%PDF- %PDF-
Direktori : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/builtins/ppc/ |
Current File : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/builtins/ppc/builtins-ppc.cc |
// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_PPC64 #include "src/api/api-arguments.h" #include "src/codegen/code-factory.h" #include "src/codegen/interface-descriptors-inl.h" // For interpreter_entry_return_pc_offset. TODO(jkummerow): Drop. #include "src/codegen/macro-assembler-inl.h" #include "src/codegen/register-configuration.h" #include "src/debug/debug.h" #include "src/deoptimizer/deoptimizer.h" #include "src/execution/frame-constants.h" #include "src/execution/frames.h" #include "src/heap/heap-inl.h" #include "src/logging/counters.h" #include "src/objects/cell.h" #include "src/objects/foreign.h" #include "src/objects/heap-number.h" #include "src/objects/js-generator.h" #include "src/objects/smi.h" #include "src/runtime/runtime.h" #if V8_ENABLE_WEBASSEMBLY #include "src/wasm/baseline/liftoff-assembler-defs.h" #include "src/wasm/wasm-linkage.h" #include "src/wasm/wasm-objects.h" #endif // V8_ENABLE_WEBASSEMBLY namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) namespace { static void AssertCodeIsBaseline(MacroAssembler* masm, Register code, Register scratch) { DCHECK(!AreAliased(code, scratch)); // Verify that the code kind is baseline code via the CodeKind. __ LoadU32(scratch, FieldMemOperand(code, Code::kFlagsOffset)); __ DecodeField<Code::KindField>(scratch); __ CmpS64(scratch, Operand(static_cast<int>(CodeKind::BASELINE)), r0); __ Assert(eq, AbortReason::kExpectedBaselineData); } static void GetSharedFunctionInfoBytecodeOrBaseline(MacroAssembler* masm, Register sfi_data, Register scratch1, Label* is_baseline) { USE(GetSharedFunctionInfoBytecodeOrBaseline); ASM_CODE_COMMENT(masm); Label done; __ LoadMap(scratch1, sfi_data); #ifndef V8_JITLESS __ CompareInstanceType(scratch1, scratch1, CODE_TYPE); if (v8_flags.debug_code) { Label not_baseline; __ b(ne, ¬_baseline); AssertCodeIsBaseline(masm, sfi_data, scratch1); __ beq(is_baseline); __ bind(¬_baseline); } else { __ beq(is_baseline); } __ CmpS32(scratch1, Operand(INTERPRETER_DATA_TYPE), r0); #else __ CompareInstanceType(scratch1, scratch1, INTERPRETER_DATA_TYPE); #endif // !V8_JITLESS __ bne(&done); __ LoadTaggedField( sfi_data, FieldMemOperand(sfi_data, InterpreterData::kBytecodeArrayOffset), r0); __ bind(&done); } void Generate_OSREntry(MacroAssembler* masm, Register entry_address, intptr_t offset) { __ AddS64(ip, entry_address, Operand(offset), r0); __ mtlr(ip); // "return" to the OSR entry point of the function. __ Ret(); } void ResetSharedFunctionInfoAge(MacroAssembler* masm, Register sfi, Register scratch) { DCHECK(!AreAliased(sfi, scratch)); __ mov(scratch, Operand(0)); __ StoreU16(scratch, FieldMemOperand(sfi, SharedFunctionInfo::kAgeOffset), no_reg); } void ResetJSFunctionAge(MacroAssembler* masm, Register js_function, Register scratch1, Register scratch2) { __ LoadTaggedField( scratch1, FieldMemOperand(js_function, JSFunction::kSharedFunctionInfoOffset), scratch2); ResetSharedFunctionInfoAge(masm, scratch1, scratch2); } void ResetFeedbackVectorOsrUrgency(MacroAssembler* masm, Register feedback_vector, Register scratch1, Register scratch2) { DCHECK(!AreAliased(feedback_vector, scratch1)); __ LoadU8(scratch1, FieldMemOperand(feedback_vector, FeedbackVector::kOsrStateOffset), scratch2); __ andi( scratch1, scratch1, Operand(static_cast<uint8_t>(~FeedbackVector::OsrUrgencyBits::kMask))); __ StoreU8(scratch1, FieldMemOperand(feedback_vector, FeedbackVector::kOsrStateOffset), scratch2); } // Restarts execution either at the current or next (in execution order) // bytecode. If there is baseline code on the shared function info, converts an // interpreter frame into a baseline frame and continues execution in baseline // code. Otherwise execution continues with bytecode. void Generate_BaselineOrInterpreterEntry(MacroAssembler* masm, bool next_bytecode, bool is_osr = false) { Label start; __ bind(&start); // Get function from the frame. Register closure = r4; __ LoadU64(closure, MemOperand(fp, StandardFrameConstants::kFunctionOffset), r0); // Get the InstructionStream object from the shared function info. Register code_obj = r9; __ LoadTaggedField( code_obj, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset), r0); if (is_osr) { ResetSharedFunctionInfoAge(masm, code_obj, r6); } __ LoadTaggedField( code_obj, FieldMemOperand(code_obj, SharedFunctionInfo::kFunctionDataOffset), r0); // Check if we have baseline code. For OSR entry it is safe to assume we // always have baseline code. if (!is_osr) { Label start_with_baseline; __ CompareObjectType(code_obj, r6, r6, CODE_TYPE); __ b(eq, &start_with_baseline); // Start with bytecode as there is no baseline code. Builtin builtin_id = next_bytecode ? Builtin::kInterpreterEnterAtNextBytecode : Builtin::kInterpreterEnterAtBytecode; __ Jump(masm->isolate()->builtins()->code_handle(builtin_id), RelocInfo::CODE_TARGET); // Start with baseline code. __ bind(&start_with_baseline); } else if (v8_flags.debug_code) { __ CompareObjectType(code_obj, r6, r6, CODE_TYPE); __ Assert(eq, AbortReason::kExpectedBaselineData); } if (v8_flags.debug_code) { AssertCodeIsBaseline(masm, code_obj, r6); } // Load the feedback cell and vector. Register feedback_cell = r5; Register feedback_vector = ip; __ LoadTaggedField(feedback_cell, FieldMemOperand(closure, JSFunction::kFeedbackCellOffset), r0); __ LoadTaggedField(feedback_vector, FieldMemOperand(feedback_cell, FeedbackCell::kValueOffset), r0); Label install_baseline_code; // Check if feedback vector is valid. If not, call prepare for baseline to // allocate it. __ CompareObjectType(feedback_vector, r6, r6, FEEDBACK_VECTOR_TYPE); __ b(ne, &install_baseline_code); // Save BytecodeOffset from the stack frame. __ LoadU64(kInterpreterBytecodeOffsetRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ SmiUntag(kInterpreterBytecodeOffsetRegister); // Replace bytecode offset with feedback cell. static_assert(InterpreterFrameConstants::kBytecodeOffsetFromFp == BaselineFrameConstants::kFeedbackCellFromFp); __ StoreU64(feedback_cell, MemOperand(fp, BaselineFrameConstants::kFeedbackCellFromFp)); feedback_cell = no_reg; // Update feedback vector cache. static_assert(InterpreterFrameConstants::kFeedbackVectorFromFp == BaselineFrameConstants::kFeedbackVectorFromFp); __ StoreU64(feedback_vector, MemOperand(fp, InterpreterFrameConstants::kFeedbackVectorFromFp)); feedback_vector = no_reg; // Compute baseline pc for bytecode offset. ExternalReference get_baseline_pc_extref; if (next_bytecode || is_osr) { get_baseline_pc_extref = ExternalReference::baseline_pc_for_next_executed_bytecode(); } else { get_baseline_pc_extref = ExternalReference::baseline_pc_for_bytecode_offset(); } Register get_baseline_pc = r6; __ Move(get_baseline_pc, get_baseline_pc_extref); // If the code deoptimizes during the implicit function entry stack interrupt // check, it will have a bailout ID of kFunctionEntryBytecodeOffset, which is // not a valid bytecode offset. // TODO(pthier): Investigate if it is feasible to handle this special case // in TurboFan instead of here. Label valid_bytecode_offset, function_entry_bytecode; if (!is_osr) { __ CmpS64(kInterpreterBytecodeOffsetRegister, Operand(BytecodeArray::kHeaderSize - kHeapObjectTag + kFunctionEntryBytecodeOffset), r0); __ b(eq, &function_entry_bytecode); } __ SubS64(kInterpreterBytecodeOffsetRegister, kInterpreterBytecodeOffsetRegister, Operand(BytecodeArray::kHeaderSize - kHeapObjectTag)); __ bind(&valid_bytecode_offset); // Get bytecode array from the stack frame. __ LoadU64(kInterpreterBytecodeArrayRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); // Save the accumulator register, since it's clobbered by the below call. __ Push(kInterpreterAccumulatorRegister); __ Push(code_obj); { __ mr(arg_reg_1, code_obj); __ mr(arg_reg_2, kInterpreterBytecodeOffsetRegister); __ mr(arg_reg_3, kInterpreterBytecodeArrayRegister); FrameScope scope(masm, StackFrame::INTERNAL); __ PrepareCallCFunction(4, 0, ip); __ CallCFunction(get_baseline_pc, 3, 0); } __ Pop(code_obj); __ LoadCodeInstructionStart(code_obj, code_obj); __ AddS64(code_obj, code_obj, kReturnRegister0); __ Pop(kInterpreterAccumulatorRegister); if (is_osr) { Generate_OSREntry(masm, code_obj, 0); } else { __ Jump(code_obj); } __ Trap(); // Unreachable. if (!is_osr) { __ bind(&function_entry_bytecode); // If the bytecode offset is kFunctionEntryOffset, get the start address of // the first bytecode. __ mov(kInterpreterBytecodeOffsetRegister, Operand(0)); if (next_bytecode) { __ Move(get_baseline_pc, ExternalReference::baseline_pc_for_bytecode_offset()); } __ b(&valid_bytecode_offset); } __ bind(&install_baseline_code); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(kInterpreterAccumulatorRegister); __ Push(closure); __ CallRuntime(Runtime::kInstallBaselineCode, 1); __ Pop(kInterpreterAccumulatorRegister); } // Retry from the start after installing baseline code. __ b(&start); } } // namespace void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address) { __ Move(kJavaScriptCallExtraArg1Register, ExternalReference::Create(address)); __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame), RelocInfo::CODE_TARGET); } namespace { enum class ArgumentsElementType { kRaw, // Push arguments as they are. kHandle // Dereference arguments before pushing. }; void Generate_PushArguments(MacroAssembler* masm, Register array, Register argc, Register scratch, ArgumentsElementType element_type) { DCHECK(!AreAliased(array, argc, scratch)); Label loop, done; __ subi(scratch, argc, Operand(kJSArgcReceiverSlots)); __ cmpi(scratch, Operand::Zero()); __ beq(&done); __ mtctr(scratch); __ ShiftLeftU64(scratch, scratch, Operand(kSystemPointerSizeLog2)); __ add(scratch, array, scratch); __ bind(&loop); __ LoadU64WithUpdate(ip, MemOperand(scratch, -kSystemPointerSize)); if (element_type == ArgumentsElementType::kHandle) { __ LoadU64(ip, MemOperand(ip)); } __ push(ip); __ bdnz(&loop); __ bind(&done); } void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : number of arguments // -- r4 : constructor function // -- r6 : new target // -- cp : context // -- lr : return address // -- sp[...]: constructor arguments // ----------------------------------- Register scratch = r5; Label stack_overflow; __ StackOverflowCheck(r3, scratch, &stack_overflow); // Enter a construct frame. { FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT); // Preserve the incoming parameters on the stack. __ SmiTag(r3); __ Push(cp, r3); __ SmiUntag(r3, SetRC); // TODO(victorgomes): When the arguments adaptor is completely removed, we // should get the formal parameter count and copy the arguments in its // correct position (including any undefined), instead of delaying this to // InvokeFunction. // Set up pointer to first argument (skip receiver). __ addi( r7, fp, Operand(StandardFrameConstants::kCallerSPOffset + kSystemPointerSize)); // Copy arguments and receiver to the expression stack. // r7: Pointer to start of arguments. // r3: Number of arguments. Generate_PushArguments(masm, r7, r3, r8, ArgumentsElementType::kRaw); // The receiver for the builtin/api call. __ PushRoot(RootIndex::kTheHoleValue); // Call the function. // r3: number of arguments (untagged) // r4: constructor function // r6: new target { ConstantPoolUnavailableScope constant_pool_unavailable(masm); __ InvokeFunctionWithNewTarget(r4, r6, r3, InvokeType::kCall); } // Restore context from the frame. __ LoadU64(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); // Restore smi-tagged arguments count from the frame. __ LoadU64(scratch, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); // Leave construct frame. } // Remove caller arguments from the stack and return. __ DropArguments(scratch, MacroAssembler::kCountIsSmi, MacroAssembler::kCountIncludesReceiver); __ blr(); __ bind(&stack_overflow); { FrameScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowStackOverflow); __ bkpt(0); // Unreachable code. } } enum class OsrSourceTier { kInterpreter, kBaseline, }; void OnStackReplacement(MacroAssembler* masm, OsrSourceTier source, Register maybe_target_code) { Label jump_to_optimized_code; { // If maybe_target_code is not null, no need to call into runtime. A // precondition here is: if maybe_target_code is a InstructionStream object, // it must NOT be marked_for_deoptimization (callers must ensure this). __ CmpSmiLiteral(maybe_target_code, Smi::zero(), r0); __ bne(&jump_to_optimized_code); } ASM_CODE_COMMENT(masm); { FrameScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kCompileOptimizedOSR); } // If the code object is null, just return to the caller. __ CmpSmiLiteral(r3, Smi::zero(), r0); __ bne(&jump_to_optimized_code); __ Ret(); __ bind(&jump_to_optimized_code); DCHECK_EQ(maybe_target_code, r3); // Already in the right spot. // OSR entry tracing. { Label next; __ Move(r4, ExternalReference::address_of_log_or_trace_osr()); __ LoadU8(r4, MemOperand(r4)); __ andi(r0, r4, Operand(0xFF)); // Mask to the LSB. __ beq(&next, cr0); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ Push(r3); // Preserve the code object. __ CallRuntime(Runtime::kLogOrTraceOptimizedOSREntry, 0); __ Pop(r3); } __ bind(&next); } if (source == OsrSourceTier::kInterpreter) { // Drop the handler frame that is be sitting on top of the actual // JavaScript frame. This is the case then OSR is triggered from bytecode. __ LeaveFrame(StackFrame::STUB); } // Load deoptimization data from the code object. // <deopt_data> = <code>[#deoptimization_data_offset] __ LoadTaggedField( r4, FieldMemOperand(r3, Code::kDeoptimizationDataOrInterpreterDataOffset), r0); { ConstantPoolUnavailableScope constant_pool_unavailable(masm); if (V8_EMBEDDED_CONSTANT_POOL_BOOL) { __ LoadConstantPoolPointerRegisterFromCodeTargetAddress(r3, r0, ip); } __ LoadCodeInstructionStart(r3, r3); // Load the OSR entrypoint offset from the deoptimization data. // <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset] __ SmiUntag(r4, FieldMemOperand(r4, FixedArray::OffsetOfElementAt( DeoptimizationData::kOsrPcOffsetIndex)), LeaveRC, r0); // Compute the target address = code start + osr_offset __ add(r0, r3, r4); // And "return" to the OSR entry point of the function. __ mtlr(r0); __ blr(); } } } // namespace // The construct stub for ES5 constructor functions and ES6 class constructors. void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3: number of arguments (untagged) // -- r4: constructor function // -- r6: new target // -- cp: context // -- lr: return address // -- sp[...]: constructor arguments // ----------------------------------- FrameScope scope(masm, StackFrame::MANUAL); // Enter a construct frame. Label post_instantiation_deopt_entry, not_create_implicit_receiver; __ EnterFrame(StackFrame::CONSTRUCT); // Preserve the incoming parameters on the stack. __ SmiTag(r3); __ Push(cp, r3, r4); __ PushRoot(RootIndex::kUndefinedValue); __ Push(r6); // ----------- S t a t e ------------- // -- sp[0*kSystemPointerSize]: new target // -- sp[1*kSystemPointerSize]: padding // -- r4 and sp[2*kSystemPointerSize]: constructor function // -- sp[3*kSystemPointerSize]: number of arguments (tagged) // -- sp[4*kSystemPointerSize]: context // ----------------------------------- __ LoadTaggedField( r7, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset), r0); __ lwz(r7, FieldMemOperand(r7, SharedFunctionInfo::kFlagsOffset)); __ DecodeField<SharedFunctionInfo::FunctionKindBits>(r7); __ JumpIfIsInRange( r7, static_cast<uint32_t>(FunctionKind::kDefaultDerivedConstructor), static_cast<uint32_t>(FunctionKind::kDerivedConstructor), ¬_create_implicit_receiver); // If not derived class constructor: Allocate the new receiver object. __ Call(BUILTIN_CODE(masm->isolate(), FastNewObject), RelocInfo::CODE_TARGET); __ b(&post_instantiation_deopt_entry); // Else: use TheHoleValue as receiver for constructor call __ bind(¬_create_implicit_receiver); __ LoadRoot(r3, RootIndex::kTheHoleValue); // ----------- S t a t e ------------- // -- r3: receiver // -- Slot 4 / sp[0*kSystemPointerSize]: new target // -- Slot 3 / sp[1*kSystemPointerSize]: padding // -- Slot 2 / sp[2*kSystemPointerSize]: constructor function // -- Slot 1 / sp[3*kSystemPointerSize]: number of arguments (tagged) // -- Slot 0 / sp[4*kSystemPointerSize]: context // ----------------------------------- // Deoptimizer enters here. masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset( masm->pc_offset()); __ bind(&post_instantiation_deopt_entry); // Restore new target. __ Pop(r6); // Push the allocated receiver to the stack. __ Push(r3); // We need two copies because we may have to return the original one // and the calling conventions dictate that the called function pops the // receiver. The second copy is pushed after the arguments, we saved in r6 // since r0 needs to store the number of arguments before // InvokingFunction. __ mr(r9, r3); // Set up pointer to first argument (skip receiver). __ addi( r7, fp, Operand(StandardFrameConstants::kCallerSPOffset + kSystemPointerSize)); // ----------- S t a t e ------------- // -- r6: new target // -- sp[0*kSystemPointerSize]: implicit receiver // -- sp[1*kSystemPointerSize]: implicit receiver // -- sp[2*kSystemPointerSize]: padding // -- sp[3*kSystemPointerSize]: constructor function // -- sp[4*kSystemPointerSize]: number of arguments (tagged) // -- sp[5*kSystemPointerSize]: context // ----------------------------------- // Restore constructor function and argument count. __ LoadU64(r4, MemOperand(fp, ConstructFrameConstants::kConstructorOffset)); __ LoadU64(r3, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); __ SmiUntag(r3); Label stack_overflow; __ StackOverflowCheck(r3, r8, &stack_overflow); // Copy arguments to the expression stack. // r7: Pointer to start of argument. // r3: Number of arguments. Generate_PushArguments(masm, r7, r3, r8, ArgumentsElementType::kRaw); // Push implicit receiver. __ Push(r9); // Call the function. { ConstantPoolUnavailableScope constant_pool_unavailable(masm); __ InvokeFunctionWithNewTarget(r4, r6, r3, InvokeType::kCall); } // If the result is an object (in the ECMA sense), we should get rid // of the receiver and use the result; see ECMA-262 section 13.2.2-7 // on page 74. Label use_receiver, do_throw, leave_and_return, check_receiver; // If the result is undefined, we jump out to using the implicit receiver. __ JumpIfNotRoot(r3, RootIndex::kUndefinedValue, &check_receiver); // Otherwise we do a smi check and fall through to check if the return value // is a valid receiver. // Throw away the result of the constructor invocation and use the // on-stack receiver as the result. __ bind(&use_receiver); __ LoadU64(r3, MemOperand(sp)); __ JumpIfRoot(r3, RootIndex::kTheHoleValue, &do_throw); __ bind(&leave_and_return); // Restore smi-tagged arguments count from the frame. __ LoadU64(r4, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); // Leave construct frame. __ LeaveFrame(StackFrame::CONSTRUCT); // Remove caller arguments from the stack and return. __ DropArguments(r4, MacroAssembler::kCountIsSmi, MacroAssembler::kCountIncludesReceiver); __ blr(); __ bind(&check_receiver); // If the result is a smi, it is *not* an object in the ECMA sense. __ JumpIfSmi(r3, &use_receiver); // If the type of the result (stored in its map) is less than // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense. static_assert(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ CompareObjectType(r3, r7, r7, FIRST_JS_RECEIVER_TYPE); __ bge(&leave_and_return); __ b(&use_receiver); __ bind(&do_throw); // Restore the context from the frame. __ LoadU64(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject); __ bkpt(0); __ bind(&stack_overflow); // Restore the context from the frame. __ LoadU64(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); __ CallRuntime(Runtime::kThrowStackOverflow); // Unreachable code. __ bkpt(0); } void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) { Generate_JSBuiltinsConstructStubHelper(masm); } // static void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : the value to pass to the generator // -- r4 : the JSGeneratorObject to resume // -- lr : return address // ----------------------------------- // Store input value into generator object. __ StoreTaggedField( r3, FieldMemOperand(r4, JSGeneratorObject::kInputOrDebugPosOffset), r0); __ RecordWriteField(r4, JSGeneratorObject::kInputOrDebugPosOffset, r3, r6, kLRHasNotBeenSaved, SaveFPRegsMode::kIgnore); // Check that r4 is still valid, RecordWrite might have clobbered it. __ AssertGeneratorObject(r4); // Load suspended function and context. __ LoadTaggedField( r7, FieldMemOperand(r4, JSGeneratorObject::kFunctionOffset), r0); __ LoadTaggedField(cp, FieldMemOperand(r7, JSFunction::kContextOffset), r0); // Flood function if we are stepping. Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator; Label stepping_prepared; Register scratch = r8; ExternalReference debug_hook = ExternalReference::debug_hook_on_function_call_address(masm->isolate()); __ Move(scratch, debug_hook); __ LoadU8(scratch, MemOperand(scratch), r0); __ extsb(scratch, scratch); __ CmpSmiLiteral(scratch, Smi::zero(), r0); __ bne(&prepare_step_in_if_stepping); // Flood function if we need to continue stepping in the suspended generator. ExternalReference debug_suspended_generator = ExternalReference::debug_suspended_generator_address(masm->isolate()); __ Move(scratch, debug_suspended_generator); __ LoadU64(scratch, MemOperand(scratch)); __ CmpS64(scratch, r4); __ beq(&prepare_step_in_suspended_generator); __ bind(&stepping_prepared); // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack limit". Label stack_overflow; __ LoadStackLimit(scratch, StackLimitKind::kRealStackLimit); __ CmpU64(sp, scratch); __ blt(&stack_overflow); // ----------- S t a t e ------------- // -- r4 : the JSGeneratorObject to resume // -- r7 : generator function // -- cp : generator context // -- lr : return address // ----------------------------------- // Copy the function arguments from the generator object's register file. __ LoadTaggedField( r6, FieldMemOperand(r7, JSFunction::kSharedFunctionInfoOffset), r0); __ LoadU16( r6, FieldMemOperand(r6, SharedFunctionInfo::kFormalParameterCountOffset)); __ subi(r6, r6, Operand(kJSArgcReceiverSlots)); __ LoadTaggedField( r5, FieldMemOperand(r4, JSGeneratorObject::kParametersAndRegistersOffset), r0); { Label done_loop, loop; __ bind(&loop); __ subi(r6, r6, Operand(1)); __ cmpi(r6, Operand::Zero()); __ blt(&done_loop); __ ShiftLeftU64(r10, r6, Operand(kTaggedSizeLog2)); __ add(scratch, r5, r10); __ LoadTaggedField(scratch, FieldMemOperand(scratch, FixedArray::kHeaderSize), r0); __ Push(scratch); __ b(&loop); __ bind(&done_loop); // Push receiver. __ LoadTaggedField( scratch, FieldMemOperand(r4, JSGeneratorObject::kReceiverOffset), r0); __ Push(scratch); } // Underlying function needs to have bytecode available. if (v8_flags.debug_code) { Label is_baseline; __ LoadTaggedField( r6, FieldMemOperand(r7, JSFunction::kSharedFunctionInfoOffset), r0); __ LoadTaggedField( r6, FieldMemOperand(r6, SharedFunctionInfo::kFunctionDataOffset), r0); GetSharedFunctionInfoBytecodeOrBaseline(masm, r6, ip, &is_baseline); __ CompareObjectType(r6, r6, r6, BYTECODE_ARRAY_TYPE); __ Assert(eq, AbortReason::kMissingBytecodeArray); __ bind(&is_baseline); } // Resume (Ignition/TurboFan) generator object. { __ LoadTaggedField( r3, FieldMemOperand(r7, JSFunction::kSharedFunctionInfoOffset), r0); __ LoadU16(r3, FieldMemOperand( r3, SharedFunctionInfo::kFormalParameterCountOffset)); // We abuse new.target both to indicate that this is a resume call and to // pass in the generator object. In ordinary calls, new.target is always // undefined because generator functions are non-constructable. __ mr(r6, r4); __ mr(r4, r7); __ JumpJSFunction(r4, r0); } __ bind(&prepare_step_in_if_stepping); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ Push(r4, r7); // Push hole as receiver since we do not use it for stepping. __ PushRoot(RootIndex::kTheHoleValue); __ CallRuntime(Runtime::kDebugOnFunctionCall); __ Pop(r4); __ LoadTaggedField( r7, FieldMemOperand(r4, JSGeneratorObject::kFunctionOffset), r0); } __ b(&stepping_prepared); __ bind(&prepare_step_in_suspended_generator); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ Push(r4); __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator); __ Pop(r4); __ LoadTaggedField( r7, FieldMemOperand(r4, JSGeneratorObject::kFunctionOffset), r0); } __ b(&stepping_prepared); __ bind(&stack_overflow); { FrameScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowStackOverflow); __ bkpt(0); // This should be unreachable. } } void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ push(r4); __ CallRuntime(Runtime::kThrowConstructedNonConstructable); __ Trap(); // Unreachable. } namespace { // Called with the native C calling convention. The corresponding function // signature is either: // // using JSEntryFunction = GeneratedCode<Address( // Address root_register_value, Address new_target, Address target, // Address receiver, intptr_t argc, Address** args)>; // or // using JSEntryFunction = GeneratedCode<Address( // Address root_register_value, MicrotaskQueue* microtask_queue)>; void Generate_JSEntryVariant(MacroAssembler* masm, StackFrame::Type type, Builtin entry_trampoline) { // The register state is either: // r3: root_register_value // r4: code entry // r5: function // r6: receiver // r7: argc // r8: argv // or // r3: root_register_value // r4: microtask_queue Label invoke, handler_entry, exit; { NoRootArrayScope no_root_array(masm); // PPC LINUX ABI: // preserve LR in pre-reserved slot in caller's frame __ mflr(r0); __ StoreU64(r0, MemOperand(sp, kStackFrameLRSlot * kSystemPointerSize)); // Save callee saved registers on the stack. __ MultiPush(kCalleeSaved); // Save callee-saved double registers. __ MultiPushDoubles(kCalleeSavedDoubles); // Set up the reserved register for 0.0. __ LoadDoubleLiteral(kDoubleRegZero, base::Double(0.0), r0); // Initialize the root register. // C calling convention. The first argument is passed in r3. __ mr(kRootRegister, r3); #ifdef V8_COMPRESS_POINTERS // Initialize the pointer cage base register. __ LoadRootRelative(kPtrComprCageBaseRegister, IsolateData::cage_base_offset()); #endif } // Push a frame with special values setup to mark it as an entry frame. // r4: code entry // r5: function // r6: receiver // r7: argc // r8: argv __ li(r0, Operand(-1)); // Push a bad frame pointer to fail if it is used. __ push(r0); if (V8_EMBEDDED_CONSTANT_POOL_BOOL) { __ li(kConstantPoolRegister, Operand::Zero()); __ push(kConstantPoolRegister); } __ mov(r0, Operand(StackFrame::TypeToMarker(type))); __ push(r0); __ push(r0); // Save copies of the top frame descriptor on the stack. __ Move(r3, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, masm->isolate())); __ LoadU64(r0, MemOperand(r3)); __ push(r0); // Clear c_entry_fp, now we've pushed its previous value to the stack. // If the c_entry_fp is not already zero and we don't clear it, the // StackFrameIteratorForProfiler will assume we are executing C++ and miss the // JS frames on top. __ li(r0, Operand::Zero()); __ StoreU64(r0, MemOperand(r3)); Register scratch = r9; // Set up frame pointer for the frame to be pushed. __ addi(fp, sp, Operand(-EntryFrameConstants::kNextExitFrameFPOffset)); // If this is the outermost JS call, set js_entry_sp value. Label non_outermost_js; ExternalReference js_entry_sp = ExternalReference::Create(IsolateAddressId::kJSEntrySPAddress, masm->isolate()); __ Move(r3, js_entry_sp); __ LoadU64(scratch, MemOperand(r3)); __ cmpi(scratch, Operand::Zero()); __ bne(&non_outermost_js); __ StoreU64(fp, MemOperand(r3)); __ mov(scratch, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME)); Label cont; __ b(&cont); __ bind(&non_outermost_js); __ mov(scratch, Operand(StackFrame::INNER_JSENTRY_FRAME)); __ bind(&cont); __ push(scratch); // frame-type // Jump to a faked try block that does the invoke, with a faked catch // block that sets the pending exception. __ b(&invoke); // Block literal pool emission whilst taking the position of the handler // entry. This avoids making the assumption that literal pools are always // emitted after an instruction is emitted, rather than before. { ConstantPoolUnavailableScope constant_pool_unavailable(masm); __ bind(&handler_entry); // Store the current pc as the handler offset. It's used later to create the // handler table. masm->isolate()->builtins()->SetJSEntryHandlerOffset(handler_entry.pos()); // Caught exception: Store result (exception) in the pending exception // field in the JSEnv and return a failure sentinel. Coming in here the // fp will be invalid because the PushStackHandler below sets it to 0 to // signal the existence of the JSEntry frame. __ Move(scratch, ExternalReference::Create( IsolateAddressId::kPendingExceptionAddress, masm->isolate())); } __ StoreU64(r3, MemOperand(scratch)); __ LoadRoot(r3, RootIndex::kException); __ b(&exit); // Invoke: Link this frame into the handler chain. __ bind(&invoke); // Must preserve r4-r8. __ PushStackHandler(); // If an exception not caught by another handler occurs, this handler // returns control to the code after the b(&invoke) above, which // restores all kCalleeSaved registers (including cp and fp) to their // saved values before returning a failure to C. // Invoke the function by calling through JS entry trampoline builtin. // Notice that we cannot store a reference to the trampoline code directly in // this stub, because runtime stubs are not traversed when doing GC. // Invoke the function by calling through JS entry trampoline builtin and // pop the faked function when we return. Handle<Code> trampoline_code = masm->isolate()->builtins()->code_handle(entry_trampoline); __ Call(trampoline_code, RelocInfo::CODE_TARGET); // Unlink this frame from the handler chain. __ PopStackHandler(); __ bind(&exit); // r3 holds result // Check if the current stack frame is marked as the outermost JS frame. Label non_outermost_js_2; __ pop(r8); __ cmpi(r8, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME)); __ bne(&non_outermost_js_2); __ mov(scratch, Operand::Zero()); __ Move(r8, js_entry_sp); __ StoreU64(scratch, MemOperand(r8)); __ bind(&non_outermost_js_2); // Restore the top frame descriptors from the stack. __ pop(r6); __ Move(scratch, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, masm->isolate())); __ StoreU64(r6, MemOperand(scratch)); // Reset the stack to the callee saved registers. __ addi(sp, sp, Operand(-EntryFrameConstants::kNextExitFrameFPOffset)); // Restore callee-saved double registers. __ MultiPopDoubles(kCalleeSavedDoubles); // Restore callee-saved registers. __ MultiPop(kCalleeSaved); // Return __ LoadU64(r0, MemOperand(sp, kStackFrameLRSlot * kSystemPointerSize)); __ mtlr(r0); __ blr(); } } // namespace void Builtins::Generate_JSEntry(MacroAssembler* masm) { Generate_JSEntryVariant(masm, StackFrame::ENTRY, Builtin::kJSEntryTrampoline); } void Builtins::Generate_JSConstructEntry(MacroAssembler* masm) { Generate_JSEntryVariant(masm, StackFrame::CONSTRUCT_ENTRY, Builtin::kJSConstructEntryTrampoline); } void Builtins::Generate_JSRunMicrotasksEntry(MacroAssembler* masm) { Generate_JSEntryVariant(masm, StackFrame::ENTRY, Builtin::kRunMicrotasksTrampoline); } static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, bool is_construct) { // Called from Generate_JS_Entry // r4: new.target // r5: function // r6: receiver // r7: argc // r8: argv // r0,r3,r9, cp may be clobbered // Enter an internal frame. { FrameScope scope(masm, StackFrame::INTERNAL); // Setup the context (we need to use the caller context from the isolate). ExternalReference context_address = ExternalReference::Create( IsolateAddressId::kContextAddress, masm->isolate()); __ Move(cp, context_address); __ LoadU64(cp, MemOperand(cp)); // Push the function. __ Push(r5); // Check if we have enough stack space to push all arguments. Label enough_stack_space, stack_overflow; __ mr(r3, r7); __ StackOverflowCheck(r3, r9, &stack_overflow); __ b(&enough_stack_space); __ bind(&stack_overflow); __ CallRuntime(Runtime::kThrowStackOverflow); // Unreachable code. __ bkpt(0); __ bind(&enough_stack_space); // Copy arguments to the stack. // r4: function // r7: argc // r8: argv, i.e. points to first arg Generate_PushArguments(masm, r8, r7, r9, ArgumentsElementType::kHandle); // Push the receiver. __ Push(r6); // r3: argc // r4: function // r6: new.target __ mr(r3, r7); __ mr(r6, r4); __ mr(r4, r5); // Initialize all JavaScript callee-saved registers, since they will be seen // by the garbage collector as part of handlers. __ LoadRoot(r7, RootIndex::kUndefinedValue); __ mr(r8, r7); __ mr(r14, r7); __ mr(r15, r7); __ mr(r16, r7); __ mr(r17, r7); // Invoke the code. Handle<Code> builtin = is_construct ? BUILTIN_CODE(masm->isolate(), Construct) : masm->isolate()->builtins()->Call(); __ Call(builtin, RelocInfo::CODE_TARGET); // Exit the JS frame and remove the parameters (except function), and // return. } __ blr(); // r3: result } void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, false); } void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, true); } void Builtins::Generate_RunMicrotasksTrampoline(MacroAssembler* masm) { // This expects two C++ function parameters passed by Invoke() in // execution.cc. // r3: root_register_value // r4: microtask_queue __ mr(RunMicrotasksDescriptor::MicrotaskQueueRegister(), r4); __ Jump(BUILTIN_CODE(masm->isolate(), RunMicrotasks), RelocInfo::CODE_TARGET); } static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch1, Register scratch2) { Register params_size = scratch1; // Get the size of the formal parameters + receiver (in bytes). __ LoadU64(params_size, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ lwz(params_size, FieldMemOperand(params_size, BytecodeArray::kParameterSizeOffset)); Register actual_params_size = scratch2; // Compute the size of the actual parameters + receiver (in bytes). __ LoadU64(actual_params_size, MemOperand(fp, StandardFrameConstants::kArgCOffset)); __ ShiftLeftU64(actual_params_size, actual_params_size, Operand(kSystemPointerSizeLog2)); // If actual is bigger than formal, then we should use it to free up the stack // arguments. Label corrected_args_count; __ CmpS64(params_size, actual_params_size); __ bge(&corrected_args_count); __ mr(params_size, actual_params_size); __ bind(&corrected_args_count); // Leave the frame (also dropping the register file). __ LeaveFrame(StackFrame::INTERPRETED); __ DropArguments(params_size, MacroAssembler::kCountIsBytes, MacroAssembler::kCountIncludesReceiver); } // Advance the current bytecode offset. This simulates what all bytecode // handlers do upon completion of the underlying operation. Will bail out to a // label if the bytecode (without prefix) is a return bytecode. Will not advance // the bytecode offset if the current bytecode is a JumpLoop, instead just // re-executing the JumpLoop to jump to the correct bytecode. static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm, Register bytecode_array, Register bytecode_offset, Register bytecode, Register scratch1, Register scratch2, Label* if_return) { Register bytecode_size_table = scratch1; Register scratch3 = bytecode; // The bytecode offset value will be increased by one in wide and extra wide // cases. In the case of having a wide or extra wide JumpLoop bytecode, we // will restore the original bytecode. In order to simplify the code, we have // a backup of it. Register original_bytecode_offset = scratch2; DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table, bytecode, original_bytecode_offset)); __ Move(bytecode_size_table, ExternalReference::bytecode_size_table_address()); __ Move(original_bytecode_offset, bytecode_offset); // Check if the bytecode is a Wide or ExtraWide prefix bytecode. Label process_bytecode, extra_wide; static_assert(0 == static_cast<int>(interpreter::Bytecode::kWide)); static_assert(1 == static_cast<int>(interpreter::Bytecode::kExtraWide)); static_assert(2 == static_cast<int>(interpreter::Bytecode::kDebugBreakWide)); static_assert(3 == static_cast<int>(interpreter::Bytecode::kDebugBreakExtraWide)); __ cmpi(bytecode, Operand(0x3)); __ bgt(&process_bytecode); __ andi(r0, bytecode, Operand(0x1)); __ bne(&extra_wide, cr0); // Load the next bytecode and update table to the wide scaled table. __ addi(bytecode_offset, bytecode_offset, Operand(1)); __ lbzx(bytecode, MemOperand(bytecode_array, bytecode_offset)); __ addi(bytecode_size_table, bytecode_size_table, Operand(kByteSize * interpreter::Bytecodes::kBytecodeCount)); __ b(&process_bytecode); __ bind(&extra_wide); // Load the next bytecode and update table to the extra wide scaled table. __ addi(bytecode_offset, bytecode_offset, Operand(1)); __ lbzx(bytecode, MemOperand(bytecode_array, bytecode_offset)); __ addi(bytecode_size_table, bytecode_size_table, Operand(2 * kByteSize * interpreter::Bytecodes::kBytecodeCount)); // Load the size of the current bytecode. __ bind(&process_bytecode); // Bailout to the return label if this is a return bytecode. #define JUMP_IF_EQUAL(NAME) \ __ cmpi(bytecode, \ Operand(static_cast<int>(interpreter::Bytecode::k##NAME))); \ __ beq(if_return); RETURN_BYTECODE_LIST(JUMP_IF_EQUAL) #undef JUMP_IF_EQUAL // If this is a JumpLoop, re-execute it to perform the jump to the beginning // of the loop. Label end, not_jump_loop; __ cmpi(bytecode, Operand(static_cast<int>(interpreter::Bytecode::kJumpLoop))); __ bne(¬_jump_loop); // We need to restore the original bytecode_offset since we might have // increased it to skip the wide / extra-wide prefix bytecode. __ Move(bytecode_offset, original_bytecode_offset); __ b(&end); __ bind(¬_jump_loop); // Otherwise, load the size of the current bytecode and advance the offset. __ lbzx(scratch3, MemOperand(bytecode_size_table, bytecode)); __ add(bytecode_offset, bytecode_offset, scratch3); __ bind(&end); } #if ENABLE_SPARKPLUG // static void Builtins::Generate_BaselineOutOfLinePrologue(MacroAssembler* masm) { auto descriptor = Builtins::CallInterfaceDescriptorFor(Builtin::kBaselineOutOfLinePrologue); Register closure = descriptor.GetRegisterParameter( BaselineOutOfLinePrologueDescriptor::kClosure); // Load the feedback cell and vector from the closure. Register feedback_cell = r7; Register feedback_vector = ip; __ LoadTaggedField(feedback_cell, FieldMemOperand(closure, JSFunction::kFeedbackCellOffset), r0); __ LoadTaggedField(feedback_vector, FieldMemOperand(feedback_cell, FeedbackCell::kValueOffset), r0); __ AssertFeedbackVector(feedback_vector, r11); // Check for an tiering state. Label flags_need_processing; Register flags = r10; { __ LoadFeedbackVectorFlagsAndJumpIfNeedsProcessing( flags, feedback_vector, CodeKind::BASELINE, &flags_need_processing); } { ResetFeedbackVectorOsrUrgency(masm, feedback_vector, r11, r0); } // Increment invocation count for the function. { Register invocation_count = r11; __ LoadU64(invocation_count, FieldMemOperand(feedback_vector, FeedbackVector::kInvocationCountOffset), r0); __ AddS64(invocation_count, invocation_count, Operand(1)); __ StoreU64(invocation_count, FieldMemOperand(feedback_vector, FeedbackVector::kInvocationCountOffset), r0); } FrameScope frame_scope(masm, StackFrame::MANUAL); { ASM_CODE_COMMENT_STRING(masm, "Frame Setup"); // Normally the first thing we'd do here is Push(lr, fp), but we already // entered the frame in BaselineCompiler::Prologue, as we had to use the // value lr before the call to this BaselineOutOfLinePrologue builtin. Register callee_context = descriptor.GetRegisterParameter( BaselineOutOfLinePrologueDescriptor::kCalleeContext); Register callee_js_function = descriptor.GetRegisterParameter( BaselineOutOfLinePrologueDescriptor::kClosure); ResetJSFunctionAge(masm, callee_js_function, r11, r0); __ Push(callee_context, callee_js_function); DCHECK_EQ(callee_js_function, kJavaScriptCallTargetRegister); DCHECK_EQ(callee_js_function, kJSFunctionRegister); Register argc = descriptor.GetRegisterParameter( BaselineOutOfLinePrologueDescriptor::kJavaScriptCallArgCount); // We'll use the bytecode for both code age/OSR resetting, and pushing onto // the frame, so load it into a register. Register bytecodeArray = descriptor.GetRegisterParameter( BaselineOutOfLinePrologueDescriptor::kInterpreterBytecodeArray); __ Push(argc, bytecodeArray); if (v8_flags.debug_code) { Register scratch = r11; __ CompareObjectType(feedback_vector, scratch, scratch, FEEDBACK_VECTOR_TYPE); __ Assert(eq, AbortReason::kExpectedFeedbackVector); } __ Push(feedback_cell); __ Push(feedback_vector); } Label call_stack_guard; Register frame_size = descriptor.GetRegisterParameter( BaselineOutOfLinePrologueDescriptor::kStackFrameSize); { ASM_CODE_COMMENT_STRING(masm, "Stack/interrupt check"); // Stack check. This folds the checks for both the interrupt stack limit // check and the real stack limit into one by just checking for the // interrupt limit. The interrupt limit is either equal to the real stack // limit or tighter. By ensuring we have space until that limit after // building the frame we can quickly precheck both at once. Register sp_minus_frame_size = r11; Register interrupt_limit = r0; __ SubS64(sp_minus_frame_size, sp, frame_size); __ LoadStackLimit(interrupt_limit, StackLimitKind::kInterruptStackLimit); __ CmpU64(sp_minus_frame_size, interrupt_limit); __ blt(&call_stack_guard); } // Do "fast" return to the caller pc in lr. __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue); __ Ret(); __ bind(&flags_need_processing); { ASM_CODE_COMMENT_STRING(masm, "Optimized marker check"); // Drop the frame created by the baseline call. if (V8_EMBEDDED_CONSTANT_POOL_BOOL) { __ Pop(r0, fp, kConstantPoolRegister); } else { __ Pop(r0, fp); } __ mtlr(r0); __ OptimizeCodeOrTailCallOptimizedCodeSlot(flags, feedback_vector); __ Trap(); } __ bind(&call_stack_guard); { ASM_CODE_COMMENT_STRING(masm, "Stack/interrupt call"); FrameScope frame_scope(masm, StackFrame::INTERNAL); // Save incoming new target or generator __ Push(kJavaScriptCallNewTargetRegister); __ SmiTag(frame_size); __ Push(frame_size); __ CallRuntime(Runtime::kStackGuardWithGap); __ Pop(kJavaScriptCallNewTargetRegister); } __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue); __ Ret(); } #endif // static void Builtins::Generate_BaselineOutOfLinePrologueDeopt(MacroAssembler* masm) { // We're here because we got deopted during BaselineOutOfLinePrologue's stack // check. Undo all its frame creation and call into the interpreter instead. // Drop the feedback vector, the bytecode offset (was the feedback vector but // got replaced during deopt) and bytecode array. __ Drop(3); // Context, closure, argc. __ Pop(kContextRegister, kJavaScriptCallTargetRegister, kJavaScriptCallArgCountRegister); // Drop frame pointer __ LeaveFrame(StackFrame::BASELINE); // Enter the interpreter. __ TailCallBuiltin(Builtin::kInterpreterEntryTrampoline); } // Generate code for entering a JS function with the interpreter. // On entry to the function the receiver and arguments have been pushed on the // stack left to right. // // The live registers are: // o r3: actual argument count // o r4: the JS function object being called. // o r6: the incoming new target or generator object // o cp: our context // o pp: the caller's constant pool pointer (if enabled) // o fp: the caller's frame pointer // o sp: stack pointer // o lr: return address // // The function builds an interpreter frame. See InterpreterFrameConstants in // frame-constants.h for its layout. void Builtins::Generate_InterpreterEntryTrampoline( MacroAssembler* masm, InterpreterEntryTrampolineMode mode) { Register closure = r4; // Get the bytecode array from the function object and load it into // kInterpreterBytecodeArrayRegister. __ LoadTaggedField( r7, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset), r0); ResetSharedFunctionInfoAge(masm, r7, ip); // Load original bytecode array or the debug copy. __ LoadTaggedField( kInterpreterBytecodeArrayRegister, FieldMemOperand(r7, SharedFunctionInfo::kFunctionDataOffset), r0); Label is_baseline; GetSharedFunctionInfoBytecodeOrBaseline( masm, kInterpreterBytecodeArrayRegister, ip, &is_baseline); // The bytecode array could have been flushed from the shared function info, // if so, call into CompileLazy. Label compile_lazy; __ CompareObjectType(kInterpreterBytecodeArrayRegister, r7, no_reg, BYTECODE_ARRAY_TYPE); __ bne(&compile_lazy); Label push_stack_frame; Register feedback_vector = r5; __ LoadFeedbackVector(feedback_vector, closure, r7, &push_stack_frame); #ifndef V8_JITLESS // If feedback vector is valid, check for optimized code and update invocation // count. Register flags = r7; Label flags_need_processing; __ LoadFeedbackVectorFlagsAndJumpIfNeedsProcessing( flags, feedback_vector, CodeKind::INTERPRETED_FUNCTION, &flags_need_processing); ResetFeedbackVectorOsrUrgency(masm, feedback_vector, ip, r0); // Increment invocation count for the function. __ LoadU32( r8, FieldMemOperand(feedback_vector, FeedbackVector::kInvocationCountOffset), r0); __ addi(r8, r8, Operand(1)); __ StoreU32( r8, FieldMemOperand(feedback_vector, FeedbackVector::kInvocationCountOffset), r0); // Open a frame scope to indicate that there is a frame on the stack. The // MANUAL indicates that the scope shouldn't actually generate code to set up // the frame (that is done below). #else // Note: By omitting the above code in jitless mode we also disable: // - kFlagsLogNextExecution: only used for logging/profiling; and // - kInvocationCountOffset: only used for tiering heuristics and code // coverage. #endif // !V8_JITLESS __ bind(&push_stack_frame); FrameScope frame_scope(masm, StackFrame::MANUAL); __ PushStandardFrame(closure); // Load initial bytecode offset. __ mov(kInterpreterBytecodeOffsetRegister, Operand(BytecodeArray::kHeaderSize - kHeapObjectTag)); // Push bytecode array and Smi tagged bytecode array offset. __ SmiTag(r7, kInterpreterBytecodeOffsetRegister); __ Push(kInterpreterBytecodeArrayRegister, r7, feedback_vector); // Allocate the local and temporary register file on the stack. Label stack_overflow; { // Load frame size (word) from the BytecodeArray object. __ lwz(r5, FieldMemOperand(kInterpreterBytecodeArrayRegister, BytecodeArray::kFrameSizeOffset)); // Do a stack check to ensure we don't go over the limit. __ sub(r8, sp, r5); __ LoadStackLimit(r0, StackLimitKind::kRealStackLimit); __ CmpU64(r8, r0); __ blt(&stack_overflow); // If ok, push undefined as the initial value for all register file entries. // TODO(rmcilroy): Consider doing more than one push per loop iteration. Label loop, no_args; __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue); __ ShiftRightU64(r5, r5, Operand(kSystemPointerSizeLog2), SetRC); __ beq(&no_args, cr0); __ mtctr(r5); __ bind(&loop); __ push(kInterpreterAccumulatorRegister); __ bdnz(&loop); __ bind(&no_args); } // If the bytecode array has a valid incoming new target or generator object // register, initialize it with incoming value which was passed in r6. Label no_incoming_new_target_or_generator_register; __ LoadS32(r8, FieldMemOperand( kInterpreterBytecodeArrayRegister, BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset), r0); __ cmpi(r8, Operand::Zero()); __ beq(&no_incoming_new_target_or_generator_register); __ ShiftLeftU64(r8, r8, Operand(kSystemPointerSizeLog2)); __ StoreU64(r6, MemOperand(fp, r8)); __ bind(&no_incoming_new_target_or_generator_register); // Perform interrupt stack check. // TODO(solanes): Merge with the real stack limit check above. Label stack_check_interrupt, after_stack_check_interrupt; __ LoadStackLimit(r0, StackLimitKind::kInterruptStackLimit); __ CmpU64(sp, r0); __ blt(&stack_check_interrupt); __ bind(&after_stack_check_interrupt); // The accumulator is already loaded with undefined. // Load the dispatch table into a register and dispatch to the bytecode // handler at the current bytecode offset. Label do_dispatch; __ bind(&do_dispatch); __ Move( kInterpreterDispatchTableRegister, ExternalReference::interpreter_dispatch_table_address(masm->isolate())); __ lbzx(r6, MemOperand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister)); __ ShiftLeftU64(r6, r6, Operand(kSystemPointerSizeLog2)); __ LoadU64(kJavaScriptCallCodeStartRegister, MemOperand(kInterpreterDispatchTableRegister, r6)); __ Call(kJavaScriptCallCodeStartRegister); __ RecordComment("--- InterpreterEntryReturnPC point ---"); if (mode == InterpreterEntryTrampolineMode::kDefault) { masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset( masm->pc_offset()); } else { DCHECK_EQ(mode, InterpreterEntryTrampolineMode::kForProfiling); // Both versions must be the same up to this point otherwise the builtins // will not be interchangable. CHECK_EQ( masm->isolate()->heap()->interpreter_entry_return_pc_offset().value(), masm->pc_offset()); } // Any returns to the entry trampoline are either due to the return bytecode // or the interpreter tail calling a builtin and then a dispatch. // Get bytecode array and bytecode offset from the stack frame. __ LoadU64(kInterpreterBytecodeArrayRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ LoadU64(kInterpreterBytecodeOffsetRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ SmiUntag(kInterpreterBytecodeOffsetRegister); // Either return, or advance to the next bytecode and dispatch. Label do_return; __ lbzx(r4, MemOperand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister)); AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, r4, r5, r6, &do_return); __ b(&do_dispatch); __ bind(&do_return); // The return value is in r3. LeaveInterpreterFrame(masm, r5, r7); __ blr(); __ bind(&stack_check_interrupt); // Modify the bytecode offset in the stack to be kFunctionEntryBytecodeOffset // for the call to the StackGuard. __ mov(kInterpreterBytecodeOffsetRegister, Operand(Smi::FromInt(BytecodeArray::kHeaderSize - kHeapObjectTag + kFunctionEntryBytecodeOffset))); __ StoreU64(kInterpreterBytecodeOffsetRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ CallRuntime(Runtime::kStackGuard); // After the call, restore the bytecode array, bytecode offset and accumulator // registers again. Also, restore the bytecode offset in the stack to its // previous value. __ LoadU64(kInterpreterBytecodeArrayRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ mov(kInterpreterBytecodeOffsetRegister, Operand(BytecodeArray::kHeaderSize - kHeapObjectTag)); __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue); __ SmiTag(r0, kInterpreterBytecodeOffsetRegister); __ StoreU64(r0, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ jmp(&after_stack_check_interrupt); #ifndef V8_JITLESS __ bind(&flags_need_processing); __ OptimizeCodeOrTailCallOptimizedCodeSlot(flags, feedback_vector); __ bind(&is_baseline); { // Load the feedback vector from the closure. __ LoadTaggedField( feedback_vector, FieldMemOperand(closure, JSFunction::kFeedbackCellOffset), r0); __ LoadTaggedField( feedback_vector, FieldMemOperand(feedback_vector, FeedbackCell::kValueOffset), r0); Label install_baseline_code; // Check if feedback vector is valid. If not, call prepare for baseline to // allocate it. __ LoadTaggedField( ip, FieldMemOperand(feedback_vector, HeapObject::kMapOffset), r0); __ LoadU16(ip, FieldMemOperand(ip, Map::kInstanceTypeOffset)); __ CmpS32(ip, Operand(FEEDBACK_VECTOR_TYPE), r0); __ b(ne, &install_baseline_code); // Check for an tiering state. __ LoadFeedbackVectorFlagsAndJumpIfNeedsProcessing( flags, feedback_vector, CodeKind::BASELINE, &flags_need_processing); // Load the baseline code into the closure. __ mr(r5, kInterpreterBytecodeArrayRegister); static_assert(kJavaScriptCallCodeStartRegister == r5, "ABI mismatch"); __ ReplaceClosureCodeWithOptimizedCode(r5, closure, ip, r7); __ JumpCodeObject(r5); __ bind(&install_baseline_code); __ GenerateTailCallToReturnedCode(Runtime::kInstallBaselineCode); } #endif // !V8_JITLESS __ bind(&compile_lazy); __ GenerateTailCallToReturnedCode(Runtime::kCompileLazy); __ bind(&stack_overflow); __ CallRuntime(Runtime::kThrowStackOverflow); __ bkpt(0); // Should not return. } static void GenerateInterpreterPushArgs(MacroAssembler* masm, Register num_args, Register start_address, Register scratch) { ASM_CODE_COMMENT(masm); __ subi(scratch, num_args, Operand(1)); __ ShiftLeftU64(scratch, scratch, Operand(kSystemPointerSizeLog2)); __ sub(start_address, start_address, scratch); // Push the arguments. __ PushArray(start_address, num_args, scratch, r0, MacroAssembler::PushArrayOrder::kReverse); } // static void Builtins::Generate_InterpreterPushArgsThenCallImpl( MacroAssembler* masm, ConvertReceiverMode receiver_mode, InterpreterPushArgsMode mode) { DCHECK(mode != InterpreterPushArgsMode::kArrayFunction); // ----------- S t a t e ------------- // -- r3 : the number of arguments // -- r5 : the address of the first argument to be pushed. Subsequent // arguments should be consecutive above this, in the same order as // they are to be pushed onto the stack. // -- r4 : the target to call (can be any Object). // ----------------------------------- Label stack_overflow; if (mode == InterpreterPushArgsMode::kWithFinalSpread) { // The spread argument should not be pushed. __ subi(r3, r3, Operand(1)); } if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) { __ subi(r6, r3, Operand(kJSArgcReceiverSlots)); } else { __ mr(r6, r3); } __ StackOverflowCheck(r6, ip, &stack_overflow); // Push the arguments. GenerateInterpreterPushArgs(masm, r6, r5, r7); if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) { __ PushRoot(RootIndex::kUndefinedValue); } if (mode == InterpreterPushArgsMode::kWithFinalSpread) { // Pass the spread in the register r3. // r2 already points to the penultimate argument, the spread // lies in the next interpreter register. __ LoadU64(r5, MemOperand(r5, -kSystemPointerSize)); } // Call the target. if (mode == InterpreterPushArgsMode::kWithFinalSpread) { __ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread), RelocInfo::CODE_TARGET); } else { __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny), RelocInfo::CODE_TARGET); } __ bind(&stack_overflow); { __ TailCallRuntime(Runtime::kThrowStackOverflow); // Unreachable Code. __ bkpt(0); } } // static void Builtins::Generate_InterpreterPushArgsThenConstructImpl( MacroAssembler* masm, InterpreterPushArgsMode mode) { // ----------- S t a t e ------------- // -- r3 : argument count // -- r6 : new target // -- r4 : constructor to call // -- r5 : allocation site feedback if available, undefined otherwise. // -- r7 : address of the first argument // ----------------------------------- Label stack_overflow; __ StackOverflowCheck(r3, ip, &stack_overflow); if (mode == InterpreterPushArgsMode::kWithFinalSpread) { // The spread argument should not be pushed. __ subi(r3, r3, Operand(1)); } Register argc_without_receiver = ip; __ subi(argc_without_receiver, r3, Operand(kJSArgcReceiverSlots)); // Push the arguments. GenerateInterpreterPushArgs(masm, argc_without_receiver, r7, r8); // Push a slot for the receiver to be constructed. __ li(r0, Operand::Zero()); __ push(r0); if (mode == InterpreterPushArgsMode::kWithFinalSpread) { // Pass the spread in the register r2. // r4 already points to the penultimate argument, the spread // lies in the next interpreter register. __ subi(r7, r7, Operand(kSystemPointerSize)); __ LoadU64(r5, MemOperand(r7)); } else { __ AssertUndefinedOrAllocationSite(r5, r8); } if (mode == InterpreterPushArgsMode::kArrayFunction) { __ AssertFunction(r4); // Tail call to the array construct stub (still in the caller // context at this point). Handle<Code> code = BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl); __ Jump(code, RelocInfo::CODE_TARGET); } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) { // Call the constructor with r3, r4, and r6 unmodified. __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread), RelocInfo::CODE_TARGET); } else { DCHECK_EQ(InterpreterPushArgsMode::kOther, mode); // Call the constructor with r3, r4, and r6 unmodified. __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); } __ bind(&stack_overflow); { __ TailCallRuntime(Runtime::kThrowStackOverflow); // Unreachable Code. __ bkpt(0); } } namespace { void NewImplicitReceiver(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : argument count // -- r4 : constructor to call (checked to be a JSFunction) // -- r6 : new target // // Stack: // -- Implicit Receiver // -- [arguments without receiver] // -- Implicit Receiver // -- Context // -- FastConstructMarker // -- FramePointer // ----------------------------------- Register implicit_receiver = r7; // Save live registers. __ SmiTag(r3); __ Push(r3, r4, r6); __ Call(BUILTIN_CODE(masm->isolate(), FastNewObject), RelocInfo::CODE_TARGET); // Save result. __ Move(implicit_receiver, r3); // Restore live registers. __ Pop(r3, r4, r6); __ SmiUntag(r3); // Patch implicit receiver (in arguments) __ StoreU64(implicit_receiver, MemOperand(sp, 0 * kSystemPointerSize), r0); // Patch second implicit (in construct frame) __ StoreU64( implicit_receiver, MemOperand(fp, FastConstructFrameConstants::kImplicitReceiverOffset), r0); // Restore context. __ LoadU64(cp, MemOperand(fp, FastConstructFrameConstants::kContextOffset), r0); } } // namespace // static void Builtins::Generate_InterpreterPushArgsThenFastConstructFunction( MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : argument count // -- r4 : constructor to call (checked to be a JSFunction) // -- r6 : new target // -- r7 : address of the first argument // -- cp/r30 : context pointer // ----------------------------------- __ AssertFunction(r4); // Check if target has a [[Construct]] internal method. Label non_constructor; __ LoadMap(r5, r4); __ lbz(r5, FieldMemOperand(r5, Map::kBitFieldOffset)); __ TestBit(r5, Map::Bits1::IsConstructorBit::kShift, r0); __ beq(&non_constructor, cr0); // Add a stack check before pushing arguments. Label stack_overflow; __ StackOverflowCheck(r3, r5, &stack_overflow); // Enter a construct frame. FrameScope scope(masm, StackFrame::MANUAL); __ EnterFrame(StackFrame::FAST_CONSTRUCT); // Implicit receiver stored in the construct frame. __ LoadRoot(r5, RootIndex::kTheHoleValue); __ Push(cp, r5); // Push arguments + implicit receiver. Register argc_without_receiver = r9; __ SubS64(argc_without_receiver, r3, Operand(kJSArgcReceiverSlots)); // Push the arguments. r7 and r8 will be modified. GenerateInterpreterPushArgs(masm, argc_without_receiver, r7, r8); // Implicit receiver as part of the arguments (patched later if needed). __ push(r5); // Check if it is a builtin call. Label builtin_call; __ LoadTaggedField( r5, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset), r0); __ lwz(r5, FieldMemOperand(r5, SharedFunctionInfo::kFlagsOffset)); __ mov(ip, Operand(SharedFunctionInfo::ConstructAsBuiltinBit::kMask)); __ and_(r0, r5, ip, SetRC); __ bne(&builtin_call, cr0); // Check if we need to create an implicit receiver. Label not_create_implicit_receiver; __ DecodeField<SharedFunctionInfo::FunctionKindBits>(r5); __ JumpIfIsInRange( r5, static_cast<uint32_t>(FunctionKind::kDefaultDerivedConstructor), static_cast<uint32_t>(FunctionKind::kDerivedConstructor), ¬_create_implicit_receiver); NewImplicitReceiver(masm); __ bind(¬_create_implicit_receiver); // Call the function. __ InvokeFunctionWithNewTarget(r4, r6, r3, InvokeType::kCall); // ----------- S t a t e ------------- // -- r0 constructor result // // Stack: // -- Implicit Receiver // -- Context // -- FastConstructMarker // -- FramePointer // ----------------------------------- // Store offset of return address for deoptimizer. masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset( masm->pc_offset()); // If the result is an object (in the ECMA sense), we should get rid // of the receiver and use the result; see ECMA-262 section 13.2.2-7 // on page 74. Label use_receiver, do_throw, leave_and_return, check_receiver; // If the result is undefined, we jump out to using the implicit receiver. __ JumpIfNotRoot(r3, RootIndex::kUndefinedValue, &check_receiver); // Otherwise we do a smi check and fall through to check if the return value // is a valid receiver. // Throw away the result of the constructor invocation and use the // on-stack receiver as the result. __ bind(&use_receiver); __ LoadU64( r3, MemOperand(fp, FastConstructFrameConstants::kImplicitReceiverOffset), r0); __ JumpIfRoot(r3, RootIndex::kTheHoleValue, &do_throw); __ bind(&leave_and_return); // Leave construct frame. __ LeaveFrame(StackFrame::CONSTRUCT); __ blr(); __ bind(&check_receiver); // If the result is a smi, it is *not* an object in the ECMA sense. __ JumpIfSmi(r3, &use_receiver); // If the type of the result (stored in its map) is less than // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense. static_assert(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ CompareObjectType(r3, r7, r8, FIRST_JS_RECEIVER_TYPE); __ bge(&leave_and_return); __ b(&use_receiver); __ bind(&builtin_call); // TODO(victorgomes): Check the possibility to turn this into a tailcall. __ InvokeFunctionWithNewTarget(r4, r6, r3, InvokeType::kCall); __ LeaveFrame(StackFrame::FAST_CONSTRUCT); __ blr(); __ bind(&do_throw); // Restore the context from the frame. __ LoadU64(cp, MemOperand(fp, FastConstructFrameConstants::kContextOffset), r0); __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject); __ bkpt(0); __ bind(&stack_overflow); // Restore the context from the frame. __ TailCallRuntime(Runtime::kThrowStackOverflow); // Unreachable code. __ bkpt(0); // Called Construct on an Object that doesn't have a [[Construct]] internal // method. __ bind(&non_constructor); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable), RelocInfo::CODE_TARGET); } static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) { // Set the return address to the correct point in the interpreter entry // trampoline. Label builtin_trampoline, trampoline_loaded; Tagged<Smi> interpreter_entry_return_pc_offset( masm->isolate()->heap()->interpreter_entry_return_pc_offset()); DCHECK_NE(interpreter_entry_return_pc_offset, Smi::zero()); // If the SFI function_data is an InterpreterData, the function will have a // custom copy of the interpreter entry trampoline for profiling. If so, // get the custom trampoline, otherwise grab the entry address of the global // trampoline. __ LoadU64(r5, MemOperand(fp, StandardFrameConstants::kFunctionOffset)); __ LoadTaggedField( r5, FieldMemOperand(r5, JSFunction::kSharedFunctionInfoOffset), r0); __ LoadTaggedField( r5, FieldMemOperand(r5, SharedFunctionInfo::kFunctionDataOffset), r0); __ CompareObjectType(r5, kInterpreterDispatchTableRegister, kInterpreterDispatchTableRegister, INTERPRETER_DATA_TYPE); __ bne(&builtin_trampoline); __ LoadTaggedField( r5, FieldMemOperand(r5, InterpreterData::kInterpreterTrampolineOffset), r0); __ LoadCodeInstructionStart(r5, r5); __ b(&trampoline_loaded); __ bind(&builtin_trampoline); __ Move(r5, ExternalReference:: address_of_interpreter_entry_trampoline_instruction_start( masm->isolate())); __ LoadU64(r5, MemOperand(r5)); __ bind(&trampoline_loaded); __ addi(r0, r5, Operand(interpreter_entry_return_pc_offset.value())); __ mtlr(r0); // Initialize the dispatch table register. __ Move( kInterpreterDispatchTableRegister, ExternalReference::interpreter_dispatch_table_address(masm->isolate())); // Get the bytecode array pointer from the frame. __ LoadU64(kInterpreterBytecodeArrayRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); if (v8_flags.debug_code) { // Check function data field is actually a BytecodeArray object. __ TestIfSmi(kInterpreterBytecodeArrayRegister, r0); __ Assert(ne, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, cr0); __ CompareObjectType(kInterpreterBytecodeArrayRegister, r4, no_reg, BYTECODE_ARRAY_TYPE); __ Assert( eq, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); } // Get the target bytecode offset from the frame. __ LoadU64(kInterpreterBytecodeOffsetRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ SmiUntag(kInterpreterBytecodeOffsetRegister); if (v8_flags.debug_code) { Label okay; __ cmpi(kInterpreterBytecodeOffsetRegister, Operand(BytecodeArray::kHeaderSize - kHeapObjectTag + kFunctionEntryBytecodeOffset)); __ bge(&okay); __ bkpt(0); __ bind(&okay); } // Dispatch to the target bytecode. UseScratchRegisterScope temps(masm); Register scratch = temps.Acquire(); __ lbzx(ip, MemOperand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister)); __ ShiftLeftU64(scratch, scratch, Operand(kSystemPointerSizeLog2)); __ LoadU64(kJavaScriptCallCodeStartRegister, MemOperand(kInterpreterDispatchTableRegister, scratch)); __ Jump(kJavaScriptCallCodeStartRegister); } void Builtins::Generate_InterpreterEnterAtNextBytecode(MacroAssembler* masm) { // Get bytecode array and bytecode offset from the stack frame. __ LoadU64(kInterpreterBytecodeArrayRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ LoadU64(kInterpreterBytecodeOffsetRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ SmiUntag(kInterpreterBytecodeOffsetRegister); Label enter_bytecode, function_entry_bytecode; __ cmpi(kInterpreterBytecodeOffsetRegister, Operand(BytecodeArray::kHeaderSize - kHeapObjectTag + kFunctionEntryBytecodeOffset)); __ beq(&function_entry_bytecode); // Load the current bytecode. __ lbzx(r4, MemOperand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister)); // Advance to the next bytecode. Label if_return; AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, r4, r5, r6, &if_return); __ bind(&enter_bytecode); // Convert new bytecode offset to a Smi and save in the stackframe. __ SmiTag(r5, kInterpreterBytecodeOffsetRegister); __ StoreU64(r5, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); Generate_InterpreterEnterBytecode(masm); __ bind(&function_entry_bytecode); // If the code deoptimizes during the implicit function entry stack interrupt // check, it will have a bailout ID of kFunctionEntryBytecodeOffset, which is // not a valid bytecode offset. Detect this case and advance to the first // actual bytecode. __ mov(kInterpreterBytecodeOffsetRegister, Operand(BytecodeArray::kHeaderSize - kHeapObjectTag)); __ b(&enter_bytecode); // We should never take the if_return path. __ bind(&if_return); __ Abort(AbortReason::kInvalidBytecodeAdvance); } void Builtins::Generate_InterpreterEnterAtBytecode(MacroAssembler* masm) { Generate_InterpreterEnterBytecode(masm); } namespace { void Generate_ContinueToBuiltinHelper(MacroAssembler* masm, bool java_script_builtin, bool with_result) { const RegisterConfiguration* config(RegisterConfiguration::Default()); int allocatable_register_count = config->num_allocatable_general_registers(); Register scratch = ip; if (with_result) { if (java_script_builtin) { __ mr(scratch, r3); } else { // Overwrite the hole inserted by the deoptimizer with the return value // from the LAZY deopt point. __ StoreU64( r3, MemOperand( sp, config->num_allocatable_general_registers() * kSystemPointerSize + BuiltinContinuationFrameConstants::kFixedFrameSize)); } } for (int i = allocatable_register_count - 1; i >= 0; --i) { int code = config->GetAllocatableGeneralCode(i); __ Pop(Register::from_code(code)); if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) { __ SmiUntag(Register::from_code(code)); } } if (java_script_builtin && with_result) { // Overwrite the hole inserted by the deoptimizer with the return value from // the LAZY deopt point. r0 contains the arguments count, the return value // from LAZY is always the last argument. constexpr int return_value_offset = BuiltinContinuationFrameConstants::kFixedSlotCount - kJSArgcReceiverSlots; __ addi(r3, r3, Operand(return_value_offset)); __ ShiftLeftU64(r0, r3, Operand(kSystemPointerSizeLog2)); __ StoreU64(scratch, MemOperand(sp, r0)); // Recover arguments count. __ subi(r3, r3, Operand(return_value_offset)); } __ LoadU64( fp, MemOperand(sp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp)); // Load builtin index (stored as a Smi) and use it to get the builtin start // address from the builtins table. UseScratchRegisterScope temps(masm); Register builtin = temps.Acquire(); __ Pop(builtin); __ addi(sp, sp, Operand(BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp)); __ Pop(r0); __ mtlr(r0); __ LoadEntryFromBuiltinIndex(builtin, builtin); __ Jump(builtin); } } // namespace void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, false, false); } void Builtins::Generate_ContinueToCodeStubBuiltinWithResult( MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, false, true); } void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, true, false); } void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult( MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, true, true); } void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kNotifyDeoptimized); } DCHECK_EQ(kInterpreterAccumulatorRegister.code(), r3.code()); __ LoadU64(r3, MemOperand(sp, 0 * kSystemPointerSize)); __ addi(sp, sp, Operand(1 * kSystemPointerSize)); __ Ret(); } void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) { using D = OnStackReplacementDescriptor; static_assert(D::kParameterCount == 1); OnStackReplacement(masm, OsrSourceTier::kInterpreter, D::MaybeTargetCodeRegister()); } #if ENABLE_SPARKPLUG void Builtins::Generate_BaselineOnStackReplacement(MacroAssembler* masm) { using D = OnStackReplacementDescriptor; static_assert(D::kParameterCount == 1); __ LoadU64(kContextRegister, MemOperand(fp, BaselineFrameConstants::kContextOffset), r0); OnStackReplacement(masm, OsrSourceTier::kBaseline, D::MaybeTargetCodeRegister()); } #endif // static void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : argc // -- sp[0] : receiver // -- sp[4] : thisArg // -- sp[8] : argArray // ----------------------------------- // 1. Load receiver into r4, argArray into r5 (if present), remove all // arguments from the stack (including the receiver), and push thisArg (if // present) instead. { __ LoadRoot(r8, RootIndex::kUndefinedValue); __ mr(r5, r8); Label done; __ LoadU64(r4, MemOperand(sp)); // receiver __ CmpS64(r3, Operand(JSParameterCount(1)), r0); __ blt(&done); __ LoadU64(r8, MemOperand(sp, kSystemPointerSize)); // thisArg __ CmpS64(r3, Operand(JSParameterCount(2)), r0); __ blt(&done); __ LoadU64(r5, MemOperand(sp, 2 * kSystemPointerSize)); // argArray __ bind(&done); __ DropArgumentsAndPushNewReceiver(r3, r8, MacroAssembler::kCountIsInteger, MacroAssembler::kCountIncludesReceiver); } // ----------- S t a t e ------------- // -- r5 : argArray // -- r4 : receiver // -- sp[0] : thisArg // ----------------------------------- // 2. We don't need to check explicitly for callable receiver here, // since that's the first thing the Call/CallWithArrayLike builtins // will do. // 3. Tail call with no arguments if argArray is null or undefined. Label no_arguments; __ JumpIfRoot(r5, RootIndex::kNullValue, &no_arguments); __ JumpIfRoot(r5, RootIndex::kUndefinedValue, &no_arguments); // 4a. Apply the receiver to the given argArray. __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), RelocInfo::CODE_TARGET); // 4b. The argArray is either null or undefined, so we tail call without any // arguments to the receiver. __ bind(&no_arguments); { __ mov(r3, Operand(JSParameterCount(0))); __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } } // static void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) { // 1. Get the callable to call (passed as receiver) from the stack. __ Pop(r4); // 2. Make sure we have at least one argument. // r3: actual number of arguments { Label done; __ CmpS64(r3, Operand(JSParameterCount(0)), r0); __ bne(&done); __ PushRoot(RootIndex::kUndefinedValue); __ addi(r3, r3, Operand(1)); __ bind(&done); } // 3. Adjust the actual number of arguments. __ subi(r3, r3, Operand(1)); // 4. Call the callable. __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } void Builtins::Generate_ReflectApply(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : argc // -- sp[0] : receiver // -- sp[4] : target (if argc >= 1) // -- sp[8] : thisArgument (if argc >= 2) // -- sp[12] : argumentsList (if argc == 3) // ----------------------------------- // 1. Load target into r4 (if present), argumentsList into r5 (if present), // remove all arguments from the stack (including the receiver), and push // thisArgument (if present) instead. { __ LoadRoot(r4, RootIndex::kUndefinedValue); __ mr(r8, r4); __ mr(r5, r4); Label done; __ CmpS64(r3, Operand(JSParameterCount(1)), r0); __ blt(&done); __ LoadU64(r4, MemOperand(sp, kSystemPointerSize)); // thisArg __ CmpS64(r3, Operand(JSParameterCount(2)), r0); __ blt(&done); __ LoadU64(r8, MemOperand(sp, 2 * kSystemPointerSize)); // argArray __ CmpS64(r3, Operand(JSParameterCount(3)), r0); __ blt(&done); __ LoadU64(r5, MemOperand(sp, 3 * kSystemPointerSize)); // argArray __ bind(&done); __ DropArgumentsAndPushNewReceiver(r3, r8, MacroAssembler::kCountIsInteger, MacroAssembler::kCountIncludesReceiver); } // ----------- S t a t e ------------- // -- r5 : argumentsList // -- r4 : target // -- sp[0] : thisArgument // ----------------------------------- // 2. We don't need to check explicitly for callable target here, // since that's the first thing the Call/CallWithArrayLike builtins // will do. // 3. Apply the target to the given argumentsList. __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), RelocInfo::CODE_TARGET); } void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : argc // -- sp[0] : receiver // -- sp[4] : target // -- sp[8] : argumentsList // -- sp[12] : new.target (optional) // ----------------------------------- // 1. Load target into r4 (if present), argumentsList into r5 (if present), // new.target into r6 (if present, otherwise use target), remove all // arguments from the stack (including the receiver), and push thisArgument // (if present) instead. { __ LoadRoot(r4, RootIndex::kUndefinedValue); __ mr(r5, r4); Label done; __ mr(r7, r4); __ CmpS64(r3, Operand(JSParameterCount(1)), r0); __ blt(&done); __ LoadU64(r4, MemOperand(sp, kSystemPointerSize)); // thisArg __ mr(r6, r4); __ CmpS64(r3, Operand(JSParameterCount(2)), r0); __ blt(&done); __ LoadU64(r5, MemOperand(sp, 2 * kSystemPointerSize)); // argArray __ CmpS64(r3, Operand(JSParameterCount(3)), r0); __ blt(&done); __ LoadU64(r6, MemOperand(sp, 3 * kSystemPointerSize)); // argArray __ bind(&done); __ DropArgumentsAndPushNewReceiver(r3, r7, MacroAssembler::kCountIsInteger, MacroAssembler::kCountIncludesReceiver); } // ----------- S t a t e ------------- // -- r5 : argumentsList // -- r6 : new.target // -- r4 : target // -- sp[0] : receiver (undefined) // ----------------------------------- // 2. We don't need to check explicitly for constructor target here, // since that's the first thing the Construct/ConstructWithArrayLike // builtins will do. // 3. We don't need to check explicitly for constructor new.target here, // since that's the second thing the Construct/ConstructWithArrayLike // builtins will do. // 4. Construct the target with the given new.target and argumentsList. __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike), RelocInfo::CODE_TARGET); } namespace { // Allocate new stack space for |count| arguments and shift all existing // arguments already on the stack. |pointer_to_new_space_out| points to the // first free slot on the stack to copy additional arguments to and // |argc_in_out| is updated to include |count|. void Generate_AllocateSpaceAndShiftExistingArguments( MacroAssembler* masm, Register count, Register argc_in_out, Register pointer_to_new_space_out, Register scratch1, Register scratch2) { DCHECK(!AreAliased(count, argc_in_out, pointer_to_new_space_out, scratch1, scratch2)); Register old_sp = scratch1; Register new_space = scratch2; __ addi(old_sp, sp, Operand(-kSystemPointerSize)); __ ShiftLeftU64(new_space, count, Operand(kSystemPointerSizeLog2)); __ AllocateStackSpace(new_space); Register dest = pointer_to_new_space_out; __ addi(dest, sp, Operand(-kSystemPointerSize)); Label loop, skip; __ mr(r0, argc_in_out); __ cmpi(r0, Operand::Zero()); __ ble(&skip); __ mtctr(r0); __ bind(&loop); __ LoadU64WithUpdate(r0, MemOperand(old_sp, kSystemPointerSize)); __ StoreU64WithUpdate(r0, MemOperand(dest, kSystemPointerSize)); __ bdnz(&loop); __ bind(&skip); // Update total number of arguments, restore dest. __ add(argc_in_out, argc_in_out, count); __ addi(dest, dest, Operand(kSystemPointerSize)); } } // namespace // static // TODO(v8:11615): Observe Code::kMaxArguments in // CallOrConstructVarargs void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm, Handle<Code> code) { // ----------- S t a t e ------------- // -- r4 : target // -- r3 : number of parameters on the stack // -- r5 : arguments list (a FixedArray) // -- r7 : len (number of elements to push from args) // -- r6 : new.target (for [[Construct]]) // ----------------------------------- Register scratch = ip; if (v8_flags.debug_code) { // Allow r5 to be a FixedArray, or a FixedDoubleArray if r7 == 0. Label ok, fail; __ AssertNotSmi(r5); __ LoadTaggedField(scratch, FieldMemOperand(r5, HeapObject::kMapOffset), r0); __ LoadU16(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); __ cmpi(scratch, Operand(FIXED_ARRAY_TYPE)); __ beq(&ok); __ cmpi(scratch, Operand(FIXED_DOUBLE_ARRAY_TYPE)); __ bne(&fail); __ cmpi(r7, Operand::Zero()); __ beq(&ok); // Fall through. __ bind(&fail); __ Abort(AbortReason::kOperandIsNotAFixedArray); __ bind(&ok); } // Check for stack overflow. Label stack_overflow; __ StackOverflowCheck(r7, scratch, &stack_overflow); // Move the arguments already in the stack, // including the receiver and the return address. // r7: Number of arguments to make room for. // r3: Number of arguments already on the stack. // r8: Points to first free slot on the stack after arguments were shifted. Generate_AllocateSpaceAndShiftExistingArguments(masm, r7, r3, r8, ip, r9); // Push arguments onto the stack (thisArgument is already on the stack). { Label loop, no_args, skip; __ cmpi(r7, Operand::Zero()); __ beq(&no_args); __ addi(r5, r5, Operand(FixedArray::kHeaderSize - kHeapObjectTag - kTaggedSize)); __ mtctr(r7); __ bind(&loop); __ LoadTaggedField(scratch, MemOperand(r5, kTaggedSize), r0); __ addi(r5, r5, Operand(kTaggedSize)); __ CompareRoot(scratch, RootIndex::kTheHoleValue); __ bne(&skip); __ LoadRoot(scratch, RootIndex::kUndefinedValue); __ bind(&skip); __ StoreU64(scratch, MemOperand(r8)); __ addi(r8, r8, Operand(kSystemPointerSize)); __ bdnz(&loop); __ bind(&no_args); } // Tail-call to the actual Call or Construct builtin. __ Jump(code, RelocInfo::CODE_TARGET); __ bind(&stack_overflow); __ TailCallRuntime(Runtime::kThrowStackOverflow); } // static void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm, CallOrConstructMode mode, Handle<Code> code) { // ----------- S t a t e ------------- // -- r3 : the number of arguments // -- r6 : the new.target (for [[Construct]] calls) // -- r4 : the target to call (can be any Object) // -- r5 : start index (to support rest parameters) // ----------------------------------- Register scratch = r9; if (mode == CallOrConstructMode::kConstruct) { Label new_target_constructor, new_target_not_constructor; __ JumpIfSmi(r6, &new_target_not_constructor); __ LoadTaggedField(scratch, FieldMemOperand(r6, HeapObject::kMapOffset), r0); __ lbz(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); __ TestBit(scratch, Map::Bits1::IsConstructorBit::kShift, r0); __ bne(&new_target_constructor, cr0); __ bind(&new_target_not_constructor); { FrameScope scope(masm, StackFrame::MANUAL); __ EnterFrame(StackFrame::INTERNAL); __ Push(r6); __ CallRuntime(Runtime::kThrowNotConstructor); __ Trap(); // Unreachable. } __ bind(&new_target_constructor); } Label stack_done, stack_overflow; __ LoadU64(r8, MemOperand(fp, StandardFrameConstants::kArgCOffset)); __ subi(r8, r8, Operand(kJSArgcReceiverSlots)); __ sub(r8, r8, r5, LeaveOE, SetRC); __ ble(&stack_done, cr0); { // ----------- S t a t e ------------- // -- r3 : the number of arguments already in the stack // -- r4 : the target to call (can be any Object) // -- r5 : start index (to support rest parameters) // -- r6 : the new.target (for [[Construct]] calls) // -- fp : point to the caller stack frame // -- r8 : number of arguments to copy, i.e. arguments count - start index // ----------------------------------- // Check for stack overflow. __ StackOverflowCheck(r8, scratch, &stack_overflow); // Forward the arguments from the caller frame. // Point to the first argument to copy (skipping the receiver). __ addi(r7, fp, Operand(CommonFrameConstants::kFixedFrameSizeAboveFp + kSystemPointerSize)); __ ShiftLeftU64(scratch, r5, Operand(kSystemPointerSizeLog2)); __ add(r7, r7, scratch); // Move the arguments already in the stack, // including the receiver and the return address. // r8: Number of arguments to make room for. // r3: Number of arguments already on the stack. // r5: Points to first free slot on the stack after arguments were shifted. Generate_AllocateSpaceAndShiftExistingArguments(masm, r8, r3, r5, scratch, ip); // Copy arguments from the caller frame. // TODO(victorgomes): Consider using forward order as potentially more cache // friendly. { Label loop; __ bind(&loop); { __ subi(r8, r8, Operand(1)); __ ShiftLeftU64(scratch, r8, Operand(kSystemPointerSizeLog2)); __ LoadU64(r0, MemOperand(r7, scratch)); __ StoreU64(r0, MemOperand(r5, scratch)); __ cmpi(r8, Operand::Zero()); __ bne(&loop); } } } __ b(&stack_done); __ bind(&stack_overflow); __ TailCallRuntime(Runtime::kThrowStackOverflow); __ bind(&stack_done); // Tail-call to the {code} handler. __ Jump(code, RelocInfo::CODE_TARGET); } // static void Builtins::Generate_CallFunction(MacroAssembler* masm, ConvertReceiverMode mode) { // ----------- S t a t e ------------- // -- r3 : the number of arguments // -- r4 : the function to call (checked to be a JSFunction) // ----------------------------------- __ AssertCallableFunction(r4); __ LoadTaggedField( r5, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset), r0); // Enter the context of the function; ToObject has to run in the function // context, and we also need to take the global proxy from the function // context in case of conversion. __ LoadTaggedField(cp, FieldMemOperand(r4, JSFunction::kContextOffset), r0); // We need to convert the receiver for non-native sloppy mode functions. Label done_convert; __ lwz(r6, FieldMemOperand(r5, SharedFunctionInfo::kFlagsOffset)); __ andi(r0, r6, Operand(SharedFunctionInfo::IsStrictBit::kMask | SharedFunctionInfo::IsNativeBit::kMask)); __ bne(&done_convert, cr0); { // ----------- S t a t e ------------- // -- r3 : the number of arguments // -- r4 : the function to call (checked to be a JSFunction) // -- r5 : the shared function info. // -- cp : the function context. // ----------------------------------- if (mode == ConvertReceiverMode::kNullOrUndefined) { // Patch receiver to global proxy. __ LoadGlobalProxy(r6); } else { Label convert_to_object, convert_receiver; __ LoadReceiver(r6); __ JumpIfSmi(r6, &convert_to_object); static_assert(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ CompareObjectType(r6, r7, r7, FIRST_JS_RECEIVER_TYPE); __ bge(&done_convert); if (mode != ConvertReceiverMode::kNotNullOrUndefined) { Label convert_global_proxy; __ JumpIfRoot(r6, RootIndex::kUndefinedValue, &convert_global_proxy); __ JumpIfNotRoot(r6, RootIndex::kNullValue, &convert_to_object); __ bind(&convert_global_proxy); { // Patch receiver to global proxy. __ LoadGlobalProxy(r6); } __ b(&convert_receiver); } __ bind(&convert_to_object); { // Convert receiver using ToObject. // TODO(bmeurer): Inline the allocation here to avoid building the frame // in the fast case? (fall back to AllocateInNewSpace?) FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ SmiTag(r3); __ Push(r3, r4); __ mr(r3, r6); __ Push(cp); __ Call(BUILTIN_CODE(masm->isolate(), ToObject), RelocInfo::CODE_TARGET); __ Pop(cp); __ mr(r6, r3); __ Pop(r3, r4); __ SmiUntag(r3); } __ LoadTaggedField( r5, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset), r0); __ bind(&convert_receiver); } __ StoreReceiver(r6); } __ bind(&done_convert); // ----------- S t a t e ------------- // -- r3 : the number of arguments // -- r4 : the function to call (checked to be a JSFunction) // -- r5 : the shared function info. // -- cp : the function context. // ----------------------------------- __ LoadU16( r5, FieldMemOperand(r5, SharedFunctionInfo::kFormalParameterCountOffset)); __ InvokeFunctionCode(r4, no_reg, r5, r3, InvokeType::kJump); } namespace { void Generate_PushBoundArguments(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : the number of arguments // -- r4 : target (checked to be a JSBoundFunction) // -- r6 : new.target (only in case of [[Construct]]) // ----------------------------------- // Load [[BoundArguments]] into r5 and length of that into r7. Label no_bound_arguments; __ LoadTaggedField( r5, FieldMemOperand(r4, JSBoundFunction::kBoundArgumentsOffset), r0); __ SmiUntag(r7, FieldMemOperand(r5, FixedArray::kLengthOffset), SetRC, r0); __ beq(&no_bound_arguments, cr0); { // ----------- S t a t e ------------- // -- r3 : the number of arguments // -- r4 : target (checked to be a JSBoundFunction) // -- r5 : the [[BoundArguments]] (implemented as FixedArray) // -- r6 : new.target (only in case of [[Construct]]) // -- r7 : the number of [[BoundArguments]] // ----------------------------------- Register scratch = r9; // Reserve stack space for the [[BoundArguments]]. { Label done; __ ShiftLeftU64(r10, r7, Operand(kSystemPointerSizeLog2)); __ sub(r0, sp, r10); // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack // limit". { __ LoadStackLimit(scratch, StackLimitKind::kRealStackLimit); __ CmpU64(r0, scratch); } __ bgt(&done); // Signed comparison. { FrameScope scope(masm, StackFrame::MANUAL); __ EnterFrame(StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowStackOverflow); } __ bind(&done); } // Pop receiver. __ Pop(r8); // Push [[BoundArguments]]. { Label loop, done; __ add(r3, r3, r7); // Adjust effective number of arguments. __ addi(r5, r5, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ mtctr(r7); __ bind(&loop); __ subi(r7, r7, Operand(1)); __ ShiftLeftU64(scratch, r7, Operand(kTaggedSizeLog2)); __ add(scratch, scratch, r5); __ LoadTaggedField(scratch, MemOperand(scratch), r0); __ Push(scratch); __ bdnz(&loop); __ bind(&done); } // Push receiver. __ Push(r8); } __ bind(&no_bound_arguments); } } // namespace // static void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : the number of arguments // -- r4 : the function to call (checked to be a JSBoundFunction) // ----------------------------------- __ AssertBoundFunction(r4); // Patch the receiver to [[BoundThis]]. __ LoadTaggedField(r6, FieldMemOperand(r4, JSBoundFunction::kBoundThisOffset), r0); __ StoreReceiver(r6); // Push the [[BoundArguments]] onto the stack. Generate_PushBoundArguments(masm); // Call the [[BoundTargetFunction]] via the Call builtin. __ LoadTaggedField( r4, FieldMemOperand(r4, JSBoundFunction::kBoundTargetFunctionOffset), r0); __ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) { // ----------- S t a t e ------------- // -- r3 : the number of arguments // -- r4 : the target to call (can be any Object). // ----------------------------------- Register target = r4; Register map = r7; Register instance_type = r8; DCHECK(!AreAliased(r3, target, map, instance_type)); Label non_callable, class_constructor; __ JumpIfSmi(target, &non_callable); __ LoadMap(map, target); __ CompareInstanceTypeRange(map, instance_type, FIRST_CALLABLE_JS_FUNCTION_TYPE, LAST_CALLABLE_JS_FUNCTION_TYPE); __ Jump(masm->isolate()->builtins()->CallFunction(mode), RelocInfo::CODE_TARGET, le); __ cmpi(instance_type, Operand(JS_BOUND_FUNCTION_TYPE)); __ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction), RelocInfo::CODE_TARGET, eq); // Check if target has a [[Call]] internal method. { Register flags = r7; __ lbz(flags, FieldMemOperand(map, Map::kBitFieldOffset)); map = no_reg; __ TestBit(flags, Map::Bits1::IsCallableBit::kShift, r0); __ beq(&non_callable, cr0); } // Check if target is a proxy and call CallProxy external builtin __ cmpi(instance_type, Operand(JS_PROXY_TYPE)); __ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET, eq); // Check if target is a wrapped function and call CallWrappedFunction external // builtin __ cmpi(instance_type, Operand(JS_WRAPPED_FUNCTION_TYPE)); __ Jump(BUILTIN_CODE(masm->isolate(), CallWrappedFunction), RelocInfo::CODE_TARGET, eq); // ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList) // Check that the function is not a "classConstructor". __ cmpi(instance_type, Operand(JS_CLASS_CONSTRUCTOR_TYPE)); __ beq(&class_constructor); // 2. Call to something else, which might have a [[Call]] internal method (if // not we raise an exception). // Overwrite the original receiver the (original) target. __ StoreReceiver(target); // Let the "call_as_function_delegate" take care of the rest. __ LoadNativeContextSlot(target, Context::CALL_AS_FUNCTION_DELEGATE_INDEX); __ Jump(masm->isolate()->builtins()->CallFunction( ConvertReceiverMode::kNotNullOrUndefined), RelocInfo::CODE_TARGET); // 3. Call to something that is not callable. __ bind(&non_callable); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ Push(target); __ CallRuntime(Runtime::kThrowCalledNonCallable); __ Trap(); // Unreachable. } // 4. The function is a "classConstructor", need to raise an exception. __ bind(&class_constructor); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ Push(target); __ CallRuntime(Runtime::kThrowConstructorNonCallableError); __ Trap(); // Unreachable. } } // static void Builtins::Generate_ConstructFunction(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : the number of arguments // -- r4 : the constructor to call (checked to be a JSFunction) // -- r6 : the new target (checked to be a constructor) // ----------------------------------- __ AssertConstructor(r4); __ AssertFunction(r4); // Calling convention for function specific ConstructStubs require // r5 to contain either an AllocationSite or undefined. __ LoadRoot(r5, RootIndex::kUndefinedValue); Label call_generic_stub; // Jump to JSBuiltinsConstructStub or JSConstructStubGeneric. __ LoadTaggedField( r7, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset), r0); __ lwz(r7, FieldMemOperand(r7, SharedFunctionInfo::kFlagsOffset)); __ mov(ip, Operand(SharedFunctionInfo::ConstructAsBuiltinBit::kMask)); __ and_(r7, r7, ip, SetRC); __ beq(&call_generic_stub, cr0); __ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub), RelocInfo::CODE_TARGET); __ bind(&call_generic_stub); __ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : the number of arguments // -- r4 : the function to call (checked to be a JSBoundFunction) // -- r6 : the new target (checked to be a constructor) // ----------------------------------- __ AssertConstructor(r4); __ AssertBoundFunction(r4); // Push the [[BoundArguments]] onto the stack. Generate_PushBoundArguments(masm); // Patch new.target to [[BoundTargetFunction]] if new.target equals target. Label skip; __ CompareTagged(r4, r6); __ bne(&skip); __ LoadTaggedField( r6, FieldMemOperand(r4, JSBoundFunction::kBoundTargetFunctionOffset), r0); __ bind(&skip); // Construct the [[BoundTargetFunction]] via the Construct builtin. __ LoadTaggedField( r4, FieldMemOperand(r4, JSBoundFunction::kBoundTargetFunctionOffset), r0); __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_Construct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : the number of arguments // -- r4 : the constructor to call (can be any Object) // -- r6 : the new target (either the same as the constructor or // the JSFunction on which new was invoked initially) // ----------------------------------- Register target = r4; Register map = r7; Register instance_type = r8; DCHECK(!AreAliased(r3, target, map, instance_type)); // Check if target is a Smi. Label non_constructor, non_proxy; __ JumpIfSmi(target, &non_constructor); // Check if target has a [[Construct]] internal method. __ LoadTaggedField(map, FieldMemOperand(target, HeapObject::kMapOffset), r0); { Register flags = r5; DCHECK(!AreAliased(r3, target, map, instance_type, flags)); __ lbz(flags, FieldMemOperand(map, Map::kBitFieldOffset)); __ TestBit(flags, Map::Bits1::IsConstructorBit::kShift, r0); __ beq(&non_constructor, cr0); } // Dispatch based on instance type. __ CompareInstanceTypeRange(map, instance_type, FIRST_JS_FUNCTION_TYPE, LAST_JS_FUNCTION_TYPE); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction), RelocInfo::CODE_TARGET, le); // Only dispatch to bound functions after checking whether they are // constructors. __ cmpi(instance_type, Operand(JS_BOUND_FUNCTION_TYPE)); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction), RelocInfo::CODE_TARGET, eq); // Only dispatch to proxies after checking whether they are constructors. __ cmpi(instance_type, Operand(JS_PROXY_TYPE)); __ bne(&non_proxy); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy), RelocInfo::CODE_TARGET); // Called Construct on an exotic Object with a [[Construct]] internal method. __ bind(&non_proxy); { // Overwrite the original receiver with the (original) target. __ StoreReceiver(target); // Let the "call_as_constructor_delegate" take care of the rest. __ LoadNativeContextSlot(target, Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX); __ Jump(masm->isolate()->builtins()->CallFunction(), RelocInfo::CODE_TARGET); } // Called Construct on an Object that doesn't have a [[Construct]] internal // method. __ bind(&non_constructor); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable), RelocInfo::CODE_TARGET); } #if V8_ENABLE_WEBASSEMBLY struct SaveWasmParamsScope { explicit SaveWasmParamsScope(MacroAssembler* masm) : masm(masm) { for (Register gp_param_reg : wasm::kGpParamRegisters) { gp_regs.set(gp_param_reg); } for (DoubleRegister fp_param_reg : wasm::kFpParamRegisters) { fp_regs.set(fp_param_reg); } CHECK_EQ(gp_regs.Count(), arraysize(wasm::kGpParamRegisters)); CHECK_EQ(fp_regs.Count(), arraysize(wasm::kFpParamRegisters)); CHECK_EQ(simd_regs.Count(), arraysize(wasm::kFpParamRegisters)); CHECK_EQ(WasmLiftoffSetupFrameConstants::kNumberOfSavedGpParamRegs + 1, gp_regs.Count()); CHECK_EQ(WasmLiftoffSetupFrameConstants::kNumberOfSavedFpParamRegs, fp_regs.Count()); CHECK_EQ(WasmLiftoffSetupFrameConstants::kNumberOfSavedFpParamRegs, simd_regs.Count()); __ MultiPush(gp_regs); __ MultiPushF64AndV128(fp_regs, simd_regs, ip, r0); } ~SaveWasmParamsScope() { __ MultiPopF64AndV128(fp_regs, simd_regs, ip, r0); __ MultiPop(gp_regs); } RegList gp_regs; DoubleRegList fp_regs; // List must match register numbers under kFpParamRegisters. Simd128RegList simd_regs = {v1, v2, v3, v4, v5, v6, v7, v8}; MacroAssembler* masm; }; void Builtins::Generate_WasmLiftoffFrameSetup(MacroAssembler* masm) { Register func_index = wasm::kLiftoffFrameSetupFunctionReg; Register vector = r11; Register scratch = ip; Label allocate_vector, done; __ LoadTaggedField( vector, FieldMemOperand(kWasmInstanceRegister, WasmInstanceObject::kFeedbackVectorsOffset), scratch); __ ShiftLeftU64(scratch, func_index, Operand(kTaggedSizeLog2)); __ AddS64(vector, vector, scratch); __ LoadTaggedField(vector, FieldMemOperand(vector, FixedArray::kHeaderSize), scratch); __ JumpIfSmi(vector, &allocate_vector); __ bind(&done); __ push(kWasmInstanceRegister); __ push(vector); __ Ret(); __ bind(&allocate_vector); // Feedback vector doesn't exist yet. Call the runtime to allocate it. // We temporarily change the frame type for this, because we need special // handling by the stack walker in case of GC. __ mov(scratch, Operand(StackFrame::TypeToMarker(StackFrame::WASM_LIFTOFF_SETUP))); __ StoreU64(scratch, MemOperand(sp)); // Save current return address as it will get clobbered during CallRuntime. __ mflr(scratch); __ push(scratch); { SaveWasmParamsScope save_params(masm); // Will use r0 and ip as scratch. // Arguments to the runtime function: instance, func_index. __ push(kWasmInstanceRegister); __ SmiTag(func_index); __ push(func_index); // Allocate a stack slot where the runtime function can spill a pointer // to the {NativeModule}. __ push(r11); __ LoadSmiLiteral(cp, Smi::zero()); __ CallRuntime(Runtime::kWasmAllocateFeedbackVector, 3); __ mr(vector, kReturnRegister0); // Saved parameters are restored at the end of this block. } __ pop(scratch); __ mtlr(scratch); __ mov(scratch, Operand(StackFrame::TypeToMarker(StackFrame::WASM))); __ StoreU64(scratch, MemOperand(sp)); __ b(&done); } void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) { // The function index was put in a register by the jump table trampoline. // Convert to Smi for the runtime call. __ SmiTag(kWasmCompileLazyFuncIndexRegister); { HardAbortScope hard_abort(masm); // Avoid calls to Abort. FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); { SaveWasmParamsScope save_params(masm); // Will use r0 and ip as scratch. // Push the Wasm instance as an explicit argument to the runtime function. __ push(kWasmInstanceRegister); // Push the function index as second argument. __ push(kWasmCompileLazyFuncIndexRegister); // Initialize the JavaScript context with 0. CEntry will use it to // set the current context on the isolate. __ LoadSmiLiteral(cp, Smi::zero()); __ CallRuntime(Runtime::kWasmCompileLazy, 2); // The runtime function returns the jump table slot offset as a Smi. Use // that to compute the jump target in r11. __ SmiUntag(kReturnRegister0); __ mr(r11, kReturnRegister0); // Saved parameters are restored at the end of this block. } // After the instance register has been restored, we can add the jump table // start to the jump table offset already stored in r11. __ LoadU64(ip, FieldMemOperand(kWasmInstanceRegister, WasmInstanceObject::kJumpTableStartOffset), r0); __ AddS64(r11, r11, ip); } // Finally, jump to the jump table slot for the function. __ Jump(r11); } void Builtins::Generate_WasmDebugBreak(MacroAssembler* masm) { HardAbortScope hard_abort(masm); // Avoid calls to Abort. { FrameAndConstantPoolScope scope(masm, StackFrame::WASM_DEBUG_BREAK); // Save all parameter registers. They might hold live values, we restore // them after the runtime call. __ MultiPush(WasmDebugBreakFrameConstants::kPushedGpRegs); __ MultiPushF64AndV128(WasmDebugBreakFrameConstants::kPushedFpRegs, WasmDebugBreakFrameConstants::kPushedSimd128Regs, ip, r0); // Initialize the JavaScript context with 0. CEntry will use it to // set the current context on the isolate. __ LoadSmiLiteral(cp, Smi::zero()); __ CallRuntime(Runtime::kWasmDebugBreak, 0); // Restore registers. __ MultiPopF64AndV128(WasmDebugBreakFrameConstants::kPushedFpRegs, WasmDebugBreakFrameConstants::kPushedSimd128Regs, ip, r0); __ MultiPop(WasmDebugBreakFrameConstants::kPushedGpRegs); } __ Ret(); } void Builtins::Generate_WasmReturnPromiseOnSuspendAsm(MacroAssembler* masm) { __ Trap(); } void Builtins::Generate_WasmToJsWrapperAsm(MacroAssembler* masm) { __ Trap(); } void Builtins::Generate_WasmSuspend(MacroAssembler* masm) { // TODO(v8:12191): Implement for this platform. __ Trap(); } void Builtins::Generate_WasmResume(MacroAssembler* masm) { // TODO(v8:12191): Implement for this platform. __ Trap(); } void Builtins::Generate_WasmReject(MacroAssembler* masm) { // TODO(v8:12191): Implement for this platform. __ Trap(); } void Builtins::Generate_WasmOnStackReplace(MacroAssembler* masm) { // Only needed on x64. __ Trap(); } void Builtins::Generate_JSToWasmWrapperAsm(MacroAssembler* masm) { __ Trap(); } #endif // V8_ENABLE_WEBASSEMBLY void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size, ArgvMode argv_mode, bool builtin_exit_frame, bool switch_to_central_stack) { // Called from JavaScript; parameters are on stack as if calling JS function. // r3: number of arguments including receiver // r4: pointer to builtin function // fp: frame pointer (restored after C call) // sp: stack pointer (restored as callee's sp after C call) // cp: current context (C callee-saved) // // If argv_mode == ArgvMode::kRegister: // r5: pointer to the first argument __ mr(r15, r4); if (argv_mode == ArgvMode::kRegister) { // Move argv into the correct register. __ mr(r4, r5); } else { // Compute the argv pointer. __ ShiftLeftU64(r4, r3, Operand(kSystemPointerSizeLog2)); __ add(r4, r4, sp); __ subi(r4, r4, Operand(kSystemPointerSize)); } // Enter the exit frame that transitions from JavaScript to C++. FrameScope scope(masm, StackFrame::MANUAL); // Need at least one extra slot for return address location. int arg_stack_space = 1; // Pass buffer for return value on stack if necessary bool needs_return_buffer = (result_size == 2 && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS); if (needs_return_buffer) { arg_stack_space += result_size; } __ EnterExitFrame(arg_stack_space, builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT); // Store a copy of argc in callee-saved registers for later. __ mr(r14, r3); // r3, r14: number of arguments including receiver (C callee-saved) // r4: pointer to the first argument // r15: pointer to builtin function (C callee-saved) // Result returned in registers or stack, depending on result size and ABI. Register isolate_reg = r5; if (needs_return_buffer) { // The return value is a non-scalar value. // Use frame storage reserved by calling function to pass return // buffer as implicit first argument. __ mr(r5, r4); __ mr(r4, r3); __ addi(r3, sp, Operand((kStackFrameExtraParamSlot + 1) * kSystemPointerSize)); isolate_reg = r6; } // Call C built-in. __ Move(isolate_reg, ExternalReference::isolate_address(masm->isolate())); Register target = r15; __ StoreReturnAddressAndCall(target); // If return value is on the stack, pop it to registers. if (needs_return_buffer) { __ LoadU64(r4, MemOperand(r3, kSystemPointerSize)); __ LoadU64(r3, MemOperand(r3)); } // Check result for exception sentinel. Label exception_returned; __ CompareRoot(r3, RootIndex::kException); __ beq(&exception_returned); // Check that there is no pending exception, otherwise we // should have returned the exception sentinel. if (v8_flags.debug_code) { Label okay; ExternalReference pending_exception_address = ExternalReference::Create( IsolateAddressId::kPendingExceptionAddress, masm->isolate()); __ Move(r6, pending_exception_address); __ LoadU64(r6, MemOperand(r6)); __ CompareRoot(r6, RootIndex::kTheHoleValue); // Cannot use check here as it attempts to generate call into runtime. __ beq(&okay); __ stop(); __ bind(&okay); } // Exit C frame and return. // r3:r4: result // sp: stack pointer // fp: frame pointer Register argc = argv_mode == ArgvMode::kRegister // We don't want to pop arguments so set argc to no_reg. ? no_reg // r14: still holds argc (callee-saved). : r14; __ LeaveExitFrame(argc, false); __ blr(); // Handling of exception. __ bind(&exception_returned); ExternalReference pending_handler_context_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerContextAddress, masm->isolate()); ExternalReference pending_handler_entrypoint_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate()); ExternalReference pending_handler_constant_pool_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerConstantPoolAddress, masm->isolate()); ExternalReference pending_handler_fp_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerFPAddress, masm->isolate()); ExternalReference pending_handler_sp_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerSPAddress, masm->isolate()); // Ask the runtime for help to determine the handler. This will set r3 to // contain the current pending exception, don't clobber it. ExternalReference find_handler = ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler); { FrameScope scope(masm, StackFrame::MANUAL); __ PrepareCallCFunction(3, 0, r3); __ li(r3, Operand::Zero()); __ li(r4, Operand::Zero()); __ Move(r5, ExternalReference::isolate_address(masm->isolate())); __ CallCFunction(find_handler, 3); } // Retrieve the handler context, SP and FP. __ Move(cp, pending_handler_context_address); __ LoadU64(cp, MemOperand(cp)); __ Move(sp, pending_handler_sp_address); __ LoadU64(sp, MemOperand(sp)); __ Move(fp, pending_handler_fp_address); __ LoadU64(fp, MemOperand(fp)); // If the handler is a JS frame, restore the context to the frame. Note that // the context will be set to (cp == 0) for non-JS frames. Label skip; __ cmpi(cp, Operand::Zero()); __ beq(&skip); __ StoreU64(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); __ bind(&skip); // Clear c_entry_fp, like we do in `LeaveExitFrame`. { UseScratchRegisterScope temps(masm); __ Move(ip, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, masm->isolate())); __ mov(r0, Operand::Zero()); __ StoreU64(r0, MemOperand(ip)); } // Compute the handler entry address and jump to it. ConstantPoolUnavailableScope constant_pool_unavailable(masm); __ Move(ip, pending_handler_entrypoint_address); __ LoadU64(ip, MemOperand(ip)); if (V8_EMBEDDED_CONSTANT_POOL_BOOL) { __ Move(kConstantPoolRegister, pending_handler_constant_pool_address); __ LoadU64(kConstantPoolRegister, MemOperand(kConstantPoolRegister)); } __ Jump(ip); } void Builtins::Generate_DoubleToI(MacroAssembler* masm) { Label out_of_range, only_low, negate, done, fastpath_done; Register result_reg = r3; HardAbortScope hard_abort(masm); // Avoid calls to Abort. // Immediate values for this stub fit in instructions, so it's safe to use ip. Register scratch = GetRegisterThatIsNotOneOf(result_reg); Register scratch_low = GetRegisterThatIsNotOneOf(result_reg, scratch); Register scratch_high = GetRegisterThatIsNotOneOf(result_reg, scratch, scratch_low); DoubleRegister double_scratch = kScratchDoubleReg; __ Push(result_reg, scratch); // Account for saved regs. int argument_offset = 2 * kSystemPointerSize; // Load double input. __ lfd(double_scratch, MemOperand(sp, argument_offset)); // Do fast-path convert from double to int. __ ConvertDoubleToInt64(double_scratch, #if !V8_TARGET_ARCH_PPC64 scratch, #endif result_reg, d0); // Test for overflow #if V8_TARGET_ARCH_PPC64 __ TestIfInt32(result_reg, r0); #else __ TestIfInt32(scratch, result_reg, r0); #endif __ beq(&fastpath_done); __ Push(scratch_high, scratch_low); // Account for saved regs. argument_offset += 2 * kSystemPointerSize; __ lwz(scratch_high, MemOperand(sp, argument_offset + Register::kExponentOffset)); __ lwz(scratch_low, MemOperand(sp, argument_offset + Register::kMantissaOffset)); __ ExtractBitMask(scratch, scratch_high, HeapNumber::kExponentMask); // Load scratch with exponent - 1. This is faster than loading // with exponent because Bias + 1 = 1024 which is a *PPC* immediate value. static_assert(HeapNumber::kExponentBias + 1 == 1024); __ subi(scratch, scratch, Operand(HeapNumber::kExponentBias + 1)); // If exponent is greater than or equal to 84, the 32 less significant // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits), // the result is 0. // Compare exponent with 84 (compare exponent - 1 with 83). __ cmpi(scratch, Operand(83)); __ bge(&out_of_range); // If we reach this code, 31 <= exponent <= 83. // So, we don't have to handle cases where 0 <= exponent <= 20 for // which we would need to shift right the high part of the mantissa. // Scratch contains exponent - 1. // Load scratch with 52 - exponent (load with 51 - (exponent - 1)). __ subfic(scratch, scratch, Operand(51)); __ cmpi(scratch, Operand::Zero()); __ ble(&only_low); // 21 <= exponent <= 51, shift scratch_low and scratch_high // to generate the result. __ srw(scratch_low, scratch_low, scratch); // Scratch contains: 52 - exponent. // We needs: exponent - 20. // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20. __ subfic(scratch, scratch, Operand(32)); __ ExtractBitMask(result_reg, scratch_high, HeapNumber::kMantissaMask); // Set the implicit 1 before the mantissa part in scratch_high. static_assert(HeapNumber::kMantissaBitsInTopWord >= 16); __ oris(result_reg, result_reg, Operand(1 << ((HeapNumber::kMantissaBitsInTopWord)-16))); __ ShiftLeftU32(r0, result_reg, scratch); __ orx(result_reg, scratch_low, r0); __ b(&negate); __ bind(&out_of_range); __ mov(result_reg, Operand::Zero()); __ b(&done); __ bind(&only_low); // 52 <= exponent <= 83, shift only scratch_low. // On entry, scratch contains: 52 - exponent. __ neg(scratch, scratch); __ ShiftLeftU32(result_reg, scratch_low, scratch); __ bind(&negate); // If input was positive, scratch_high ASR 31 equals 0 and // scratch_high LSR 31 equals zero. // New result = (result eor 0) + 0 = result. // If the input was negative, we have to negate the result. // Input_high ASR 31 equals 0xFFFFFFFF and scratch_high LSR 31 equals 1. // New result = (result eor 0xFFFFFFFF) + 1 = 0 - result. __ srawi(r0, scratch_high, 31); #if V8_TARGET_ARCH_PPC64 __ srdi(r0, r0, Operand(32)); #endif __ xor_(result_reg, result_reg, r0); __ srwi(r0, scratch_high, Operand(31)); __ add(result_reg, result_reg, r0); __ bind(&done); __ Pop(scratch_high, scratch_low); // Account for saved regs. argument_offset -= 2 * kSystemPointerSize; __ bind(&fastpath_done); __ StoreU64(result_reg, MemOperand(sp, argument_offset)); __ Pop(result_reg, scratch); __ Ret(); } void Builtins::Generate_CallApiCallbackImpl(MacroAssembler* masm, CallApiCallbackMode mode) { // ----------- S t a t e ------------- // CallApiCallbackMode::kGeneric mode: // -- r5 : arguments count (not including the receiver) // -- r6 : call handler info // -- r3 : holder // CallApiCallbackMode::kOptimizedNoProfiling/kOptimized modes: // -- r4 : api function address // -- r5 : arguments count (not including the receiver) // -- r6 : call data // -- r3 : holder // Both modes: // -- cp : context // -- sp[0] : receiver // -- sp[8] : first argument // -- ... // -- sp[(argc) * 8] : last argument // ----------------------------------- Register function_callback_info_arg = arg_reg_1; Register api_function_address = no_reg; Register argc = no_reg; Register call_data = no_reg; Register callback = no_reg; Register holder = no_reg; Register scratch = r7; Register scratch2 = r8; switch (mode) { case CallApiCallbackMode::kGeneric: api_function_address = r4; argc = CallApiCallbackGenericDescriptor::ActualArgumentsCountRegister(); callback = CallApiCallbackGenericDescriptor::CallHandlerInfoRegister(); holder = CallApiCallbackGenericDescriptor::HolderRegister(); break; case CallApiCallbackMode::kOptimizedNoProfiling: case CallApiCallbackMode::kOptimized: api_function_address = CallApiCallbackOptimizedDescriptor::ApiFunctionAddressRegister(); argc = CallApiCallbackOptimizedDescriptor::ActualArgumentsCountRegister(); call_data = CallApiCallbackOptimizedDescriptor::CallDataRegister(); holder = CallApiCallbackOptimizedDescriptor::HolderRegister(); break; } DCHECK(!AreAliased(api_function_address, argc, holder, call_data, callback, scratch, scratch2)); using FCA = FunctionCallbackArguments; static_assert(FCA::kArgsLength == 6); static_assert(FCA::kNewTargetIndex == 5); static_assert(FCA::kDataIndex == 4); static_assert(FCA::kReturnValueIndex == 3); static_assert(FCA::kUnusedIndex == 2); static_assert(FCA::kIsolateIndex == 1); static_assert(FCA::kHolderIndex == 0); // Set up FunctionCallbackInfo's implicit_args on the stack as follows: // // Target state: // sp[1 * kSystemPointerSize]: kHolder <= FCA::implicit_args_ // sp[2 * kSystemPointerSize]: kIsolate // sp[3 * kSystemPointerSize]: Smi::zero(padding, unused) // sp[4 * kSystemPointerSize]: undefined (kReturnValue) // sp[5 * kSystemPointerSize]: kData // sp[6 * kSystemPointerSize]: undefined (kNewTarget) // Existing state: // sp[7 * kSystemPointerSize]: <= FCA:::values_ // Reserve space on the stack. __ subi(sp, sp, Operand(FCA::kArgsLength * kSystemPointerSize)); // kHolder. __ StoreU64(holder, MemOperand(sp, FCA::kHolderIndex * kSystemPointerSize)); // kIsolate. __ Move(scratch, ExternalReference::isolate_address(masm->isolate())); __ StoreU64(scratch, MemOperand(sp, FCA::kIsolateIndex * kSystemPointerSize)); // kUnused __ Move(scratch, Smi::zero()); __ StoreU64(scratch, MemOperand(sp, FCA::kUnusedIndex * kSystemPointerSize)); // kReturnValue. __ LoadRoot(scratch, RootIndex::kUndefinedValue); __ StoreU64(scratch, MemOperand(sp, FCA::kReturnValueIndex * kSystemPointerSize)); // kData. switch (mode) { case CallApiCallbackMode::kGeneric: __ LoadTaggedField( scratch2, FieldMemOperand(callback, CallHandlerInfo::kDataOffset), r0); __ StoreU64(scratch2, MemOperand(sp, FCA::kDataIndex * kSystemPointerSize)); break; case CallApiCallbackMode::kOptimizedNoProfiling: case CallApiCallbackMode::kOptimized: __ StoreU64(call_data, MemOperand(sp, FCA::kDataIndex * kSystemPointerSize)); break; } // kNewTarget. __ StoreU64(scratch, MemOperand(sp, FCA::kNewTargetIndex * kSystemPointerSize)); // Keep a pointer to kHolder (= implicit_args) in a {holder} register. // We use it below to set up the FunctionCallbackInfo object. __ mr(holder, sp); // Allocate the v8::Arguments structure in the arguments' space since // it's not controlled by GC. // PPC LINUX ABI: // // Create 4 extra slots on stack: // [0] space for DirectCEntryStub's LR save // [1-3] FunctionCallbackInfo // [4] number of bytes to drop from the stack after returning static constexpr int kSlotsToDropOnStackSize = 1 * kSystemPointerSize; static constexpr int kApiStackSpace = 5; static_assert(FCA::kImplicitArgsOffset == 0); static_assert(FCA::kValuesOffset == 1 * kSystemPointerSize); static_assert(FCA::kLengthOffset == 2 * kSystemPointerSize); const int exit_frame_params_count = mode == CallApiCallbackMode::kGeneric ? ApiCallbackExitFrameConstants::kAdditionalParametersCount : 0; FrameScope frame_scope(masm, StackFrame::MANUAL); if (mode == CallApiCallbackMode::kGeneric) { ASM_CODE_COMMENT_STRING(masm, "Push API_CALLBACK_EXIT frame arguments"); __ AllocateStackSpace(exit_frame_params_count * kSystemPointerSize); // No padding is required. static_assert(ApiCallbackExitFrameConstants::kOptionalPaddingSize == 0); // Context parameter. static_assert(ApiCallbackExitFrameConstants::kContextOffset == 4 * kSystemPointerSize); __ StoreU64(kContextRegister, MemOperand(sp, 2 * kSystemPointerSize)); // Argc parameter as a Smi. static_assert(ApiCallbackExitFrameConstants::kArgcOffset == 3 * kSystemPointerSize); __ SmiTag(scratch, argc); __ StoreU64(scratch, MemOperand(sp, 1 * kSystemPointerSize)); // Target parameter. static_assert(ApiCallbackExitFrameConstants::kTargetOffset == 2 * kSystemPointerSize); __ LoadTaggedField( scratch, FieldMemOperand(callback, CallHandlerInfo::kOwnerTemplateOffset), r0); __ StoreU64(scratch, MemOperand(sp, 0 * kSystemPointerSize)); __ LoadU64(api_function_address, FieldMemOperand(callback, CallHandlerInfo::kMaybeRedirectedCallbackOffset), r0); __ EnterExitFrame(kApiStackSpace, StackFrame::API_CALLBACK_EXIT); } else { __ EnterExitFrame(kApiStackSpace, StackFrame::EXIT); } { ASM_CODE_COMMENT_STRING(masm, "Initialize FunctionCallbackInfo"); // FunctionCallbackInfo::implicit_args_ (points at kHolder as set up above). // Arguments are after the return address (pushed by EnterExitFrame()). __ StoreU64(holder, ExitFrameStackSlotOperand(FCA::kImplicitArgsOffset)); // FunctionCallbackInfo::values_ (points at the first varargs argument // passed on the stack). __ addi(holder, holder, Operand(FCA::kArgsLengthWithReceiver * kSystemPointerSize)); __ StoreU64(holder, ExitFrameStackSlotOperand(FCA::kValuesOffset)); // FunctionCallbackInfo::length_. __ stw(argc, ExitFrameStackSlotOperand(FCA::kLengthOffset)); } // We also store the number of bytes to drop from the stack after returning // from the API function here. MemOperand stack_space_operand = ExitFrameStackSlotOperand(FCA::kLengthOffset + kSlotsToDropOnStackSize); __ mov(scratch, Operand((FCA::kArgsLengthWithReceiver + exit_frame_params_count) * kSystemPointerSize)); __ ShiftLeftU64(ip, argc, Operand(kSystemPointerSizeLog2)); __ add(scratch, scratch, ip); __ StoreU64(scratch, stack_space_operand); __ RecordComment("v8::FunctionCallback's argument"); __ addi(function_callback_info_arg, sp, Operand((kStackFrameExtraParamSlot + 1) * kSystemPointerSize)); DCHECK(!AreAliased(api_function_address, function_callback_info_arg)); ExternalReference thunk_ref = ExternalReference::invoke_function_callback(mode); // Pass api function address to thunk wrapper in case profiler or side-effect // checking is enabled. Register thunk_arg = api_function_address; MemOperand return_value_operand = ExitFrameCallerStackSlotOperand( FCA::kReturnValueIndex + exit_frame_params_count); static constexpr int kUseStackSpaceOperand = 0; const bool with_profiling = mode != CallApiCallbackMode::kOptimizedNoProfiling; CallApiFunctionAndReturn(masm, with_profiling, api_function_address, thunk_ref, thunk_arg, kUseStackSpaceOperand, &stack_space_operand, return_value_operand); } void Builtins::Generate_CallApiGetter(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- cp : context // -- r4 : receiver // -- r6 : accessor info // -- r3 : holder // ----------------------------------- int arg0Slot = 0; int accessorInfoSlot = 0; int apiStackSpace = 0; // Build v8::PropertyCallbackInfo::args_ array on the stack and push property // name below the exit frame to make GC aware of them. using PCA = PropertyCallbackArguments; static_assert(PCA::kShouldThrowOnErrorIndex == 0); static_assert(PCA::kHolderIndex == 1); static_assert(PCA::kIsolateIndex == 2); static_assert(PCA::kUnusedIndex == 3); static_assert(PCA::kReturnValueIndex == 4); static_assert(PCA::kDataIndex == 5); static_assert(PCA::kThisIndex == 6); static_assert(PCA::kArgsLength == 7); // Set up PropertyCallbackInfo's args_ on the stack as follows: // Target state: // sp[0 * kSystemPointerSize]: name // sp[1 * kSystemPointerSize]: kShouldThrowOnErrorIndex <= PCI:args_ // sp[2 * kSystemPointerSize]: kHolderIndex // sp[3 * kSystemPointerSize]: kIsolateIndex // sp[4 * kSystemPointerSize]: kUnusedIndex // sp[5 * kSystemPointerSize]: kReturnValueIndex // sp[6 * kSystemPointerSize]: kDataIndex // sp[7 * kSystemPointerSize]: kThisIndex / receiver Register name_arg = arg_reg_1; Register property_callback_info_arg = arg_reg_2; Register api_function_address = r5; Register receiver = ApiGetterDescriptor::ReceiverRegister(); Register holder = ApiGetterDescriptor::HolderRegister(); Register callback = ApiGetterDescriptor::CallbackRegister(); Register scratch = r7; Register smi_zero = r8; DCHECK(!AreAliased(receiver, holder, callback, scratch, smi_zero)); __ LoadTaggedField(scratch, FieldMemOperand(callback, AccessorInfo::kDataOffset), r0); __ Push(receiver, scratch); // kThisIndex, kDataIndex __ LoadRoot(scratch, RootIndex::kUndefinedValue); __ Move(smi_zero, Smi::zero()); __ Push(scratch, smi_zero); // kReturnValueIndex, kUnusedIndex __ Move(scratch, ExternalReference::isolate_address(masm->isolate())); __ Push(scratch, holder); // kIsolateIndex, kHolderIndex __ LoadTaggedField(scratch, FieldMemOperand(callback, AccessorInfo::kNameOffset), r0); __ Push(smi_zero, scratch); // should_throw_on_error -> false, name __ RecordComment( "Load address of v8::PropertyAccessorInfo::args_ array and name handle."); // Load address of v8::PropertyAccessorInfo::args_ array and name handle. // name_arg = Handle<Name>(&name), name value was pushed to GC-ed stack space. __ mr(name_arg, sp); // property_callback_info_arg = v8::PCI::args_ (= &ShouldThrow) __ addi(property_callback_info_arg, name_arg, Operand(1 * kSystemPointerSize)); // If ABI passes Handles (pointer-sized struct) in a register: // // Create 2 extra slots on stack: // [0] space for DirectCEntryStub's LR save // [1] AccessorInfo& // // Otherwise: // // Create 3 extra slots on stack: // [0] space for DirectCEntryStub's LR save // [1] copy of Handle (first arg) // [2] AccessorInfo& if (ABI_PASSES_HANDLES_IN_REGS) { accessorInfoSlot = kStackFrameExtraParamSlot + 1; apiStackSpace = 2; } else { arg0Slot = kStackFrameExtraParamSlot + 1; accessorInfoSlot = arg0Slot + 1; apiStackSpace = 3; } constexpr int kNameOnStackSize = 1; constexpr int kStackUnwindSpace = PCA::kArgsLength + kNameOnStackSize; FrameScope frame_scope(masm, StackFrame::MANUAL); __ EnterExitFrame(apiStackSpace, StackFrame::EXIT); if (!ABI_PASSES_HANDLES_IN_REGS) { // pass 1st arg by reference __ StoreU64(r3, MemOperand(sp, arg0Slot * kSystemPointerSize)); __ addi(r3, sp, Operand(arg0Slot * kSystemPointerSize)); } __ RecordComment("Create v8::PropertyCallbackInfo object on the stack."); // Initialize v8::PropertyCallbackInfo::args_ field. __ StoreU64(property_callback_info_arg, MemOperand(sp, accessorInfoSlot * kSystemPointerSize)); // property_callback_info_arg = v8::PropertyCallbackInfo& __ addi(property_callback_info_arg, sp, Operand(accessorInfoSlot * kSystemPointerSize)); __ RecordComment("Load api_function_address"); __ LoadU64( api_function_address, FieldMemOperand(callback, AccessorInfo::kMaybeRedirectedGetterOffset), r0); DCHECK( !AreAliased(api_function_address, property_callback_info_arg, name_arg)); ExternalReference thunk_ref = ExternalReference::invoke_accessor_getter_callback(); // Pass AccessorInfo to thunk wrapper in case profiler or side-effect // checking is enabled. Register thunk_arg = callback; MemOperand return_value_operand = ExitFrameCallerStackSlotOperand( PCA::kReturnValueIndex + kNameOnStackSize); MemOperand* const kUseStackSpaceConstant = nullptr; const bool with_profiling = true; CallApiFunctionAndReturn(masm, with_profiling, api_function_address, thunk_ref, thunk_arg, kStackUnwindSpace, kUseStackSpaceConstant, return_value_operand); } void Builtins::Generate_DirectCEntry(MacroAssembler* masm) { UseScratchRegisterScope temps(masm); Register temp2 = temps.Acquire(); // Place the return address on the stack, making the call // GC safe. The RegExp backend also relies on this. __ mflr(r0); __ StoreU64(r0, MemOperand(sp, kStackFrameExtraParamSlot * kSystemPointerSize)); if (ABI_USES_FUNCTION_DESCRIPTORS) { // AIX/PPC64BE Linux use a function descriptor; __ LoadU64(ToRegister(ABI_TOC_REGISTER), MemOperand(temp2, kSystemPointerSize)); __ LoadU64(temp2, MemOperand(temp2, 0)); // Instruction address } __ Call(temp2); // Call the C++ function. __ LoadU64(r0, MemOperand(sp, kStackFrameExtraParamSlot * kSystemPointerSize)); __ mtlr(r0); __ blr(); } namespace { // This code tries to be close to ia32 code so that any changes can be // easily ported. void Generate_DeoptimizationEntry(MacroAssembler* masm, DeoptimizeKind deopt_kind) { Isolate* isolate = masm->isolate(); // Unlike on ARM we don't save all the registers, just the useful ones. // For the rest, there are gaps on the stack, so the offsets remain the same. const int kNumberOfRegisters = Register::kNumRegisters; RegList restored_regs = kJSCallerSaved | kCalleeSaved; RegList saved_regs = restored_regs | sp; const int kDoubleRegsSize = kDoubleSize * DoubleRegister::kNumRegisters; // Save all double registers before messing with them. __ subi(sp, sp, Operand(kDoubleRegsSize)); const RegisterConfiguration* config = RegisterConfiguration::Default(); for (int i = 0; i < config->num_allocatable_double_registers(); ++i) { int code = config->GetAllocatableDoubleCode(i); const DoubleRegister dreg = DoubleRegister::from_code(code); int offset = code * kDoubleSize; __ stfd(dreg, MemOperand(sp, offset)); } // Push saved_regs (needed to populate FrameDescription::registers_). // Leave gaps for other registers. __ subi(sp, sp, Operand(kNumberOfRegisters * kSystemPointerSize)); for (int16_t i = kNumberOfRegisters - 1; i >= 0; i--) { if ((saved_regs.bits() & (1 << i)) != 0) { __ StoreU64(ToRegister(i), MemOperand(sp, kSystemPointerSize * i)); } } { UseScratchRegisterScope temps(masm); Register scratch = temps.Acquire(); __ Move(scratch, ExternalReference::Create( IsolateAddressId::kCEntryFPAddress, isolate)); __ StoreU64(fp, MemOperand(scratch)); } const int kSavedRegistersAreaSize = (kNumberOfRegisters * kSystemPointerSize) + kDoubleRegsSize; // Get the address of the location in the code object (r6) (return // address for lazy deoptimization) and compute the fp-to-sp delta in // register r7. __ mflr(r5); __ addi(r6, sp, Operand(kSavedRegistersAreaSize)); __ sub(r6, fp, r6); // Allocate a new deoptimizer object. // Pass six arguments in r3 to r8. __ PrepareCallCFunction(5, r8); __ li(r3, Operand::Zero()); Label context_check; __ LoadU64(r4, MemOperand(fp, CommonFrameConstants::kContextOrFrameTypeOffset)); __ JumpIfSmi(r4, &context_check); __ LoadU64(r3, MemOperand(fp, StandardFrameConstants::kFunctionOffset)); __ bind(&context_check); __ li(r4, Operand(static_cast<int>(deopt_kind))); // r5: code address or 0 already loaded. // r6: Fp-to-sp delta already loaded. __ Move(r7, ExternalReference::isolate_address(isolate)); // Call Deoptimizer::New(). { AllowExternalCallThatCantCauseGC scope(masm); __ CallCFunction(ExternalReference::new_deoptimizer_function(), 5); } // Preserve "deoptimizer" object in register r3 and get the input // frame descriptor pointer to r4 (deoptimizer->input_); __ LoadU64(r4, MemOperand(r3, Deoptimizer::input_offset())); // Copy core registers into FrameDescription::registers_[kNumRegisters]. DCHECK_EQ(Register::kNumRegisters, kNumberOfRegisters); for (int i = 0; i < kNumberOfRegisters; i++) { int offset = (i * kSystemPointerSize) + FrameDescription::registers_offset(); __ LoadU64(r5, MemOperand(sp, i * kSystemPointerSize)); __ StoreU64(r5, MemOperand(r4, offset)); } int double_regs_offset = FrameDescription::double_registers_offset(); // Copy double registers to // double_registers_[DoubleRegister::kNumRegisters] for (int i = 0; i < config->num_allocatable_double_registers(); ++i) { int code = config->GetAllocatableDoubleCode(i); int dst_offset = code * kDoubleSize + double_regs_offset; int src_offset = code * kDoubleSize + kNumberOfRegisters * kSystemPointerSize; __ lfd(d0, MemOperand(sp, src_offset)); __ stfd(d0, MemOperand(r4, dst_offset)); } // Mark the stack as not iterable for the CPU profiler which won't be able to // walk the stack without the return address. { UseScratchRegisterScope temps(masm); Register is_iterable = temps.Acquire(); Register zero = r7; __ Move(is_iterable, ExternalReference::stack_is_iterable_address(isolate)); __ li(zero, Operand(0)); __ stb(zero, MemOperand(is_iterable)); } // Remove the saved registers from the stack. __ addi(sp, sp, Operand(kSavedRegistersAreaSize)); // Compute a pointer to the unwinding limit in register r5; that is // the first stack slot not part of the input frame. __ LoadU64(r5, MemOperand(r4, FrameDescription::frame_size_offset())); __ add(r5, r5, sp); // Unwind the stack down to - but not including - the unwinding // limit and copy the contents of the activation frame to the input // frame description. __ addi(r6, r4, Operand(FrameDescription::frame_content_offset())); Label pop_loop; Label pop_loop_header; __ b(&pop_loop_header); __ bind(&pop_loop); __ pop(r7); __ StoreU64(r7, MemOperand(r6, 0)); __ addi(r6, r6, Operand(kSystemPointerSize)); __ bind(&pop_loop_header); __ CmpS64(r5, sp); __ bne(&pop_loop); // Compute the output frame in the deoptimizer. __ push(r3); // Preserve deoptimizer object across call. // r3: deoptimizer object; r4: scratch. __ PrepareCallCFunction(1, r4); // Call Deoptimizer::ComputeOutputFrames(). { AllowExternalCallThatCantCauseGC scope(masm); __ CallCFunction(ExternalReference::compute_output_frames_function(), 1); } __ pop(r3); // Restore deoptimizer object (class Deoptimizer). __ LoadU64(sp, MemOperand(r3, Deoptimizer::caller_frame_top_offset())); // Replace the current (input) frame with the output frames. Label outer_push_loop, inner_push_loop, outer_loop_header, inner_loop_header; // Outer loop state: r7 = current "FrameDescription** output_", // r4 = one past the last FrameDescription**. __ lwz(r4, MemOperand(r3, Deoptimizer::output_count_offset())); __ LoadU64(r7, MemOperand(r3, Deoptimizer::output_offset())); // r7 is output_. __ ShiftLeftU64(r4, r4, Operand(kSystemPointerSizeLog2)); __ add(r4, r7, r4); __ b(&outer_loop_header); __ bind(&outer_push_loop); // Inner loop state: r5 = current FrameDescription*, r6 = loop index. __ LoadU64(r5, MemOperand(r7, 0)); // output_[ix] __ LoadU64(r6, MemOperand(r5, FrameDescription::frame_size_offset())); __ b(&inner_loop_header); __ bind(&inner_push_loop); __ addi(r6, r6, Operand(-sizeof(intptr_t))); __ add(r9, r5, r6); __ LoadU64(r9, MemOperand(r9, FrameDescription::frame_content_offset())); __ push(r9); __ bind(&inner_loop_header); __ cmpi(r6, Operand::Zero()); __ bne(&inner_push_loop); // test for gt? __ addi(r7, r7, Operand(kSystemPointerSize)); __ bind(&outer_loop_header); __ CmpS64(r7, r4); __ blt(&outer_push_loop); __ LoadU64(r4, MemOperand(r3, Deoptimizer::input_offset())); for (int i = 0; i < config->num_allocatable_double_registers(); ++i) { int code = config->GetAllocatableDoubleCode(i); const DoubleRegister dreg = DoubleRegister::from_code(code); int src_offset = code * kDoubleSize + double_regs_offset; __ lfd(dreg, MemOperand(r4, src_offset)); } // Push pc, and continuation from the last output frame. __ LoadU64(r9, MemOperand(r5, FrameDescription::pc_offset())); __ push(r9); __ LoadU64(r9, MemOperand(r5, FrameDescription::continuation_offset())); __ push(r9); // Restore the registers from the last output frame. { UseScratchRegisterScope temps(masm); Register scratch = temps.Acquire(); DCHECK(!(restored_regs.has(scratch))); __ mr(scratch, r5); for (int i = kNumberOfRegisters - 1; i >= 0; i--) { int offset = (i * kSystemPointerSize) + FrameDescription::registers_offset(); if ((restored_regs.bits() & (1 << i)) != 0) { __ LoadU64(ToRegister(i), MemOperand(scratch, offset)); } } } { UseScratchRegisterScope temps(masm); Register is_iterable = temps.Acquire(); Register one = r7; __ Move(is_iterable, ExternalReference::stack_is_iterable_address(isolate)); __ li(one, Operand(1)); __ stb(one, MemOperand(is_iterable)); } { UseScratchRegisterScope temps(masm); Register scratch = temps.Acquire(); __ pop(scratch); // get continuation, leave pc on stack __ pop(r0); __ mtlr(r0); __ Jump(scratch); } __ stop(); } } // namespace void Builtins::Generate_DeoptimizationEntry_Eager(MacroAssembler* masm) { Generate_DeoptimizationEntry(masm, DeoptimizeKind::kEager); } void Builtins::Generate_DeoptimizationEntry_Lazy(MacroAssembler* masm) { Generate_DeoptimizationEntry(masm, DeoptimizeKind::kLazy); } void Builtins::Generate_BaselineOrInterpreterEnterAtBytecode( MacroAssembler* masm) { // Implement on this platform, https://crrev.com/c/2695591. Generate_BaselineOrInterpreterEntry(masm, false); } void Builtins::Generate_BaselineOrInterpreterEnterAtNextBytecode( MacroAssembler* masm) { // Implement on this platform, https://crrev.com/c/2695591. Generate_BaselineOrInterpreterEntry(masm, true); } void Builtins::Generate_InterpreterOnStackReplacement_ToBaseline( MacroAssembler* masm) { // Implement on this platform, https://crrev.com/c/2800112. Generate_BaselineOrInterpreterEntry(masm, false, true); } void Builtins::Generate_RestartFrameTrampoline(MacroAssembler* masm) { // Frame is being dropped: // - Look up current function on the frame. // - Leave the frame. // - Restart the frame by calling the function. __ LoadU64(r4, MemOperand(fp, StandardFrameConstants::kFunctionOffset)); __ LoadU64(r3, MemOperand(fp, StandardFrameConstants::kArgCOffset)); __ LeaveFrame(StackFrame::INTERPRETED); // The arguments are already in the stack (including any necessary padding), // we should not try to massage the arguments again. __ mov(r5, Operand(kDontAdaptArgumentsSentinel)); __ InvokeFunction(r4, r5, r3, InvokeType::kJump); } #undef __ } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_PPC64 || V8_TARGET_ARCH_PPC64