This // means Atomic64 and AtomicWord should be the same type on 64-bit. #if defined(__ILP32__) using Atomic64 = int64_t; #else using Atomic64 = intptr_t; #endif // defined(__ILP32__) #endif // defined(V8_HOST_ARCH_64_BIT) #endif // V8_OS_STARBOARD // Use AtomicWord for a machine-sized pointer. It will use the Atomic32 or // Atomic64 routines below, depending on your architecture. #if defined(V8_HOST_ARCH_64_BIT) using AtomicWord = Atomic64; #else using AtomicWord = Atomic32; #endif static_assert(sizeof(void*) == sizeof(AtomicWord)); namespace helper { template <typename T> volatile std::atomic<T>* to_std_atomic(volatile T* ptr) { return reinterpret_cast<volatile std::atomic<T>*>(ptr); } template <typename T> volatile const std::atomic<T>* to_std_atomic_const(volatile const T* ptr) { return reinterpret_cast<volatile const std::atomic<T>*>(ptr); } } // namespace helper inline void SeqCst_MemoryFence() { std::atomic_thread_fence(std::memory_order_seq_cst); } // Atomically execute: // result = *ptr; // if (result == old_value) // *ptr = new_value; // return result; // // I.e. replace |*ptr| with |new_value| if |*ptr| used to be |old_value|. // Always return the value of |*ptr| before the operation. // Acquire, Relaxed, Release correspond to standard C++ memory orders. inline Atomic8 Relaxed_CompareAndSwap(volatile Atomic8* ptr, Atomic8 old_value, Atomic8 new_value) { std::atomic_compare_exchange_strong_explicit( helper::to_std_atomic(ptr), &old_value, new_value, std::memory_order_relaxed, std::memory_order_relaxed); return old_value; } inline Atomic16 Relaxed_CompareAndSwap(volatile Atomic16* ptr, Atomic16 old_value, Atomic16 new_value) { std::atomic_compare_exchange_strong_explicit( helper::to_std_atomic(ptr), &old_value, new_value, std::memory_order_relaxed, std::memory_order_relaxed); return old_value; } inline Atomic32 Relaxed_CompareAndSwap(volatile Atomic32* ptr, Atomic32 old_value, Atomic32 new_value) { std::atomic_compare_exchange_strong_explicit( helper::to_std_atomic(ptr), &old_value, new_value, std::memory_order_relaxed, std::memory_order_relaxed); return old_value; } inline Atomic32 Relaxed_AtomicExchange(volatile Atomic32* ptr, Atomic32 new_value) { return std::atomic_exchange_explicit(helper::to_std_atomic(ptr), new_value, std::memory_order_relaxed); } inline Atomic32 SeqCst_AtomicExchange(volatile Atomic32* ptr, Atomic32 new_value) { return std::atomic_exchange_explicit(helper::to_std_atomic(ptr), new_value, std::memory_order_seq_cst); } inline Atomic32 Relaxed_AtomicIncrement(volatile Atomic32* ptr, Atomic32 increment) { return increment + std::atomic_fetch_add_explicit(helper::to_std_atomic(ptr), increment, std::memory_order_relaxed); } inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr, Atomic32 old_value, Atomic32 new_value) { atomic_compare_exchange_strong_explicit( helper::to_std_atomic(ptr), &old_value, new_value, std::memory_order_acquire, std::memory_order_acquire); return old_value; } inline Atomic8 Release_CompareAndSwap(volatile Atomic8* ptr, Atomic8 old_value, Atomic8 new_value) { bool result = atomic_compare_exchange_strong_explicit( helper::to_std_atomic(ptr), &old_value, new_value, std::memory_order_release, std::memory_order_relaxed); USE(result); // Make gcc compiler happy. return old_value; } inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr, Atomic32 old_value, Atomic32 new_value) { atomic_compare_exchange_strong_explicit( helper::to_std_atomic(ptr), &old_value, new_value, std::memory_order_release, std::memory_order_relaxed); return old_value; } inline Atomic32 AcquireRelease_CompareAndSwap(volatile Atomic32* ptr, Atomic32 old_value, Atomic32 new_value) { atomic_compare_exchange_strong_explicit( helper::to_std_atomic(ptr), &old_value, new_value, std::memory_order_acq_rel, std::memory_order_acquire); return old_value; } inline Atomic32 SeqCst_CompareAndSwap(volatile Atomic32* ptr, Atomic32 old_value, Atomic32 new_value) { atomic_compare_exchange_strong_explicit( helper::to_std_atomic(ptr), &old_value, new_value, std::memory_order_seq_cst, std::memory_order_seq_cst); return old_value; } inline void Relaxed_Store(volatile Atomic8* ptr, Atomic8 value) { std::atomic_store_explicit(helper::to_std_atomic(ptr), value, std::memory_order_relaxed); } inline void Relaxed_Store(volatile Atomic16* ptr, Atomic16 value) { std::atomic_store_explicit(helper::to_std_atomic(ptr), value, std::memory_order_relaxed); } inline void Relaxed_Store(volatile Atomic32* ptr, Atomic32 value) { std::atomic_store_explicit(helper::to_std_atomic(ptr), value, std::memory_order_relaxed); } inline void Release_Store(volatile Atomic8* ptr, Atomic8 value) { std::atomic_store_explicit(helper::to_std_atomic(ptr), value, std::memory_order_release); } inline void Release_Store(volatile Atomic16* ptr, Atomic16 value) { std::atomic_store_explicit(helper::to_std_atomic(ptr), value, std::memory_order_release); } inline void Release_Store(volatile Atomic32* ptr, Atomic32 value) { std::atomic_store_explicit(helper::to_std_atomic(ptr), value, std::memory_order_release); } inline void SeqCst_Store(volatile Atomic8* ptr, Atomic8 value) { std::atomic_store_explicit(helper::to_std_atomic(ptr), value, std::memory_order_seq_cst); } inline void SeqCst_Store(volatile Atomic16* ptr, Atomic16 value) { std::atomic_store_explicit(helper::to_std_atomic(ptr), value, std::memory_order_seq_cst); } inline void SeqCst_Store(volatile Atomic32* ptr, Atomic32 value) { std::atomic_store_explicit(helper::to_std_atomic(ptr), value, std::memory_order_seq_cst); } inline Atomic8 Relaxed_Load(volatile const Atomic8* ptr) { return std::atomic_load_explicit(helper::to_std_atomic_const(ptr), std::memory_order_relaxed); } inline Atomic16 Relaxed_Load(volatile const Atomic16* ptr) { return std::atomic_load_explicit(helper::to_std_atomic_const(ptr), std::memory_order_relaxed); } inline Atomic32 Relaxed_Load(volatile const Atomic32* ptr) { return std::atomic_load_explicit(helper::to_std_atomic_const(ptr), std::memory_order_relaxed); } inline Atomic8 Acquire_Load(volatile const Atomic8* ptr) { return std::atomic_load_explicit(helper::to_std_atomic_const(ptr), std::memory_order_acquire); } inline Atomic32 Acquire_Load(volatile const Atomic32* ptr) { return std::atomic_load_explicit(helper::to_std_atomic_const(ptr), std::memory_order_acquire); } inline Atomic8 SeqCst_Load(volatile const Atomic8* ptr) { return std::atomic_load_explicit(helper::to_std_atomic_const(ptr), std::memory_order_seq_cst); } inline Atomic32 SeqCst_Load(volatile const Atomic32* ptr) { return std::atomic_load_explicit(helper::to_std_atomic_const(ptr), std::memory_order_seq_cst); } #if defined(V8_HOST_ARCH_64_BIT) inline Atomic64 Relaxed_CompareAndSwap(volatile Atomic64* ptr, Atomic64 old_value, Atomic64 new_value) { std::atomic_compare_exchange_strong_explicit( helper::to_std_atomic(ptr), &old_value, new_value, std::memory_order_relaxed, std::memory_order_relaxed); return old_value; } inline Atomic64 Relaxed_AtomicExchange(volatile Atomic64* ptr, Atomic64 new_value) { return std::atomic_exchange_explicit(helper::to_std_atomic(ptr), new_value, std::memory_order_relaxed); } inline Atomic64 SeqCst_AtomicExchange(volatile Atomic64* ptr, Atomic64 new_value) { return std::atomic_exchange_explicit(helper::to_std_atomic(ptr), new_value, std::memory_order_seq_cst); } inline Atomic64 Relaxed_AtomicIncrement(volatile Atomic64* ptr, Atomic64 increment) { return increment + std::atomic_fetch_add_explicit(helper::to_std_atomic(ptr), increment, std::memory_order_relaxed); } inline Atomic64 Acquire_CompareAndSwap(volatile Atomic64* ptr, Atomic64 old_value, Atomic64 new_value) { std::atomic_compare_exchange_strong_explicit( helper::to_std_atomic(ptr), &old_value, new_value, std::memory_order_acquire, std::memory_order_acquire); return old_value; } inline Atomic64 Release_CompareAndSwap(volatile Atomic64* ptr, Atomic64 old_value, Atomic64 new_value) { std::atomic_compare_exchange_strong_explicit( helper::to_std_atomic(ptr), &old_value, new_value, std::memory_order_release, std::memory_order_relaxed); return old_value; } inline Atomic64 AcquireRelease_CompareAndSwap(volatile Atomic64* ptr, Atomic64 old_value, Atomic64 new_value) { std::atomic_compare_exchange_strong_explicit( helper::to_std_atomic(ptr), &old_value, new_value, std::memory_order_acq_rel, std::memory_order_acquire); return old_value; } inline Atomic64 SeqCst_CompareAndSwap(volatile Atomic64* ptr, Atomic64 old_value, Atomic64 new_value) { std::atomic_compare_exchange_strong_explicit( helper::to_std_atomic(ptr), &old_value, new_value, std::memory_order_seq_cst, std::memory_order_seq_cst); return old_value; } inline void Relaxed_Store(volatile Atomic64* ptr, Atomic64 value) { std::atomic_store_explicit(helper::to_std_atomic(ptr), value, std::memory_order_relaxed); } inline void Release_Store(volatile Atomic64* ptr, Atomic64 value) { std::atomic_store_explicit(helper::to_std_atomic(ptr), value, std::memory_order_release); } inline void SeqCst_Store(volatile Atomic64* ptr, Atomic64 value) { std::atomic_store_explicit(helper::to_std_atomic(ptr), value, std::memory_order_seq_cst); } inline Atomic64 Relaxed_Load(volatile const Atomic64* ptr) { return std::atomic_load_explicit(helper::to_std_atomic_const(ptr), std::memory_order_relaxed); } inline Atomic64 Acquire_Load(volatile const Atomic64* ptr) { return std::atomic_load_explicit(helper::to_std_atomic_const(ptr), std::memory_order_acquire); } inline Atomic64 SeqCst_Load(volatile const Atomic64* ptr) { return std::atomic_load_explicit(helper::to_std_atomic_const(ptr), std::memory_order_seq_cst); } #endif // defined(V8_HOST_ARCH_64_BIT) inline void Relaxed_Memcpy(volatile Atomic8* dst, volatile const Atomic8* src, size_t bytes) { constexpr size_t kAtomicWordSize = sizeof(AtomicWord); while (bytes > 0 && !IsAligned(reinterpret_cast<uintptr_t>(dst), kAtomicWordSize)) { Relaxed_Store(dst++, Relaxed_Load(src++)); --bytes; } if (IsAligned(reinterpret_cast<uintptr_t>(src), kAtomicWordSize) && IsAligned(reinterpret_cast<uintptr_t>(dst), kAtomicWordSize)) { while (bytes >= kAtomicWordSize) { Relaxed_Store( reinterpret_cast<volatile AtomicWord*>(dst), Relaxed_Load(reinterpret_cast<const volatile AtomicWord*>(src))); dst += kAtomicWordSize; src += kAtomicWordSize; bytes -= kAtomicWordSize; } } while (bytes > 0) { Relaxed_Store(dst++, Relaxed_Load(src++)); --bytes; } } inline void Relaxed_Memmove(volatile Atomic8* dst, volatile const Atomic8* src, size_t bytes) { // Use Relaxed_Memcpy if copying forwards is safe. This is the case if there // is no overlap, or {dst} lies before {src}. // This single check checks for both: if (reinterpret_cast<uintptr_t>(dst) - reinterpret_cast<uintptr_t>(src) >= bytes) { Relaxed_Memcpy(dst, src, bytes); return; } // Otherwise copy backwards. dst += bytes; src += bytes; constexpr size_t kAtomicWordSize = sizeof(AtomicWord); while (bytes > 0 && !IsAligned(reinterpret_cast<uintptr_t>(dst), kAtomicWordSize)) { Relaxed_Store(--dst, Relaxed_Load(--src)); --bytes; } if (IsAligned(reinterpret_cast<uintptr_t>(src), kAtomicWordSize) && IsAligned(reinterpret_cast<uintptr_t>(dst), kAtomicWordSize)) { while (bytes >= kAtomicWordSize) { dst -= kAtomicWordSize; src -= kAtomicWordSize; bytes -= kAtomicWordSize; Relaxed_Store( reinterpret_cast<volatile AtomicWord*>(dst), Relaxed_Load(reinterpret_cast<const volatile AtomicWord*>(src))); } } while (bytes > 0) { Relaxed_Store(--dst, Relaxed_Load(--src)); --bytes; } } namespace helper { inline int MemcmpNotEqualFundamental(Atomic8 u1, Atomic8 u2) { DCHECK_NE(u1, u2); return u1 < u2 ? -1 : 1; } inline int MemcmpNotEqualFundamental(AtomicWord u1, AtomicWord u2) { DCHECK_NE(u1, u2); #if defined(V8_TARGET_BIG_ENDIAN) return u1 < u2 ? -1 : 1; #else for (size_t i = 0; i < sizeof(AtomicWord); ++i) { uint8_t byte1 = u1 & 0xFF; uint8_t byte2 = u2 & 0xFF; if (byte1 != byte2) return byte1 < byte2 ? -1 : 1; u1 >>= 8; u2 >>= 8; } UNREACHABLE(); #endif } } // namespace helper inline int Relaxed_Memcmp(volatile const Atomic8* s1, volatile const Atomic8* s2, size_t len) { constexpr size_t kAtomicWordSize = sizeof(AtomicWord); while (len > 0 && !(IsAligned(reinterpret_cast<uintptr_t>(s1), kAtomicWordSize) && IsAligned(reinterpret_cast<uintptr_t>(s2), kAtomicWordSize))) { Atomic8 u1 = Relaxed_Load(s1++); Atomic8 u2 = Relaxed_Load(s2++); if (u1 != u2) return helper::MemcmpNotEqualFundamental(u1, u2); --len; } if (IsAligned(reinterpret_cast<uintptr_t>(s1), kAtomicWordSize) && IsAligned(reinterpret_cast<uintptr_t>(s2), kAtomicWordSize)) { while (len >= kAtomicWordSize) { AtomicWord u1 = Relaxed_Load(reinterpret_cast<const volatile AtomicWord*>(s1)); AtomicWord u2 = Relaxed_Load(reinterpret_cast<const volatile AtomicWord*>(s2)); if (u1 != u2) return helper::MemcmpNotEqualFundamental(u1, u2); s1 += kAtomicWordSize; s2 += kAtomicWordSize; len -= kAtomicWordSize; } } while (len > 0) { Atomic8 u1 = Relaxed_Load(s1++); Atomic8 u2 = Relaxed_Load(s2++); if (u1 != u2) return helper::MemcmpNotEqualFundamental(u1, u2); --len; } return 0; } } // namespace base } // namespace v8 #endif // V8_BASE_ATOMICOPS_H_