%PDF- %PDF-
Direktori : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/base/ |
Current File : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/base/vector.h |
// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_BASE_VECTOR_H_ #define V8_BASE_VECTOR_H_ #include <algorithm> #include <cstring> #include <iterator> #include <limits> #include <memory> #include <type_traits> #include "src/base/functional.h" #include "src/base/logging.h" #include "src/base/macros.h" namespace v8 { namespace base { template <typename T> class Vector { public: using value_type = T; using iterator = T*; using const_iterator = const T*; constexpr Vector() : start_(nullptr), length_(0) {} constexpr Vector(T* data, size_t length) : start_(data), length_(length) { DCHECK(length == 0 || data != nullptr); } static Vector<T> New(size_t length) { return Vector<T>(new T[length], length); } // Returns a vector using the same backing storage as this one, // spanning from and including 'from', to but not including 'to'. Vector<T> SubVector(size_t from, size_t to) const { DCHECK_LE(from, to); DCHECK_LE(to, length_); return Vector<T>(begin() + from, to - from); } Vector<T> SubVectorFrom(size_t from) const { return SubVector(from, length_); } template <class U> void OverwriteWith(Vector<U> other) { DCHECK_EQ(size(), other.size()); std::copy(other.begin(), other.end(), begin()); } template <class U, size_t n> void OverwriteWith(const std::array<U, n>& other) { DCHECK_EQ(size(), other.size()); std::copy(other.begin(), other.end(), begin()); } // Returns the length of the vector. Only use this if you really need an // integer return value. Use {size()} otherwise. int length() const { DCHECK_GE(std::numeric_limits<int>::max(), length_); return static_cast<int>(length_); } // Returns the length of the vector as a size_t. constexpr size_t size() const { return length_; } // Returns whether or not the vector is empty. constexpr bool empty() const { return length_ == 0; } // Access individual vector elements - checks bounds in debug mode. T& operator[](size_t index) const { DCHECK_LT(index, length_); return start_[index]; } const T& at(size_t index) const { return operator[](index); } T& first() { return start_[0]; } const T& first() const { return start_[0]; } T& last() { DCHECK_LT(0, length_); return start_[length_ - 1]; } const T& last() const { DCHECK_LT(0, length_); return start_[length_ - 1]; } // Returns a pointer to the start of the data in the vector. constexpr T* begin() const { return start_; } constexpr const T* cbegin() const { return start_; } // For consistency with other containers, do also provide a {data} accessor. constexpr T* data() const { return start_; } // Returns a pointer past the end of the data in the vector. constexpr T* end() const { return start_ + length_; } constexpr const T* cend() const { return start_ + length_; } constexpr std::reverse_iterator<T*> rbegin() const { return std::make_reverse_iterator(end()); } constexpr std::reverse_iterator<T*> rend() const { return std::make_reverse_iterator(begin()); } // Returns a clone of this vector with a new backing store. Vector<T> Clone() const { T* result = new T[length_]; for (size_t i = 0; i < length_; i++) result[i] = start_[i]; return Vector<T>(result, length_); } void Truncate(size_t length) { DCHECK(length <= length_); length_ = length; } // Releases the array underlying this vector. Once disposed the // vector is empty. void Dispose() { delete[] start_; start_ = nullptr; length_ = 0; } Vector<T> operator+(size_t offset) { DCHECK_LE(offset, length_); return Vector<T>(start_ + offset, length_ - offset); } Vector<T> operator+=(size_t offset) { DCHECK_LE(offset, length_); start_ += offset; length_ -= offset; return *this; } // Implicit conversion from Vector<T> to Vector<const T>. operator Vector<const T>() const { return {start_, length_}; } template <typename S> static Vector<T> cast(Vector<S> input) { // Casting is potentially dangerous, so be really restrictive here. This // might be lifted once we have use cases for that. static_assert(std::is_trivial_v<S> && std::is_standard_layout_v<S>); static_assert(std::is_trivial_v<T> && std::is_standard_layout_v<T>); DCHECK_EQ(0, (input.size() * sizeof(S)) % sizeof(T)); DCHECK_EQ(0, reinterpret_cast<uintptr_t>(input.begin()) % alignof(T)); return Vector<T>(reinterpret_cast<T*>(input.begin()), input.size() * sizeof(S) / sizeof(T)); } bool operator==(const Vector<T>& other) const { return std::equal(begin(), end(), other.begin(), other.end()); } bool operator!=(const Vector<T>& other) const { return !operator==(other); } template<typename TT = T> std::enable_if_t<!std::is_const_v<TT>, bool> operator==( const Vector<const T>& other) const { return std::equal(begin(), end(), other.begin(), other.end()); } template<typename TT = T> std::enable_if_t<!std::is_const_v<TT>, bool> operator!=( const Vector<const T>& other) const { return !operator==(other); } private: T* start_; size_t length_; }; template <typename T> V8_INLINE size_t hash_value(base::Vector<T> v) { return hash_range(v.begin(), v.end()); } template <typename T> class V8_NODISCARD ScopedVector : public Vector<T> { public: explicit ScopedVector(size_t length) : Vector<T>(new T[length], length) {} ~ScopedVector() { delete[] this->begin(); } private: DISALLOW_IMPLICIT_CONSTRUCTORS(ScopedVector); }; template <typename T> class OwnedVector { public: OwnedVector() = default; OwnedVector(std::unique_ptr<T[]> data, size_t length) : data_(std::move(data)), length_(length) { DCHECK_IMPLIES(length_ > 0, data_ != nullptr); } // Disallow copying. OwnedVector(const OwnedVector&) = delete; OwnedVector& operator=(const OwnedVector&) = delete; // Move construction and move assignment from {OwnedVector<U>} to // {OwnedVector<T>}, instantiable if {std::unique_ptr<U>} can be converted to // {std::unique_ptr<T>}. Can also be used to convert {OwnedVector<T>} to // {OwnedVector<const T>}. // These also function as the standard move construction/assignment operator. // {other} is left as an empty vector. template <typename U, typename = typename std::enable_if<std::is_convertible< std::unique_ptr<U>, std::unique_ptr<T>>::value>::type> OwnedVector(OwnedVector<U>&& other) V8_NOEXCEPT { *this = std::move(other); } template <typename U, typename = typename std::enable_if<std::is_convertible< std::unique_ptr<U>, std::unique_ptr<T>>::value>::type> OwnedVector& operator=(OwnedVector<U>&& other) V8_NOEXCEPT { static_assert(sizeof(U) == sizeof(T)); data_ = std::move(other.data_); length_ = other.length_; DCHECK_NULL(other.data_); other.length_ = 0; return *this; } // Returns the length of the vector as a size_t. constexpr size_t size() const { return length_; } // Returns whether or not the vector is empty. constexpr bool empty() const { return length_ == 0; } constexpr T* begin() const { DCHECK_IMPLIES(length_ > 0, data_ != nullptr); return data_.get(); } constexpr T* end() const { return begin() + length_; } // In addition to {begin}, do provide a {data()} accessor for API // compatibility with other sequential containers. constexpr T* data() const { return begin(); } constexpr std::reverse_iterator<T*> rbegin() const { return std::make_reverse_iterator(end()); } constexpr std::reverse_iterator<T*> rend() const { return std::make_reverse_iterator(begin()); } // Access individual vector elements - checks bounds in debug mode. T& operator[](size_t index) const { DCHECK_LT(index, length_); return data_[index]; } // Returns a {Vector<T>} view of the data in this vector. Vector<T> as_vector() const { return {begin(), size()}; } // Releases the backing data from this vector and transfers ownership to the // caller. This vector will be empty afterwards. std::unique_ptr<T[]> ReleaseData() { length_ = 0; return std::move(data_); } // Allocates a new vector of the specified size via the default allocator. // Elements in the new vector are value-initialized. static OwnedVector<T> New(size_t size) { if (size == 0) return {}; return OwnedVector<T>(std::make_unique<T[]>(size), size); } // Allocates a new vector of the specified size via the default allocator. // Elements in the new vector are default-initialized. static OwnedVector<T> NewForOverwrite(size_t size) { if (size == 0) return {}; // TODO(v8): Use {std::make_unique_for_overwrite} once we allow C++20. return OwnedVector<T>(std::unique_ptr<T[]>(new T[size]), size); } // Allocates a new vector containing the specified collection of values. // {Iterator} is the common type of {std::begin} and {std::end} called on a // {const U&}. This function is only instantiable if that type exists. template <typename U, typename Iterator = typename std::common_type< decltype(std::begin(std::declval<const U&>())), decltype(std::end(std::declval<const U&>()))>::type> static OwnedVector<T> Of(const U& collection) { Iterator begin = std::begin(collection); Iterator end = std::end(collection); using non_const_t = typename std::remove_const<T>::type; auto vec = OwnedVector<non_const_t>::NewForOverwrite(std::distance(begin, end)); std::copy(begin, end, vec.begin()); return vec; } bool operator==(std::nullptr_t) const { return data_ == nullptr; } bool operator!=(std::nullptr_t) const { return data_ != nullptr; } private: template <typename U> friend class OwnedVector; std::unique_ptr<T[]> data_; size_t length_ = 0; }; // The vectors returned by {StaticCharVector}, {CStrVector}, or {OneByteVector} // do not contain a null-termination byte. If you want the null byte, use // {ArrayVector}. // Known length, constexpr. template <size_t N> constexpr Vector<const char> StaticCharVector(const char (&array)[N]) { return {array, N - 1}; } // Unknown length, not constexpr. inline Vector<const char> CStrVector(const char* data) { return {data, strlen(data)}; } // OneByteVector is never constexpr because the data pointer is // {reinterpret_cast}ed. inline Vector<const uint8_t> OneByteVector(const char* data, size_t length) { return {reinterpret_cast<const uint8_t*>(data), length}; } inline Vector<const uint8_t> OneByteVector(const char* data) { return OneByteVector(data, strlen(data)); } template <size_t N> Vector<const uint8_t> StaticOneByteVector(const char (&array)[N]) { return OneByteVector(array, N - 1); } // For string literals, ArrayVector("foo") returns a vector ['f', 'o', 'o', \0] // with length 4 and null-termination. // If you want ['f', 'o', 'o'], use CStrVector("foo"). template <typename T, size_t N> inline constexpr Vector<T> ArrayVector(T (&arr)[N]) { return {arr, N}; } // Construct a Vector from a start pointer and a size. template <typename T> inline constexpr Vector<T> VectorOf(T* start, size_t size) { return {start, size}; } // Construct a Vector from anything providing a {data()} and {size()} accessor. template <typename Container> inline constexpr auto VectorOf(Container&& c) -> decltype(VectorOf(c.data(), c.size())) { return VectorOf(c.data(), c.size()); } // Construct a Vector from an initializer list. The vector can obviously only be // used as long as the initializer list is live. Valid uses include direct use // in parameter lists: F(VectorOf({1, 2, 3})); template <typename T> inline constexpr Vector<const T> VectorOf(std::initializer_list<T> list) { return VectorOf(list.begin(), list.size()); } template <typename T, size_t kSize> class EmbeddedVector : public Vector<T> { public: EmbeddedVector() : Vector<T>(buffer_, kSize) {} explicit EmbeddedVector(const T& initial_value) : Vector<T>(buffer_, kSize) { std::fill_n(buffer_, kSize, initial_value); } EmbeddedVector(const EmbeddedVector&) = delete; EmbeddedVector& operator=(const EmbeddedVector&) = delete; private: T buffer_[kSize]; }; } // namespace base } // namespace v8 #endif // V8_BASE_VECTOR_H_