%PDF- %PDF-
Direktori : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/builtins/x64/ |
Current File : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/builtins/x64/builtins-x64.cc |
// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_X64 #include "src/api/api-arguments.h" #include "src/base/bits-iterator.h" #include "src/base/iterator.h" #include "src/builtins/builtins-descriptors.h" #include "src/codegen/code-factory.h" #include "src/codegen/interface-descriptors-inl.h" // For interpreter_entry_return_pc_offset. TODO(jkummerow): Drop. #include "src/codegen/macro-assembler-inl.h" #include "src/codegen/register-configuration.h" #include "src/codegen/x64/assembler-x64.h" #include "src/common/globals.h" #include "src/deoptimizer/deoptimizer.h" #include "src/execution/frame-constants.h" #include "src/execution/frames.h" #include "src/heap/heap-inl.h" #include "src/logging/counters.h" #include "src/objects/cell.h" #include "src/objects/code.h" #include "src/objects/debug-objects.h" #include "src/objects/foreign.h" #include "src/objects/heap-number.h" #include "src/objects/js-generator.h" #include "src/objects/objects-inl.h" #include "src/objects/smi.h" #if V8_ENABLE_WEBASSEMBLY #include "src/wasm/baseline/liftoff-assembler-defs.h" #include "src/wasm/object-access.h" #include "src/wasm/stacks.h" #include "src/wasm/wasm-constants.h" #include "src/wasm/wasm-linkage.h" #include "src/wasm/wasm-objects.h" #endif // V8_ENABLE_WEBASSEMBLY namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address) { __ LoadAddress(kJavaScriptCallExtraArg1Register, ExternalReference::Create(address)); __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame), RelocInfo::CODE_TARGET); } namespace { constexpr int kReceiverOnStackSize = kSystemPointerSize; enum class ArgumentsElementType { kRaw, // Push arguments as they are. kHandle // Dereference arguments before pushing. }; void Generate_PushArguments(MacroAssembler* masm, Register array, Register argc, Register scratch, ArgumentsElementType element_type) { DCHECK(!AreAliased(array, argc, scratch, kScratchRegister)); Register counter = scratch; Label loop, entry; __ leaq(counter, Operand(argc, -kJSArgcReceiverSlots)); __ jmp(&entry); __ bind(&loop); Operand value(array, counter, times_system_pointer_size, 0); if (element_type == ArgumentsElementType::kHandle) { __ movq(kScratchRegister, value); value = Operand(kScratchRegister, 0); } __ Push(value); __ bind(&entry); __ decq(counter); __ j(greater_equal, &loop, Label::kNear); } void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax: number of arguments // -- rdi: constructor function // -- rdx: new target // -- rsi: context // ----------------------------------- Label stack_overflow; __ StackOverflowCheck(rax, &stack_overflow, Label::kFar); // Enter a construct frame. { FrameScope scope(masm, StackFrame::CONSTRUCT); // Preserve the incoming parameters on the stack. __ SmiTag(rcx, rax); __ Push(rsi); __ Push(rcx); // TODO(victorgomes): When the arguments adaptor is completely removed, we // should get the formal parameter count and copy the arguments in its // correct position (including any undefined), instead of delaying this to // InvokeFunction. // Set up pointer to first argument (skip receiver). __ leaq(rbx, Operand(rbp, StandardFrameConstants::kFixedFrameSizeAboveFp + kSystemPointerSize)); // Copy arguments to the expression stack. // rbx: Pointer to start of arguments. // rax: Number of arguments. Generate_PushArguments(masm, rbx, rax, rcx, ArgumentsElementType::kRaw); // The receiver for the builtin/api call. __ PushRoot(RootIndex::kTheHoleValue); // Call the function. // rax: number of arguments (untagged) // rdi: constructor function // rdx: new target __ InvokeFunction(rdi, rdx, rax, InvokeType::kCall); // Restore smi-tagged arguments count from the frame. __ movq(rbx, Operand(rbp, ConstructFrameConstants::kLengthOffset)); // Leave construct frame. } // Remove caller arguments from the stack and return. __ DropArguments(rbx, rcx, MacroAssembler::kCountIsSmi, MacroAssembler::kCountIncludesReceiver); __ ret(0); __ bind(&stack_overflow); { FrameScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowStackOverflow); __ int3(); // This should be unreachable. } } } // namespace // The construct stub for ES5 constructor functions and ES6 class constructors. void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax: number of arguments (untagged) // -- rdi: constructor function // -- rdx: new target // -- rsi: context // -- sp[...]: constructor arguments // ----------------------------------- FrameScope scope(masm, StackFrame::MANUAL); // Enter a construct frame. __ EnterFrame(StackFrame::CONSTRUCT); Label post_instantiation_deopt_entry, not_create_implicit_receiver; // Preserve the incoming parameters on the stack. __ SmiTag(rcx, rax); __ Push(rsi); __ Push(rcx); __ Push(rdi); __ PushRoot(RootIndex::kTheHoleValue); __ Push(rdx); // ----------- S t a t e ------------- // -- sp[0*kSystemPointerSize]: new target // -- sp[1*kSystemPointerSize]: padding // -- rdi and sp[2*kSystemPointerSize]: constructor function // -- sp[3*kSystemPointerSize]: argument count // -- sp[4*kSystemPointerSize]: context // ----------------------------------- const TaggedRegister shared_function_info(rbx); __ LoadTaggedField(shared_function_info, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ movl(rbx, FieldOperand(shared_function_info, SharedFunctionInfo::kFlagsOffset)); __ DecodeField<SharedFunctionInfo::FunctionKindBits>(rbx); __ JumpIfIsInRange( rbx, static_cast<uint32_t>(FunctionKind::kDefaultDerivedConstructor), static_cast<uint32_t>(FunctionKind::kDerivedConstructor), ¬_create_implicit_receiver, Label::kNear); // If not derived class constructor: Allocate the new receiver object. __ Call(BUILTIN_CODE(masm->isolate(), FastNewObject), RelocInfo::CODE_TARGET); __ jmp(&post_instantiation_deopt_entry, Label::kNear); // Else: use TheHoleValue as receiver for constructor call __ bind(¬_create_implicit_receiver); __ LoadRoot(rax, RootIndex::kTheHoleValue); // ----------- S t a t e ------------- // -- rax implicit receiver // -- Slot 4 / sp[0*kSystemPointerSize] new target // -- Slot 3 / sp[1*kSystemPointerSize] padding // -- Slot 2 / sp[2*kSystemPointerSize] constructor function // -- Slot 1 / sp[3*kSystemPointerSize] number of arguments (tagged) // -- Slot 0 / sp[4*kSystemPointerSize] context // ----------------------------------- // Deoptimizer enters here. masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset( masm->pc_offset()); __ bind(&post_instantiation_deopt_entry); // Restore new target. __ Pop(rdx); // Push the allocated receiver to the stack. __ Push(rax); // We need two copies because we may have to return the original one // and the calling conventions dictate that the called function pops the // receiver. The second copy is pushed after the arguments, we saved in r8 // since rax needs to store the number of arguments before // InvokingFunction. __ movq(r8, rax); // Set up pointer to first argument (skip receiver). __ leaq(rbx, Operand(rbp, StandardFrameConstants::kFixedFrameSizeAboveFp + kSystemPointerSize)); // Restore constructor function and argument count. __ movq(rdi, Operand(rbp, ConstructFrameConstants::kConstructorOffset)); __ SmiUntagUnsigned(rax, Operand(rbp, ConstructFrameConstants::kLengthOffset)); // Check if we have enough stack space to push all arguments. // Argument count in rax. Label stack_overflow; __ StackOverflowCheck(rax, &stack_overflow); // TODO(victorgomes): When the arguments adaptor is completely removed, we // should get the formal parameter count and copy the arguments in its // correct position (including any undefined), instead of delaying this to // InvokeFunction. // Copy arguments to the expression stack. // rbx: Pointer to start of arguments. // rax: Number of arguments. Generate_PushArguments(masm, rbx, rax, rcx, ArgumentsElementType::kRaw); // Push implicit receiver. __ Push(r8); // Call the function. __ InvokeFunction(rdi, rdx, rax, InvokeType::kCall); // If the result is an object (in the ECMA sense), we should get rid // of the receiver and use the result; see ECMA-262 section 13.2.2-7 // on page 74. Label use_receiver, do_throw, leave_and_return, check_result; // If the result is undefined, we'll use the implicit receiver. Otherwise we // do a smi check and fall through to check if the return value is a valid // receiver. __ JumpIfNotRoot(rax, RootIndex::kUndefinedValue, &check_result, Label::kNear); // Throw away the result of the constructor invocation and use the // on-stack receiver as the result. __ bind(&use_receiver); __ movq(rax, Operand(rsp, 0 * kSystemPointerSize)); __ JumpIfRoot(rax, RootIndex::kTheHoleValue, &do_throw, Label::kNear); __ bind(&leave_and_return); // Restore the arguments count. __ movq(rbx, Operand(rbp, ConstructFrameConstants::kLengthOffset)); __ LeaveFrame(StackFrame::CONSTRUCT); // Remove caller arguments from the stack and return. __ DropArguments(rbx, rcx, MacroAssembler::kCountIsSmi, MacroAssembler::kCountIncludesReceiver); __ ret(0); // If the result is a smi, it is *not* an object in the ECMA sense. __ bind(&check_result); __ JumpIfSmi(rax, &use_receiver, Label::kNear); // Check if the type of the result is not an object in the ECMA sense. __ JumpIfJSAnyIsNotPrimitive(rax, rcx, &leave_and_return, Label::kNear); __ jmp(&use_receiver); __ bind(&do_throw); // Restore context from the frame. __ movq(rsi, Operand(rbp, ConstructFrameConstants::kContextOffset)); __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject); // We don't return here. __ int3(); __ bind(&stack_overflow); // Restore the context from the frame. __ movq(rsi, Operand(rbp, ConstructFrameConstants::kContextOffset)); __ CallRuntime(Runtime::kThrowStackOverflow); // This should be unreachable. __ int3(); } void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) { Generate_JSBuiltinsConstructStubHelper(masm); } void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(rdi); __ CallRuntime(Runtime::kThrowConstructedNonConstructable); } namespace { // Called with the native C calling convention. The corresponding function // signature is either: // using JSEntryFunction = GeneratedCode<Address( // Address root_register_value, Address new_target, Address target, // Address receiver, intptr_t argc, Address** argv)>; // or // using JSEntryFunction = GeneratedCode<Address( // Address root_register_value, MicrotaskQueue* microtask_queue)>; void Generate_JSEntryVariant(MacroAssembler* masm, StackFrame::Type type, Builtin entry_trampoline) { Label invoke, handler_entry, exit; Label not_outermost_js, not_outermost_js_2; { NoRootArrayScope uninitialized_root_register(masm); // Set up the frame. // // Note: at this point we are entering V8-generated code from C++ and thus // rbp can be an arbitrary value (-fomit-frame-pointer). Since V8 still // needs to know where the next interesting frame is for the purpose of // stack walks, we instead push the stored EXIT frame fp // (IsolateAddressId::kCEntryFPAddress) below to a dedicated slot. __ pushq(rbp); __ movq(rbp, rsp); // Push the stack frame type. __ Push(Immediate(StackFrame::TypeToMarker(type))); // Reserve a slot for the context. It is filled after the root register has // been set up. __ AllocateStackSpace(kSystemPointerSize); // Save callee-saved registers (X64/X32/Win64 calling conventions). __ pushq(r12); __ pushq(r13); __ pushq(r14); __ pushq(r15); #ifdef V8_TARGET_OS_WIN __ pushq(rdi); // Only callee save in Win64 ABI, argument in AMD64 ABI. __ pushq(rsi); // Only callee save in Win64 ABI, argument in AMD64 ABI. #endif __ pushq(rbx); #ifdef V8_TARGET_OS_WIN // On Win64 XMM6-XMM15 are callee-save. __ AllocateStackSpace(EntryFrameConstants::kXMMRegistersBlockSize); __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 0), xmm6); __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 1), xmm7); __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 2), xmm8); __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 3), xmm9); __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 4), xmm10); __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 5), xmm11); __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 6), xmm12); __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 7), xmm13); __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 8), xmm14); __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 9), xmm15); static_assert(EntryFrameConstants::kCalleeSaveXMMRegisters == 10); static_assert(EntryFrameConstants::kXMMRegistersBlockSize == EntryFrameConstants::kXMMRegisterSize * EntryFrameConstants::kCalleeSaveXMMRegisters); #endif // Initialize the root register. // C calling convention. The first argument is passed in arg_reg_1. __ movq(kRootRegister, arg_reg_1); #ifdef V8_COMPRESS_POINTERS // Initialize the pointer cage base register. __ LoadRootRelative(kPtrComprCageBaseRegister, IsolateData::cage_base_offset()); #endif } // Save copies of the top frame descriptor on the stack. ExternalReference c_entry_fp = ExternalReference::Create( IsolateAddressId::kCEntryFPAddress, masm->isolate()); { // Keep this static_assert to preserve a link between the offset constant // and the code location it refers to. #ifdef V8_TARGET_OS_WIN static_assert(EntryFrameConstants::kNextExitFrameFPOffset == -3 * kSystemPointerSize + -7 * kSystemPointerSize - EntryFrameConstants::kXMMRegistersBlockSize); #else static_assert(EntryFrameConstants::kNextExitFrameFPOffset == -3 * kSystemPointerSize + -5 * kSystemPointerSize); #endif // V8_TARGET_OS_WIN Operand c_entry_fp_operand = masm->ExternalReferenceAsOperand(c_entry_fp); __ Push(c_entry_fp_operand); // Clear c_entry_fp, now we've pushed its previous value to the stack. // If the c_entry_fp is not already zero and we don't clear it, the // StackFrameIteratorForProfiler will assume we are executing C++ and miss // the JS frames on top. __ Move(c_entry_fp_operand, 0); } // Store the context address in the previously-reserved slot. ExternalReference context_address = ExternalReference::Create( IsolateAddressId::kContextAddress, masm->isolate()); __ Load(kScratchRegister, context_address); static constexpr int kOffsetToContextSlot = -2 * kSystemPointerSize; __ movq(Operand(rbp, kOffsetToContextSlot), kScratchRegister); // If this is the outermost JS call, set js_entry_sp value. ExternalReference js_entry_sp = ExternalReference::Create( IsolateAddressId::kJSEntrySPAddress, masm->isolate()); __ Load(rax, js_entry_sp); __ testq(rax, rax); __ j(not_zero, ¬_outermost_js); __ Push(Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME)); __ movq(rax, rbp); __ Store(js_entry_sp, rax); Label cont; __ jmp(&cont); __ bind(¬_outermost_js); __ Push(Immediate(StackFrame::INNER_JSENTRY_FRAME)); __ bind(&cont); // Jump to a faked try block that does the invoke, with a faked catch // block that sets the pending exception. __ jmp(&invoke); __ bind(&handler_entry); // Store the current pc as the handler offset. It's used later to create the // handler table. masm->isolate()->builtins()->SetJSEntryHandlerOffset(handler_entry.pos()); // Caught exception: Store result (exception) in the pending exception // field in the JSEnv and return a failure sentinel. ExternalReference pending_exception = ExternalReference::Create( IsolateAddressId::kPendingExceptionAddress, masm->isolate()); __ Store(pending_exception, rax); __ LoadRoot(rax, RootIndex::kException); __ jmp(&exit); // Invoke: Link this frame into the handler chain. __ bind(&invoke); __ PushStackHandler(); // Invoke the function by calling through JS entry trampoline builtin and // pop the faked function when we return. Handle<Code> trampoline_code = masm->isolate()->builtins()->code_handle(entry_trampoline); __ Call(trampoline_code, RelocInfo::CODE_TARGET); // Unlink this frame from the handler chain. __ PopStackHandler(); __ bind(&exit); // Check if the current stack frame is marked as the outermost JS frame. __ Pop(rbx); __ cmpq(rbx, Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME)); __ j(not_equal, ¬_outermost_js_2); __ Move(kScratchRegister, js_entry_sp); __ movq(Operand(kScratchRegister, 0), Immediate(0)); __ bind(¬_outermost_js_2); // Restore the top frame descriptor from the stack. { Operand c_entry_fp_operand = masm->ExternalReferenceAsOperand(c_entry_fp); __ Pop(c_entry_fp_operand); } // Restore callee-saved registers (X64 conventions). #ifdef V8_TARGET_OS_WIN // On Win64 XMM6-XMM15 are callee-save __ movdqu(xmm6, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 0)); __ movdqu(xmm7, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 1)); __ movdqu(xmm8, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 2)); __ movdqu(xmm9, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 3)); __ movdqu(xmm10, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 4)); __ movdqu(xmm11, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 5)); __ movdqu(xmm12, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 6)); __ movdqu(xmm13, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 7)); __ movdqu(xmm14, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 8)); __ movdqu(xmm15, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 9)); __ addq(rsp, Immediate(EntryFrameConstants::kXMMRegistersBlockSize)); #endif __ popq(rbx); #ifdef V8_TARGET_OS_WIN // Callee save on in Win64 ABI, arguments/volatile in AMD64 ABI. __ popq(rsi); __ popq(rdi); #endif __ popq(r15); __ popq(r14); __ popq(r13); __ popq(r12); __ addq(rsp, Immediate(2 * kSystemPointerSize)); // remove markers // Restore frame pointer and return. __ popq(rbp); __ ret(0); } } // namespace void Builtins::Generate_JSEntry(MacroAssembler* masm) { Generate_JSEntryVariant(masm, StackFrame::ENTRY, Builtin::kJSEntryTrampoline); } void Builtins::Generate_JSConstructEntry(MacroAssembler* masm) { Generate_JSEntryVariant(masm, StackFrame::CONSTRUCT_ENTRY, Builtin::kJSConstructEntryTrampoline); } void Builtins::Generate_JSRunMicrotasksEntry(MacroAssembler* masm) { Generate_JSEntryVariant(masm, StackFrame::ENTRY, Builtin::kRunMicrotasksTrampoline); } static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, bool is_construct) { // Expects six C++ function parameters. // - Address root_register_value // - Address new_target (tagged Object pointer) // - Address function (tagged JSFunction pointer) // - Address receiver (tagged Object pointer) // - intptr_t argc // - Address** argv (pointer to array of tagged Object pointers) // (see Handle::Invoke in execution.cc). // Open a C++ scope for the FrameScope. { // Platform specific argument handling. After this, the stack contains // an internal frame and the pushed function and receiver, and // register rax and rbx holds the argument count and argument array, // while rdi holds the function pointer, rsi the context, and rdx the // new.target. // MSVC parameters in: // rcx : root_register_value // rdx : new_target // r8 : function // r9 : receiver // [rsp+0x20] : argc // [rsp+0x28] : argv // // GCC parameters in: // rdi : root_register_value // rsi : new_target // rdx : function // rcx : receiver // r8 : argc // r9 : argv __ movq(rdi, arg_reg_3); __ Move(rdx, arg_reg_2); // rdi : function // rdx : new_target // Clear the context before we push it when entering the internal frame. __ Move(rsi, 0); // Enter an internal frame. FrameScope scope(masm, StackFrame::INTERNAL); // Setup the context (we need to use the caller context from the isolate). ExternalReference context_address = ExternalReference::Create( IsolateAddressId::kContextAddress, masm->isolate()); __ movq(rsi, masm->ExternalReferenceAsOperand(context_address)); // Push the function onto the stack. __ Push(rdi); #ifdef V8_TARGET_OS_WIN // Load the previous frame pointer to access C arguments on stack __ movq(kScratchRegister, Operand(rbp, 0)); // Load the number of arguments and setup pointer to the arguments. __ movq(rax, Operand(kScratchRegister, EntryFrameConstants::kArgcOffset)); __ movq(rbx, Operand(kScratchRegister, EntryFrameConstants::kArgvOffset)); #else // V8_TARGET_OS_WIN // Load the number of arguments and setup pointer to the arguments. __ movq(rax, r8); __ movq(rbx, r9); __ movq(r9, arg_reg_4); // Temporarily saving the receiver. #endif // V8_TARGET_OS_WIN // Current stack contents: // [rsp + kSystemPointerSize] : Internal frame // [rsp] : function // Current register contents: // rax : argc // rbx : argv // rsi : context // rdi : function // rdx : new.target // r9 : receiver // Check if we have enough stack space to push all arguments. // Argument count in rax. Label enough_stack_space, stack_overflow; __ StackOverflowCheck(rax, &stack_overflow, Label::kNear); __ jmp(&enough_stack_space, Label::kNear); __ bind(&stack_overflow); __ CallRuntime(Runtime::kThrowStackOverflow); // This should be unreachable. __ int3(); __ bind(&enough_stack_space); // Copy arguments to the stack. // Register rbx points to array of pointers to handle locations. // Push the values of these handles. // rbx: Pointer to start of arguments. // rax: Number of arguments. Generate_PushArguments(masm, rbx, rax, rcx, ArgumentsElementType::kHandle); // Push the receiver. __ Push(r9); // Invoke the builtin code. Handle<Code> builtin = is_construct ? BUILTIN_CODE(masm->isolate(), Construct) : masm->isolate()->builtins()->Call(); __ Call(builtin, RelocInfo::CODE_TARGET); // Exit the internal frame. Notice that this also removes the empty // context and the function left on the stack by the code // invocation. } __ ret(0); } void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, false); } void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, true); } void Builtins::Generate_RunMicrotasksTrampoline(MacroAssembler* masm) { // arg_reg_2: microtask_queue __ movq(RunMicrotasksDescriptor::MicrotaskQueueRegister(), arg_reg_2); __ Jump(BUILTIN_CODE(masm->isolate(), RunMicrotasks), RelocInfo::CODE_TARGET); } static void AssertCodeIsBaselineAllowClobber(MacroAssembler* masm, Register code, Register scratch) { // Verify that the code kind is baseline code via the CodeKind. __ movl(scratch, FieldOperand(code, Code::kFlagsOffset)); __ DecodeField<Code::KindField>(scratch); __ cmpl(scratch, Immediate(static_cast<int>(CodeKind::BASELINE))); __ Assert(equal, AbortReason::kExpectedBaselineData); } static void AssertCodeIsBaseline(MacroAssembler* masm, Register code, Register scratch) { DCHECK(!AreAliased(code, scratch)); return AssertCodeIsBaselineAllowClobber(masm, code, scratch); } static void GetSharedFunctionInfoBytecodeOrBaseline(MacroAssembler* masm, Register sfi_data, Register scratch1, Label* is_baseline) { ASM_CODE_COMMENT(masm); Label done; __ LoadMap(scratch1, sfi_data); #ifndef V8_JITLESS __ CmpInstanceType(scratch1, CODE_TYPE); if (v8_flags.debug_code) { Label not_baseline; __ j(not_equal, ¬_baseline); AssertCodeIsBaseline(masm, sfi_data, scratch1); __ j(equal, is_baseline); __ bind(¬_baseline); } else { __ j(equal, is_baseline); } #endif // !V8_JITLESS __ CmpInstanceType(scratch1, INTERPRETER_DATA_TYPE); __ j(not_equal, &done, Label::kNear); __ LoadTaggedField( sfi_data, FieldOperand(sfi_data, InterpreterData::kBytecodeArrayOffset)); __ bind(&done); } // static void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : the value to pass to the generator // -- rdx : the JSGeneratorObject to resume // -- rsp[0] : return address // ----------------------------------- // Store input value into generator object. __ StoreTaggedField( FieldOperand(rdx, JSGeneratorObject::kInputOrDebugPosOffset), rax); Register object = WriteBarrierDescriptor::ObjectRegister(); __ Move(object, rdx); __ RecordWriteField(object, JSGeneratorObject::kInputOrDebugPosOffset, rax, WriteBarrierDescriptor::SlotAddressRegister(), SaveFPRegsMode::kIgnore); // Check that rdx is still valid, RecordWrite might have clobbered it. __ AssertGeneratorObject(rdx); Register decompr_scratch1 = COMPRESS_POINTERS_BOOL ? r8 : no_reg; // Load suspended function and context. __ LoadTaggedField(rdi, FieldOperand(rdx, JSGeneratorObject::kFunctionOffset)); __ LoadTaggedField(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); // Flood function if we are stepping. Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator; Label stepping_prepared; ExternalReference debug_hook = ExternalReference::debug_hook_on_function_call_address(masm->isolate()); Operand debug_hook_operand = masm->ExternalReferenceAsOperand(debug_hook); __ cmpb(debug_hook_operand, Immediate(0)); __ j(not_equal, &prepare_step_in_if_stepping); // Flood function if we need to continue stepping in the suspended generator. ExternalReference debug_suspended_generator = ExternalReference::debug_suspended_generator_address(masm->isolate()); Operand debug_suspended_generator_operand = masm->ExternalReferenceAsOperand(debug_suspended_generator); __ cmpq(rdx, debug_suspended_generator_operand); __ j(equal, &prepare_step_in_suspended_generator); __ bind(&stepping_prepared); // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack limit". Label stack_overflow; __ cmpq(rsp, __ StackLimitAsOperand(StackLimitKind::kRealStackLimit)); __ j(below, &stack_overflow); // Pop return address. __ PopReturnAddressTo(rax); // ----------- S t a t e ------------- // -- rax : return address // -- rdx : the JSGeneratorObject to resume // -- rdi : generator function // -- rsi : generator context // ----------------------------------- // Copy the function arguments from the generator object's register file. __ LoadTaggedField(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ movzxwq( rcx, FieldOperand(rcx, SharedFunctionInfo::kFormalParameterCountOffset)); __ decq(rcx); // Exclude receiver. __ LoadTaggedField( rbx, FieldOperand(rdx, JSGeneratorObject::kParametersAndRegistersOffset)); { Label done_loop, loop; __ bind(&loop); __ decq(rcx); __ j(less, &done_loop, Label::kNear); __ PushTaggedField( FieldOperand(rbx, rcx, times_tagged_size, FixedArray::kHeaderSize), decompr_scratch1); __ jmp(&loop); __ bind(&done_loop); // Push the receiver. __ PushTaggedField(FieldOperand(rdx, JSGeneratorObject::kReceiverOffset), decompr_scratch1); } // Underlying function needs to have bytecode available. if (v8_flags.debug_code) { Label is_baseline, ok; __ LoadTaggedField( rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ LoadTaggedField( rcx, FieldOperand(rcx, SharedFunctionInfo::kFunctionDataOffset)); GetSharedFunctionInfoBytecodeOrBaseline(masm, rcx, kScratchRegister, &is_baseline); __ IsObjectType(rcx, BYTECODE_ARRAY_TYPE, rcx); __ Assert(equal, AbortReason::kMissingBytecodeArray); __ jmp(&ok); __ bind(&is_baseline); __ IsObjectType(rcx, CODE_TYPE, rcx); __ Assert(equal, AbortReason::kMissingBytecodeArray); __ bind(&ok); } // Resume (Ignition/TurboFan) generator object. { __ PushReturnAddressFrom(rax); __ LoadTaggedField( rax, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ movzxwq(rax, FieldOperand( rax, SharedFunctionInfo::kFormalParameterCountOffset)); // We abuse new.target both to indicate that this is a resume call and to // pass in the generator object. In ordinary calls, new.target is always // undefined because generator functions are non-constructable. static_assert(kJavaScriptCallCodeStartRegister == rcx, "ABI mismatch"); __ JumpJSFunction(rdi); } __ bind(&prepare_step_in_if_stepping); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(rdx); __ Push(rdi); // Push hole as receiver since we do not use it for stepping. __ PushRoot(RootIndex::kTheHoleValue); __ CallRuntime(Runtime::kDebugOnFunctionCall); __ Pop(rdx); __ LoadTaggedField(rdi, FieldOperand(rdx, JSGeneratorObject::kFunctionOffset)); } __ jmp(&stepping_prepared); __ bind(&prepare_step_in_suspended_generator); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(rdx); __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator); __ Pop(rdx); __ LoadTaggedField(rdi, FieldOperand(rdx, JSGeneratorObject::kFunctionOffset)); } __ jmp(&stepping_prepared); __ bind(&stack_overflow); { FrameScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowStackOverflow); __ int3(); // This should be unreachable. } } static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch1, Register scratch2) { ASM_CODE_COMMENT(masm); Register params_size = scratch1; // Get the size of the formal parameters (in bytes). __ movq(params_size, Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ movl(params_size, FieldOperand(params_size, BytecodeArray::kParameterSizeOffset)); Register actual_params_size = scratch2; // Compute the size of the actual parameters (in bytes). __ movq(actual_params_size, Operand(rbp, StandardFrameConstants::kArgCOffset)); __ leaq(actual_params_size, Operand(actual_params_size, times_system_pointer_size, 0)); // If actual is bigger than formal, then we should use it to free up the stack // arguments. Label corrected_args_count; __ cmpq(params_size, actual_params_size); __ j(greater_equal, &corrected_args_count, Label::kNear); __ movq(params_size, actual_params_size); __ bind(&corrected_args_count); // Leave the frame (also dropping the register file). __ leave(); // Drop receiver + arguments. __ DropArguments(params_size, scratch2, MacroAssembler::kCountIsBytes, MacroAssembler::kCountIncludesReceiver); } // Tail-call |function_id| if |actual_state| == |expected_state| // Advance the current bytecode offset. This simulates what all bytecode // handlers do upon completion of the underlying operation. Will bail out to a // label if the bytecode (without prefix) is a return bytecode. Will not advance // the bytecode offset if the current bytecode is a JumpLoop, instead just // re-executing the JumpLoop to jump to the correct bytecode. static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm, Register bytecode_array, Register bytecode_offset, Register bytecode, Register scratch1, Register scratch2, Label* if_return) { ASM_CODE_COMMENT(masm); Register bytecode_size_table = scratch1; // The bytecode offset value will be increased by one in wide and extra wide // cases. In the case of having a wide or extra wide JumpLoop bytecode, we // will restore the original bytecode. In order to simplify the code, we have // a backup of it. Register original_bytecode_offset = scratch2; DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode, bytecode_size_table, original_bytecode_offset)); __ movq(original_bytecode_offset, bytecode_offset); __ Move(bytecode_size_table, ExternalReference::bytecode_size_table_address()); // Check if the bytecode is a Wide or ExtraWide prefix bytecode. Label process_bytecode, extra_wide; static_assert(0 == static_cast<int>(interpreter::Bytecode::kWide)); static_assert(1 == static_cast<int>(interpreter::Bytecode::kExtraWide)); static_assert(2 == static_cast<int>(interpreter::Bytecode::kDebugBreakWide)); static_assert(3 == static_cast<int>(interpreter::Bytecode::kDebugBreakExtraWide)); __ cmpb(bytecode, Immediate(0x3)); __ j(above, &process_bytecode, Label::kNear); // The code to load the next bytecode is common to both wide and extra wide. // We can hoist them up here. incl has to happen before testb since it // modifies the ZF flag. __ incl(bytecode_offset); __ testb(bytecode, Immediate(0x1)); __ movzxbq(bytecode, Operand(bytecode_array, bytecode_offset, times_1, 0)); __ j(not_equal, &extra_wide, Label::kNear); // Update table to the wide scaled table. __ addq(bytecode_size_table, Immediate(kByteSize * interpreter::Bytecodes::kBytecodeCount)); __ jmp(&process_bytecode, Label::kNear); __ bind(&extra_wide); // Update table to the extra wide scaled table. __ addq(bytecode_size_table, Immediate(2 * kByteSize * interpreter::Bytecodes::kBytecodeCount)); __ bind(&process_bytecode); // Bailout to the return label if this is a return bytecode. #define JUMP_IF_EQUAL(NAME) \ __ cmpb(bytecode, \ Immediate(static_cast<int>(interpreter::Bytecode::k##NAME))); \ __ j(equal, if_return, Label::kFar); RETURN_BYTECODE_LIST(JUMP_IF_EQUAL) #undef JUMP_IF_EQUAL // If this is a JumpLoop, re-execute it to perform the jump to the beginning // of the loop. Label end, not_jump_loop; __ cmpb(bytecode, Immediate(static_cast<int>(interpreter::Bytecode::kJumpLoop))); __ j(not_equal, ¬_jump_loop, Label::kNear); // We need to restore the original bytecode_offset since we might have // increased it to skip the wide / extra-wide prefix bytecode. __ movq(bytecode_offset, original_bytecode_offset); __ jmp(&end, Label::kNear); __ bind(¬_jump_loop); // Otherwise, load the size of the current bytecode and advance the offset. __ movzxbl(kScratchRegister, Operand(bytecode_size_table, bytecode, times_1, 0)); __ addl(bytecode_offset, kScratchRegister); __ bind(&end); } namespace { void ResetSharedFunctionInfoAge(MacroAssembler* masm, Register sfi) { __ movw(FieldOperand(sfi, SharedFunctionInfo::kAgeOffset), Immediate(0)); } void ResetJSFunctionAge(MacroAssembler* masm, Register js_function) { const Register shared_function_info(kScratchRegister); __ LoadTaggedField( shared_function_info, FieldOperand(js_function, JSFunction::kSharedFunctionInfoOffset)); ResetSharedFunctionInfoAge(masm, shared_function_info); } void ResetFeedbackVectorOsrUrgency(MacroAssembler* masm, Register feedback_vector, Register scratch) { __ movb(scratch, FieldOperand(feedback_vector, FeedbackVector::kOsrStateOffset)); __ andb(scratch, Immediate(~FeedbackVector::OsrUrgencyBits::kMask)); __ movb(FieldOperand(feedback_vector, FeedbackVector::kOsrStateOffset), scratch); } } // namespace // Generate code for entering a JS function with the interpreter. // On entry to the function the receiver and arguments have been pushed on the // stack left to right. // // The live registers are: // o rax: actual argument count // o rdi: the JS function object being called // o rdx: the incoming new target or generator object // o rsi: our context // o rbp: the caller's frame pointer // o rsp: stack pointer (pointing to return address) // // The function builds an interpreter frame. See InterpreterFrameConstants in // frame-constants.h for its layout. void Builtins::Generate_InterpreterEntryTrampoline( MacroAssembler* masm, InterpreterEntryTrampolineMode mode) { Register closure = rdi; // Get the bytecode array from the function object and load it into // kInterpreterBytecodeArrayRegister. const Register shared_function_info(kScratchRegister); __ LoadTaggedField( shared_function_info, FieldOperand(closure, JSFunction::kSharedFunctionInfoOffset)); ResetSharedFunctionInfoAge(masm, shared_function_info); __ LoadTaggedField(kInterpreterBytecodeArrayRegister, FieldOperand(shared_function_info, SharedFunctionInfo::kFunctionDataOffset)); Label is_baseline; GetSharedFunctionInfoBytecodeOrBaseline( masm, kInterpreterBytecodeArrayRegister, kScratchRegister, &is_baseline); // The bytecode array could have been flushed from the shared function info, // if so, call into CompileLazy. Label compile_lazy; __ IsObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE, kScratchRegister); __ j(not_equal, &compile_lazy); Label push_stack_frame; Register feedback_vector = rbx; __ LoadFeedbackVector(feedback_vector, closure, &push_stack_frame, Label::kNear); #ifndef V8_JITLESS // If feedback vector is valid, check for optimized code and update invocation // count. Label flags_need_processing; __ CheckFeedbackVectorFlagsAndJumpIfNeedsProcessing( feedback_vector, CodeKind::INTERPRETED_FUNCTION, &flags_need_processing); ResetFeedbackVectorOsrUrgency(masm, feedback_vector, kScratchRegister); // Increment invocation count for the function. __ incl( FieldOperand(feedback_vector, FeedbackVector::kInvocationCountOffset)); // Open a frame scope to indicate that there is a frame on the stack. The // MANUAL indicates that the scope shouldn't actually generate code to set up // the frame (that is done below). #else // Note: By omitting the above code in jitless mode we also disable: // - kFlagsLogNextExecution: only used for logging/profiling; and // - kInvocationCountOffset: only used for tiering heuristics and code // coverage. #endif // !V8_JITLESS __ bind(&push_stack_frame); FrameScope frame_scope(masm, StackFrame::MANUAL); __ pushq(rbp); // Caller's frame pointer. __ movq(rbp, rsp); __ Push(kContextRegister); // Callee's context. __ Push(kJavaScriptCallTargetRegister); // Callee's JS function. __ Push(kJavaScriptCallArgCountRegister); // Actual argument count. // Load initial bytecode offset. __ Move(kInterpreterBytecodeOffsetRegister, BytecodeArray::kHeaderSize - kHeapObjectTag); // Push bytecode array and Smi tagged bytecode offset. __ Push(kInterpreterBytecodeArrayRegister); __ SmiTag(rcx, kInterpreterBytecodeOffsetRegister); __ Push(rcx); // Push feedback vector. __ Push(feedback_vector); // Allocate the local and temporary register file on the stack. Label stack_overflow; { // Load frame size from the BytecodeArray object. __ movl(rcx, FieldOperand(kInterpreterBytecodeArrayRegister, BytecodeArray::kFrameSizeOffset)); // Do a stack check to ensure we don't go over the limit. __ movq(rax, rsp); __ subq(rax, rcx); __ cmpq(rax, __ StackLimitAsOperand(StackLimitKind::kRealStackLimit)); __ j(below, &stack_overflow); // If ok, push undefined as the initial value for all register file entries. Label loop_header; Label loop_check; __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue); __ jmp(&loop_check, Label::kNear); __ bind(&loop_header); // TODO(rmcilroy): Consider doing more than one push per loop iteration. __ Push(kInterpreterAccumulatorRegister); // Continue loop if not done. __ bind(&loop_check); __ subq(rcx, Immediate(kSystemPointerSize)); __ j(greater_equal, &loop_header, Label::kNear); } // If the bytecode array has a valid incoming new target or generator object // register, initialize it with incoming value which was passed in rdx. Label no_incoming_new_target_or_generator_register; __ movsxlq( rcx, FieldOperand(kInterpreterBytecodeArrayRegister, BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset)); __ testl(rcx, rcx); __ j(zero, &no_incoming_new_target_or_generator_register, Label::kNear); __ movq(Operand(rbp, rcx, times_system_pointer_size, 0), rdx); __ bind(&no_incoming_new_target_or_generator_register); // Perform interrupt stack check. // TODO(solanes): Merge with the real stack limit check above. Label stack_check_interrupt, after_stack_check_interrupt; __ cmpq(rsp, __ StackLimitAsOperand(StackLimitKind::kInterruptStackLimit)); __ j(below, &stack_check_interrupt); __ bind(&after_stack_check_interrupt); // The accumulator is already loaded with undefined. // Load the dispatch table into a register and dispatch to the bytecode // handler at the current bytecode offset. Label do_dispatch; __ bind(&do_dispatch); __ Move( kInterpreterDispatchTableRegister, ExternalReference::interpreter_dispatch_table_address(masm->isolate())); __ movzxbq(kScratchRegister, Operand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, times_1, 0)); __ movq(kJavaScriptCallCodeStartRegister, Operand(kInterpreterDispatchTableRegister, kScratchRegister, times_system_pointer_size, 0)); __ call(kJavaScriptCallCodeStartRegister); __ RecordComment("--- InterpreterEntryReturnPC point ---"); if (mode == InterpreterEntryTrampolineMode::kDefault) { masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset( masm->pc_offset()); } else { DCHECK_EQ(mode, InterpreterEntryTrampolineMode::kForProfiling); // Both versions must be the same up to this point otherwise the builtins // will not be interchangable. CHECK_EQ( masm->isolate()->heap()->interpreter_entry_return_pc_offset().value(), masm->pc_offset()); } // Any returns to the entry trampoline are either due to the return bytecode // or the interpreter tail calling a builtin and then a dispatch. // Get bytecode array and bytecode offset from the stack frame. __ movq(kInterpreterBytecodeArrayRegister, Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ SmiUntagUnsigned( kInterpreterBytecodeOffsetRegister, Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); // Either return, or advance to the next bytecode and dispatch. Label do_return; __ movzxbq(rbx, Operand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, times_1, 0)); AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, rbx, rcx, r8, &do_return); __ jmp(&do_dispatch); __ bind(&do_return); // The return value is in rax. LeaveInterpreterFrame(masm, rbx, rcx); __ ret(0); __ bind(&stack_check_interrupt); // Modify the bytecode offset in the stack to be kFunctionEntryBytecodeOffset // for the call to the StackGuard. __ Move(Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp), Smi::FromInt(BytecodeArray::kHeaderSize - kHeapObjectTag + kFunctionEntryBytecodeOffset)); __ CallRuntime(Runtime::kStackGuard); // After the call, restore the bytecode array, bytecode offset and accumulator // registers again. Also, restore the bytecode offset in the stack to its // previous value. __ movq(kInterpreterBytecodeArrayRegister, Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ Move(kInterpreterBytecodeOffsetRegister, BytecodeArray::kHeaderSize - kHeapObjectTag); __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue); __ SmiTag(rcx, kInterpreterBytecodeArrayRegister); __ movq(Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp), rcx); __ jmp(&after_stack_check_interrupt); __ bind(&compile_lazy); __ GenerateTailCallToReturnedCode(Runtime::kCompileLazy); __ int3(); // Should not return. #ifndef V8_JITLESS __ bind(&flags_need_processing); __ OptimizeCodeOrTailCallOptimizedCodeSlot(feedback_vector, closure, JumpMode::kJump); __ bind(&is_baseline); { // Load the feedback vector from the closure. TaggedRegister feedback_cell(feedback_vector); __ LoadTaggedField(feedback_cell, FieldOperand(closure, JSFunction::kFeedbackCellOffset)); __ LoadTaggedField(feedback_vector, FieldOperand(feedback_cell, FeedbackCell::kValueOffset)); Label install_baseline_code; // Check if feedback vector is valid. If not, call prepare for baseline to // allocate it. __ IsObjectType(feedback_vector, FEEDBACK_VECTOR_TYPE, rcx); __ j(not_equal, &install_baseline_code); // Check the tiering state. __ CheckFeedbackVectorFlagsAndJumpIfNeedsProcessing( feedback_vector, CodeKind::BASELINE, &flags_need_processing); // Load the baseline code into the closure. __ Move(rcx, kInterpreterBytecodeArrayRegister); static_assert(kJavaScriptCallCodeStartRegister == rcx, "ABI mismatch"); __ ReplaceClosureCodeWithOptimizedCode( rcx, closure, kInterpreterBytecodeArrayRegister, WriteBarrierDescriptor::SlotAddressRegister()); __ JumpCodeObject(rcx); __ bind(&install_baseline_code); __ GenerateTailCallToReturnedCode(Runtime::kInstallBaselineCode); } #endif // !V8_JITLESS __ bind(&stack_overflow); __ CallRuntime(Runtime::kThrowStackOverflow); __ int3(); // Should not return. } static void GenerateInterpreterPushArgs(MacroAssembler* masm, Register num_args, Register start_address, Register scratch) { ASM_CODE_COMMENT(masm); // Find the argument with lowest address. __ movq(scratch, num_args); __ negq(scratch); __ leaq(start_address, Operand(start_address, scratch, times_system_pointer_size, kSystemPointerSize)); // Push the arguments. __ PushArray(start_address, num_args, scratch, MacroAssembler::PushArrayOrder::kReverse); } // static void Builtins::Generate_InterpreterPushArgsThenCallImpl( MacroAssembler* masm, ConvertReceiverMode receiver_mode, InterpreterPushArgsMode mode) { DCHECK(mode != InterpreterPushArgsMode::kArrayFunction); // ----------- S t a t e ------------- // -- rax : the number of arguments // -- rbx : the address of the first argument to be pushed. Subsequent // arguments should be consecutive above this, in the same order as // they are to be pushed onto the stack. // -- rdi : the target to call (can be any Object). // ----------------------------------- Label stack_overflow; if (mode == InterpreterPushArgsMode::kWithFinalSpread) { // The spread argument should not be pushed. __ decl(rax); } __ movl(rcx, rax); if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) { __ decl(rcx); // Exclude receiver. } // Add a stack check before pushing arguments. __ StackOverflowCheck(rcx, &stack_overflow); // Pop return address to allow tail-call after pushing arguments. __ PopReturnAddressTo(kScratchRegister); // rbx and rdx will be modified. GenerateInterpreterPushArgs(masm, rcx, rbx, rdx); // Push "undefined" as the receiver arg if we need to. if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) { __ PushRoot(RootIndex::kUndefinedValue); } if (mode == InterpreterPushArgsMode::kWithFinalSpread) { // Pass the spread in the register rbx. // rbx already points to the penultime argument, the spread // is below that. __ movq(rbx, Operand(rbx, -kSystemPointerSize)); } // Call the target. __ PushReturnAddressFrom(kScratchRegister); // Re-push return address. if (mode == InterpreterPushArgsMode::kWithFinalSpread) { __ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread), RelocInfo::CODE_TARGET); } else { __ Jump(masm->isolate()->builtins()->Call(receiver_mode), RelocInfo::CODE_TARGET); } // Throw stack overflow exception. __ bind(&stack_overflow); { __ TailCallRuntime(Runtime::kThrowStackOverflow); // This should be unreachable. __ int3(); } } // static void Builtins::Generate_InterpreterPushArgsThenConstructImpl( MacroAssembler* masm, InterpreterPushArgsMode mode) { // ----------- S t a t e ------------- // -- rax : the number of arguments // -- rdx : the new target (either the same as the constructor or // the JSFunction on which new was invoked initially) // -- rdi : the constructor to call (can be any Object) // -- rbx : the allocation site feedback if available, undefined otherwise // -- rcx : the address of the first argument to be pushed. Subsequent // arguments should be consecutive above this, in the same order as // they are to be pushed onto the stack. // ----------------------------------- Label stack_overflow; // Add a stack check before pushing arguments. __ StackOverflowCheck(rax, &stack_overflow); // Pop return address to allow tail-call after pushing arguments. __ PopReturnAddressTo(kScratchRegister); if (mode == InterpreterPushArgsMode::kWithFinalSpread) { // The spread argument should not be pushed. __ decl(rax); } // rcx and r8 will be modified. Register argc_without_receiver = r11; __ leaq(argc_without_receiver, Operand(rax, -kJSArgcReceiverSlots)); GenerateInterpreterPushArgs(masm, argc_without_receiver, rcx, r8); // Push slot for the receiver to be constructed. __ Push(Immediate(0)); if (mode == InterpreterPushArgsMode::kWithFinalSpread) { // Pass the spread in the register rbx. __ movq(rbx, Operand(rcx, -kSystemPointerSize)); // Push return address in preparation for the tail-call. __ PushReturnAddressFrom(kScratchRegister); } else { __ PushReturnAddressFrom(kScratchRegister); __ AssertUndefinedOrAllocationSite(rbx); } if (mode == InterpreterPushArgsMode::kArrayFunction) { // Tail call to the array construct stub (still in the caller // context at this point). __ AssertFunction(rdi); // Jump to the constructor function (rax, rbx, rdx passed on). __ Jump(BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl), RelocInfo::CODE_TARGET); } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) { // Call the constructor (rax, rdx, rdi passed on). __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread), RelocInfo::CODE_TARGET); } else { DCHECK_EQ(InterpreterPushArgsMode::kOther, mode); // Call the constructor (rax, rdx, rdi passed on). __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); } // Throw stack overflow exception. __ bind(&stack_overflow); { __ TailCallRuntime(Runtime::kThrowStackOverflow); // This should be unreachable. __ int3(); } } namespace { void NewImplicitReceiver(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : the number of arguments // -- rdx : the new target // -- rdi : the constructor to call (checked to be a JSFunction) // // Stack: // -- Implicit Receiver // -- [arguments without receiver] // -- Implicit Receiver // -- Context // -- FastConstructMarker // -- FramePointer // ----------------------------------- Register implicit_receiver = rcx; // Save live registers. __ SmiTag(rax); __ Push(rax); // Number of arguments __ Push(rdx); // NewTarget __ Push(rdi); // Target __ Call(BUILTIN_CODE(masm->isolate(), FastNewObject), RelocInfo::CODE_TARGET); // Save result. __ movq(implicit_receiver, rax); // Restore live registers. __ Pop(rdi); __ Pop(rdx); __ Pop(rax); __ SmiUntagUnsigned(rax); // Patch implicit receiver (in arguments) __ movq(Operand(rsp, 0 /* first argument */), implicit_receiver); // Patch second implicit (in construct frame) __ movq(Operand(rbp, FastConstructFrameConstants::kImplicitReceiverOffset), implicit_receiver); // Restore context. __ movq(rsi, Operand(rbp, FastConstructFrameConstants::kContextOffset)); } } // namespace // static void Builtins::Generate_InterpreterPushArgsThenFastConstructFunction( MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : the number of arguments // -- rdx : the new target // -- rdi : the constructor to call (checked to be a JSFunction) // -- rcx : the address of the first argument to be pushed. Subsequent // arguments should be consecutive above this, in the same order as // they are to be pushed onto the stack. // ----------------------------------- __ AssertFunction(rdi); // Check if target has a [[Construct]] internal method. Label non_constructor; __ LoadMap(kScratchRegister, rdi); __ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset), Immediate(Map::Bits1::IsConstructorBit::kMask)); __ j(zero, &non_constructor); // Add a stack check before pushing arguments. Label stack_overflow; __ StackOverflowCheck(rax, &stack_overflow); // Enter a construct frame. FrameScope scope(masm, StackFrame::MANUAL); __ EnterFrame(StackFrame::FAST_CONSTRUCT); __ Push(rsi); // Implicit receiver stored in the construct frame. __ PushRoot(RootIndex::kTheHoleValue); // Push arguments + implicit receiver. Register argc_without_receiver = r11; __ leaq(argc_without_receiver, Operand(rax, -kJSArgcReceiverSlots)); GenerateInterpreterPushArgs(masm, argc_without_receiver, rcx, r12); // Implicit receiver as part of the arguments (patched later if needed). __ PushRoot(RootIndex::kTheHoleValue); // Check if it is a builtin call. Label builtin_call; const TaggedRegister shared_function_info(kScratchRegister); __ LoadTaggedField(shared_function_info, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ testl(FieldOperand(shared_function_info, SharedFunctionInfo::kFlagsOffset), Immediate(SharedFunctionInfo::ConstructAsBuiltinBit::kMask)); __ j(not_zero, &builtin_call); // Check if we need to create an implicit receiver. Label not_create_implicit_receiver; __ movl(kScratchRegister, FieldOperand(shared_function_info, SharedFunctionInfo::kFlagsOffset)); __ DecodeField<SharedFunctionInfo::FunctionKindBits>(kScratchRegister); __ JumpIfIsInRange( kScratchRegister, static_cast<uint32_t>(FunctionKind::kDefaultDerivedConstructor), static_cast<uint32_t>(FunctionKind::kDerivedConstructor), ¬_create_implicit_receiver, Label::kNear); NewImplicitReceiver(masm); __ bind(¬_create_implicit_receiver); // Call the function. __ InvokeFunction(rdi, rdx, rax, InvokeType::kCall); // ----------- S t a t e ------------- // -- rax constructor result // // Stack: // -- Implicit Receiver // -- Context // -- FastConstructMarker // -- FramePointer // ----------------------------------- // Store offset of return address for deoptimizer. masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset( masm->pc_offset()); // If the result is an object (in the ECMA sense), we should get rid // of the receiver and use the result; see ECMA-262 section 13.2.2-7 // on page 74. Label use_receiver, do_throw, leave_and_return, check_result; // If the result is undefined, we'll use the implicit receiver. Otherwise we // do a smi check and fall through to check if the return value is a valid // receiver. __ JumpIfNotRoot(rax, RootIndex::kUndefinedValue, &check_result, Label::kNear); // Throw away the result of the constructor invocation and use the // on-stack receiver as the result. __ bind(&use_receiver); __ movq(rax, Operand(rbp, FastConstructFrameConstants::kImplicitReceiverOffset)); __ JumpIfRoot(rax, RootIndex::kTheHoleValue, &do_throw, Label::kNear); __ bind(&leave_and_return); __ LeaveFrame(StackFrame::FAST_CONSTRUCT); __ ret(0); // If the result is a smi, it is *not* an object in the ECMA sense. __ bind(&check_result); __ JumpIfSmi(rax, &use_receiver, Label::kNear); // Check if the type of the result is not an object in the ECMA sense. __ JumpIfJSAnyIsNotPrimitive(rax, rcx, &leave_and_return, Label::kNear); __ jmp(&use_receiver); __ bind(&do_throw); __ movq(rsi, Operand(rbp, ConstructFrameConstants::kContextOffset)); __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject); // We don't return here. __ int3(); __ bind(&builtin_call); // TODO(victorgomes): Check the possibility to turn this into a tailcall. __ InvokeFunction(rdi, rdx, rax, InvokeType::kCall); __ LeaveFrame(StackFrame::FAST_CONSTRUCT); __ ret(0); // Called Construct on an Object that doesn't have a [[Construct]] internal // method. __ bind(&non_constructor); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable), RelocInfo::CODE_TARGET); // Throw stack overflow exception. __ bind(&stack_overflow); __ TailCallRuntime(Runtime::kThrowStackOverflow); // This should be unreachable. __ int3(); } static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) { // Set the return address to the correct point in the interpreter entry // trampoline. Label builtin_trampoline, trampoline_loaded; Tagged<Smi> interpreter_entry_return_pc_offset( masm->isolate()->heap()->interpreter_entry_return_pc_offset()); DCHECK_NE(interpreter_entry_return_pc_offset, Smi::zero()); // If the SFI function_data is an InterpreterData, the function will have a // custom copy of the interpreter entry trampoline for profiling. If so, // get the custom trampoline, otherwise grab the entry address of the global // trampoline. __ movq(rbx, Operand(rbp, StandardFrameConstants::kFunctionOffset)); const TaggedRegister shared_function_info(rbx); __ LoadTaggedField(shared_function_info, FieldOperand(rbx, JSFunction::kSharedFunctionInfoOffset)); __ LoadTaggedField(rbx, FieldOperand(shared_function_info, SharedFunctionInfo::kFunctionDataOffset)); __ IsObjectType(rbx, INTERPRETER_DATA_TYPE, kScratchRegister); __ j(not_equal, &builtin_trampoline, Label::kNear); __ LoadTaggedField( rbx, FieldOperand(rbx, InterpreterData::kInterpreterTrampolineOffset)); __ LoadCodeInstructionStart(rbx, rbx); __ jmp(&trampoline_loaded, Label::kNear); __ bind(&builtin_trampoline); // TODO(jgruber): Replace this by a lookup in the builtin entry table. __ movq(rbx, __ ExternalReferenceAsOperand( ExternalReference:: address_of_interpreter_entry_trampoline_instruction_start( masm->isolate()), kScratchRegister)); __ bind(&trampoline_loaded); __ addq(rbx, Immediate(interpreter_entry_return_pc_offset.value())); __ Push(rbx); // Initialize dispatch table register. __ Move( kInterpreterDispatchTableRegister, ExternalReference::interpreter_dispatch_table_address(masm->isolate())); // Get the bytecode array pointer from the frame. __ movq(kInterpreterBytecodeArrayRegister, Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp)); if (v8_flags.debug_code) { // Check function data field is actually a BytecodeArray object. __ AssertNotSmi(kInterpreterBytecodeArrayRegister); __ IsObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE, rbx); __ Assert( equal, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); } // Get the target bytecode offset from the frame. __ SmiUntagUnsigned( kInterpreterBytecodeOffsetRegister, Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); if (v8_flags.debug_code) { Label okay; __ cmpq(kInterpreterBytecodeOffsetRegister, Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag)); __ j(greater_equal, &okay, Label::kNear); __ int3(); __ bind(&okay); } // Dispatch to the target bytecode. __ movzxbq(kScratchRegister, Operand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, times_1, 0)); __ movq(kJavaScriptCallCodeStartRegister, Operand(kInterpreterDispatchTableRegister, kScratchRegister, times_system_pointer_size, 0)); __ jmp(kJavaScriptCallCodeStartRegister); } void Builtins::Generate_InterpreterEnterAtNextBytecode(MacroAssembler* masm) { // Get bytecode array and bytecode offset from the stack frame. __ movq(kInterpreterBytecodeArrayRegister, Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ SmiUntagUnsigned( kInterpreterBytecodeOffsetRegister, Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); Label enter_bytecode, function_entry_bytecode; __ cmpq(kInterpreterBytecodeOffsetRegister, Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag + kFunctionEntryBytecodeOffset)); __ j(equal, &function_entry_bytecode); // Load the current bytecode. __ movzxbq(rbx, Operand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, times_1, 0)); // Advance to the next bytecode. Label if_return; AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, rbx, rcx, r8, &if_return); __ bind(&enter_bytecode); // Convert new bytecode offset to a Smi and save in the stackframe. __ SmiTag(kInterpreterBytecodeOffsetRegister); __ movq(Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp), kInterpreterBytecodeOffsetRegister); Generate_InterpreterEnterBytecode(masm); __ bind(&function_entry_bytecode); // If the code deoptimizes during the implicit function entry stack interrupt // check, it will have a bailout ID of kFunctionEntryBytecodeOffset, which is // not a valid bytecode offset. Detect this case and advance to the first // actual bytecode. __ Move(kInterpreterBytecodeOffsetRegister, BytecodeArray::kHeaderSize - kHeapObjectTag); __ jmp(&enter_bytecode); // We should never take the if_return path. __ bind(&if_return); __ Abort(AbortReason::kInvalidBytecodeAdvance); } void Builtins::Generate_InterpreterEnterAtBytecode(MacroAssembler* masm) { Generate_InterpreterEnterBytecode(masm); } // static void Builtins::Generate_BaselineOutOfLinePrologue(MacroAssembler* masm) { Register feedback_cell = r8; Register feedback_vector = r11; Register return_address = r15; #ifdef DEBUG for (auto reg : BaselineOutOfLinePrologueDescriptor::registers()) { DCHECK(!AreAliased(feedback_vector, return_address, reg)); } #endif auto descriptor = Builtins::CallInterfaceDescriptorFor(Builtin::kBaselineOutOfLinePrologue); Register closure = descriptor.GetRegisterParameter( BaselineOutOfLinePrologueDescriptor::kClosure); // Load the feedback cell and vector from the closure. __ LoadTaggedField(feedback_cell, FieldOperand(closure, JSFunction::kFeedbackCellOffset)); __ LoadTaggedField(feedback_vector, FieldOperand(feedback_cell, FeedbackCell::kValueOffset)); __ AssertFeedbackVector(feedback_vector); // Check the tiering state. Label flags_need_processing; __ CheckFeedbackVectorFlagsAndJumpIfNeedsProcessing( feedback_vector, CodeKind::BASELINE, &flags_need_processing); ResetFeedbackVectorOsrUrgency(masm, feedback_vector, kScratchRegister); // Increment invocation count for the function. __ incl( FieldOperand(feedback_vector, FeedbackVector::kInvocationCountOffset)); // Save the return address, so that we can push it to the end of the newly // set-up frame once we're done setting it up. __ PopReturnAddressTo(return_address); FrameScope frame_scope(masm, StackFrame::MANUAL); { ASM_CODE_COMMENT_STRING(masm, "Frame Setup"); __ EnterFrame(StackFrame::BASELINE); __ Push(descriptor.GetRegisterParameter( BaselineOutOfLinePrologueDescriptor::kCalleeContext)); // Callee's // context. Register callee_js_function = descriptor.GetRegisterParameter( BaselineOutOfLinePrologueDescriptor::kClosure); DCHECK_EQ(callee_js_function, kJavaScriptCallTargetRegister); DCHECK_EQ(callee_js_function, kJSFunctionRegister); ResetJSFunctionAge(masm, callee_js_function); __ Push(callee_js_function); // Callee's JS function. __ Push(descriptor.GetRegisterParameter( BaselineOutOfLinePrologueDescriptor:: kJavaScriptCallArgCount)); // Actual argument // count. // We'll use the bytecode for both code age/OSR resetting, and pushing // onto the frame, so load it into a register. Register bytecode_array = descriptor.GetRegisterParameter( BaselineOutOfLinePrologueDescriptor::kInterpreterBytecodeArray); __ Push(bytecode_array); __ Push(feedback_cell); __ Push(feedback_vector); } Register new_target = descriptor.GetRegisterParameter( BaselineOutOfLinePrologueDescriptor::kJavaScriptCallNewTarget); Label call_stack_guard; Register frame_size = descriptor.GetRegisterParameter( BaselineOutOfLinePrologueDescriptor::kStackFrameSize); { ASM_CODE_COMMENT_STRING(masm, " Stack/interrupt check"); // Stack check. This folds the checks for both the interrupt stack limit // check and the real stack limit into one by just checking for the // interrupt limit. The interrupt limit is either equal to the real stack // limit or tighter. By ensuring we have space until that limit after // building the frame we can quickly precheck both at once. // // TODO(v8:11429): Backport this folded check to the // InterpreterEntryTrampoline. __ Move(kScratchRegister, rsp); DCHECK_NE(frame_size, new_target); __ subq(kScratchRegister, frame_size); __ cmpq(kScratchRegister, __ StackLimitAsOperand(StackLimitKind::kInterruptStackLimit)); __ j(below, &call_stack_guard); } // Push the return address back onto the stack for return. __ PushReturnAddressFrom(return_address); // Return to caller pushed pc, without any frame teardown. __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue); __ Ret(); __ bind(&flags_need_processing); { ASM_CODE_COMMENT_STRING(masm, "Optimized marker check"); // Drop the return address, rebalancing the return stack buffer by using // JumpMode::kPushAndReturn. We can't leave the slot and overwrite it on // return since we may do a runtime call along the way that requires the // stack to only contain valid frames. __ Drop(1); __ OptimizeCodeOrTailCallOptimizedCodeSlot(feedback_vector, closure, JumpMode::kPushAndReturn); __ Trap(); } __ bind(&call_stack_guard); { ASM_CODE_COMMENT_STRING(masm, "Stack/interrupt call"); { // Push the baseline code return address now, as if it had been pushed by // the call to this builtin. __ PushReturnAddressFrom(return_address); FrameScope inner_frame_scope(masm, StackFrame::INTERNAL); // Save incoming new target or generator __ Push(new_target); __ SmiTag(frame_size); __ Push(frame_size); __ CallRuntime(Runtime::kStackGuardWithGap, 1); __ Pop(new_target); } // Return to caller pushed pc, without any frame teardown. __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue); __ Ret(); } } // static void Builtins::Generate_BaselineOutOfLinePrologueDeopt(MacroAssembler* masm) { // We're here because we got deopted during BaselineOutOfLinePrologue's stack // check. Undo all its frame creation and call into the interpreter instead. // Drop feedback vector. __ Pop(kScratchRegister); // Drop bytecode offset (was the feedback vector but got replaced during // deopt). __ Pop(kScratchRegister); // Drop bytecode array __ Pop(kScratchRegister); // argc. __ Pop(kJavaScriptCallArgCountRegister); // Closure. __ Pop(kJavaScriptCallTargetRegister); // Context. __ Pop(kContextRegister); // Drop frame pointer __ LeaveFrame(StackFrame::BASELINE); // Enter the interpreter. __ TailCallBuiltin(Builtin::kInterpreterEntryTrampoline); } namespace { void Generate_ContinueToBuiltinHelper(MacroAssembler* masm, bool java_script_builtin, bool with_result) { ASM_CODE_COMMENT(masm); const RegisterConfiguration* config(RegisterConfiguration::Default()); int allocatable_register_count = config->num_allocatable_general_registers(); if (with_result) { if (java_script_builtin) { // kScratchRegister is not included in the allocateable registers. __ movq(kScratchRegister, rax); } else { // Overwrite the hole inserted by the deoptimizer with the return value // from the LAZY deopt point. __ movq( Operand(rsp, config->num_allocatable_general_registers() * kSystemPointerSize + BuiltinContinuationFrameConstants::kFixedFrameSize), rax); } } for (int i = allocatable_register_count - 1; i >= 0; --i) { int code = config->GetAllocatableGeneralCode(i); __ popq(Register::from_code(code)); if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) { __ SmiUntagUnsigned(Register::from_code(code)); } } if (with_result && java_script_builtin) { // Overwrite the hole inserted by the deoptimizer with the return value from // the LAZY deopt point. rax contains the arguments count, the return value // from LAZY is always the last argument. __ movq(Operand(rsp, rax, times_system_pointer_size, BuiltinContinuationFrameConstants::kFixedFrameSize - kJSArgcReceiverSlots * kSystemPointerSize), kScratchRegister); } __ movq( rbp, Operand(rsp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp)); const int offsetToPC = BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp - kSystemPointerSize; __ popq(Operand(rsp, offsetToPC)); __ Drop(offsetToPC / kSystemPointerSize); // Replace the builtin index Smi on the stack with the instruction start // address of the builtin from the builtins table, and then Ret to this // address __ movq(kScratchRegister, Operand(rsp, 0)); __ movq(kScratchRegister, __ EntryFromBuiltinIndexAsOperand(kScratchRegister)); __ movq(Operand(rsp, 0), kScratchRegister); __ Ret(); } } // namespace void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, false, false); } void Builtins::Generate_ContinueToCodeStubBuiltinWithResult( MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, false, true); } void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, true, false); } void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult( MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, true, true); } void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { // Enter an internal frame. { FrameScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kNotifyDeoptimized); // Tear down internal frame. } DCHECK_EQ(kInterpreterAccumulatorRegister.code(), rax.code()); __ movq(rax, Operand(rsp, kPCOnStackSize)); __ ret(1 * kSystemPointerSize); // Remove rax. } // static void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : argc // -- rsp[0] : return address // -- rsp[1] : receiver // -- rsp[2] : thisArg // -- rsp[3] : argArray // ----------------------------------- // 1. Load receiver into rdi, argArray into rbx (if present), remove all // arguments from the stack (including the receiver), and push thisArg (if // present) instead. { Label no_arg_array, no_this_arg; StackArgumentsAccessor args(rax); __ LoadRoot(rdx, RootIndex::kUndefinedValue); __ movq(rbx, rdx); __ movq(rdi, args[0]); __ cmpq(rax, Immediate(JSParameterCount(0))); __ j(equal, &no_this_arg, Label::kNear); { __ movq(rdx, args[1]); __ cmpq(rax, Immediate(JSParameterCount(1))); __ j(equal, &no_arg_array, Label::kNear); __ movq(rbx, args[2]); __ bind(&no_arg_array); } __ bind(&no_this_arg); __ DropArgumentsAndPushNewReceiver(rax, rdx, rcx, MacroAssembler::kCountIsInteger, MacroAssembler::kCountIncludesReceiver); } // ----------- S t a t e ------------- // -- rbx : argArray // -- rdi : receiver // -- rsp[0] : return address // -- rsp[8] : thisArg // ----------------------------------- // 2. We don't need to check explicitly for callable receiver here, // since that's the first thing the Call/CallWithArrayLike builtins // will do. // 3. Tail call with no arguments if argArray is null or undefined. Label no_arguments; __ JumpIfRoot(rbx, RootIndex::kNullValue, &no_arguments, Label::kNear); __ JumpIfRoot(rbx, RootIndex::kUndefinedValue, &no_arguments, Label::kNear); // 4a. Apply the receiver to the given argArray. __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), RelocInfo::CODE_TARGET); // 4b. The argArray is either null or undefined, so we tail call without any // arguments to the receiver. Since we did not create a frame for // Function.prototype.apply() yet, we use a normal Call builtin here. __ bind(&no_arguments); { __ Move(rax, JSParameterCount(0)); __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } } // static void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) { // Stack Layout: // rsp[0] : Return address // rsp[8] : Argument 0 (receiver: callable to call) // rsp[16] : Argument 1 // ... // rsp[8 * n] : Argument n-1 // rsp[8 * (n + 1)] : Argument n // rax contains the number of arguments, n. // 1. Get the callable to call (passed as receiver) from the stack. { StackArgumentsAccessor args(rax); __ movq(rdi, args.GetReceiverOperand()); } // 2. Save the return address and drop the callable. __ PopReturnAddressTo(rbx); __ Pop(kScratchRegister); // 3. Make sure we have at least one argument. { Label done; __ cmpq(rax, Immediate(JSParameterCount(0))); __ j(greater, &done, Label::kNear); __ PushRoot(RootIndex::kUndefinedValue); __ incq(rax); __ bind(&done); } // 4. Push back the return address one slot down on the stack (overwriting the // original callable), making the original first argument the new receiver. __ PushReturnAddressFrom(rbx); __ decq(rax); // One fewer argument (first argument is new receiver). // 5. Call the callable. // Since we did not create a frame for Function.prototype.call() yet, // we use a normal Call builtin here. __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } void Builtins::Generate_ReflectApply(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : argc // -- rsp[0] : return address // -- rsp[8] : receiver // -- rsp[16] : target (if argc >= 1) // -- rsp[24] : thisArgument (if argc >= 2) // -- rsp[32] : argumentsList (if argc == 3) // ----------------------------------- // 1. Load target into rdi (if present), argumentsList into rbx (if present), // remove all arguments from the stack (including the receiver), and push // thisArgument (if present) instead. { Label done; StackArgumentsAccessor args(rax); __ LoadRoot(rdi, RootIndex::kUndefinedValue); __ movq(rdx, rdi); __ movq(rbx, rdi); __ cmpq(rax, Immediate(JSParameterCount(1))); __ j(below, &done, Label::kNear); __ movq(rdi, args[1]); // target __ j(equal, &done, Label::kNear); __ movq(rdx, args[2]); // thisArgument __ cmpq(rax, Immediate(JSParameterCount(3))); __ j(below, &done, Label::kNear); __ movq(rbx, args[3]); // argumentsList __ bind(&done); __ DropArgumentsAndPushNewReceiver(rax, rdx, rcx, MacroAssembler::kCountIsInteger, MacroAssembler::kCountIncludesReceiver); } // ----------- S t a t e ------------- // -- rbx : argumentsList // -- rdi : target // -- rsp[0] : return address // -- rsp[8] : thisArgument // ----------------------------------- // 2. We don't need to check explicitly for callable target here, // since that's the first thing the Call/CallWithArrayLike builtins // will do. // 3. Apply the target to the given argumentsList. __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), RelocInfo::CODE_TARGET); } void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : argc // -- rsp[0] : return address // -- rsp[8] : receiver // -- rsp[16] : target // -- rsp[24] : argumentsList // -- rsp[32] : new.target (optional) // ----------------------------------- // 1. Load target into rdi (if present), argumentsList into rbx (if present), // new.target into rdx (if present, otherwise use target), remove all // arguments from the stack (including the receiver), and push thisArgument // (if present) instead. { Label done; StackArgumentsAccessor args(rax); __ LoadRoot(rdi, RootIndex::kUndefinedValue); __ movq(rdx, rdi); __ movq(rbx, rdi); __ cmpq(rax, Immediate(JSParameterCount(1))); __ j(below, &done, Label::kNear); __ movq(rdi, args[1]); // target __ movq(rdx, rdi); // new.target defaults to target __ j(equal, &done, Label::kNear); __ movq(rbx, args[2]); // argumentsList __ cmpq(rax, Immediate(JSParameterCount(3))); __ j(below, &done, Label::kNear); __ movq(rdx, args[3]); // new.target __ bind(&done); __ DropArgumentsAndPushNewReceiver( rax, masm->RootAsOperand(RootIndex::kUndefinedValue), rcx, MacroAssembler::kCountIsInteger, MacroAssembler::kCountIncludesReceiver); } // ----------- S t a t e ------------- // -- rbx : argumentsList // -- rdx : new.target // -- rdi : target // -- rsp[0] : return address // -- rsp[8] : receiver (undefined) // ----------------------------------- // 2. We don't need to check explicitly for constructor target here, // since that's the first thing the Construct/ConstructWithArrayLike // builtins will do. // 3. We don't need to check explicitly for constructor new.target here, // since that's the second thing the Construct/ConstructWithArrayLike // builtins will do. // 4. Construct the target with the given new.target and argumentsList. __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike), RelocInfo::CODE_TARGET); } namespace { // Allocate new stack space for |count| arguments and shift all existing // arguments already on the stack. |pointer_to_new_space_out| points to the // first free slot on the stack to copy additional arguments to and // |argc_in_out| is updated to include |count|. void Generate_AllocateSpaceAndShiftExistingArguments( MacroAssembler* masm, Register count, Register argc_in_out, Register pointer_to_new_space_out, Register scratch1, Register scratch2) { DCHECK(!AreAliased(count, argc_in_out, pointer_to_new_space_out, scratch1, scratch2, kScratchRegister)); // Use pointer_to_new_space_out as scratch until we set it to the correct // value at the end. Register old_rsp = pointer_to_new_space_out; Register new_space = kScratchRegister; __ movq(old_rsp, rsp); __ leaq(new_space, Operand(count, times_system_pointer_size, 0)); __ AllocateStackSpace(new_space); Register copy_count = argc_in_out; Register current = scratch2; Register value = kScratchRegister; Label loop, entry; __ Move(current, 0); __ jmp(&entry); __ bind(&loop); __ movq(value, Operand(old_rsp, current, times_system_pointer_size, 0)); __ movq(Operand(rsp, current, times_system_pointer_size, 0), value); __ incq(current); __ bind(&entry); __ cmpq(current, copy_count); __ j(less_equal, &loop, Label::kNear); // Point to the next free slot above the shifted arguments (copy_count + 1 // slot for the return address). __ leaq( pointer_to_new_space_out, Operand(rsp, copy_count, times_system_pointer_size, kSystemPointerSize)); // We use addl instead of addq here because we can omit REX.W, saving 1 byte. // We are especially constrained here because we are close to reaching the // limit for a near jump to the stackoverflow label, so every byte counts. __ addl(argc_in_out, count); // Update total number of arguments. } } // namespace // static // TODO(v8:11615): Observe Code::kMaxArguments in // CallOrConstructVarargs void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm, Handle<Code> code) { // ----------- S t a t e ------------- // -- rdi : target // -- rax : number of parameters on the stack // -- rbx : arguments list (a FixedArray) // -- rcx : len (number of elements to push from args) // -- rdx : new.target (for [[Construct]]) // -- rsp[0] : return address // ----------------------------------- if (v8_flags.debug_code) { // Allow rbx to be a FixedArray, or a FixedDoubleArray if rcx == 0. Label ok, fail; __ AssertNotSmi(rbx); Register map = r9; __ LoadMap(map, rbx); __ CmpInstanceType(map, FIXED_ARRAY_TYPE); __ j(equal, &ok); __ CmpInstanceType(map, FIXED_DOUBLE_ARRAY_TYPE); __ j(not_equal, &fail); __ Cmp(rcx, 0); __ j(equal, &ok); // Fall through. __ bind(&fail); __ Abort(AbortReason::kOperandIsNotAFixedArray); __ bind(&ok); } Label stack_overflow; __ StackOverflowCheck(rcx, &stack_overflow, Label::kNear); // Push additional arguments onto the stack. // Move the arguments already in the stack, // including the receiver and the return address. // rcx: Number of arguments to make room for. // rax: Number of arguments already on the stack. // r8: Points to first free slot on the stack after arguments were shifted. Generate_AllocateSpaceAndShiftExistingArguments(masm, rcx, rax, r8, r9, r12); // Copy the additional arguments onto the stack. { Register value = r12; Register src = rbx, dest = r8, num = rcx, current = r9; __ Move(current, 0); Label done, push, loop; __ bind(&loop); __ cmpl(current, num); __ j(equal, &done, Label::kNear); // Turn the hole into undefined as we go. __ LoadTaggedField(value, FieldOperand(src, current, times_tagged_size, FixedArray::kHeaderSize)); __ CompareRoot(value, RootIndex::kTheHoleValue); __ j(not_equal, &push, Label::kNear); __ LoadRoot(value, RootIndex::kUndefinedValue); __ bind(&push); __ movq(Operand(dest, current, times_system_pointer_size, 0), value); __ incl(current); __ jmp(&loop); __ bind(&done); } // Tail-call to the actual Call or Construct builtin. __ Jump(code, RelocInfo::CODE_TARGET); __ bind(&stack_overflow); __ TailCallRuntime(Runtime::kThrowStackOverflow); } // static void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm, CallOrConstructMode mode, Handle<Code> code) { // ----------- S t a t e ------------- // -- rax : the number of arguments // -- rdx : the new target (for [[Construct]] calls) // -- rdi : the target to call (can be any Object) // -- rcx : start index (to support rest parameters) // ----------------------------------- // Check if new.target has a [[Construct]] internal method. if (mode == CallOrConstructMode::kConstruct) { Label new_target_constructor, new_target_not_constructor; __ JumpIfSmi(rdx, &new_target_not_constructor, Label::kNear); __ LoadMap(rbx, rdx); __ testb(FieldOperand(rbx, Map::kBitFieldOffset), Immediate(Map::Bits1::IsConstructorBit::kMask)); __ j(not_zero, &new_target_constructor, Label::kNear); __ bind(&new_target_not_constructor); { FrameScope scope(masm, StackFrame::MANUAL); __ EnterFrame(StackFrame::INTERNAL); __ Push(rdx); __ CallRuntime(Runtime::kThrowNotConstructor); } __ bind(&new_target_constructor); } Label stack_done, stack_overflow; __ movq(r8, Operand(rbp, StandardFrameConstants::kArgCOffset)); __ decq(r8); // Exclude receiver. __ subl(r8, rcx); __ j(less_equal, &stack_done); { // ----------- S t a t e ------------- // -- rax : the number of arguments already in the stack // -- rbp : point to the caller stack frame // -- rcx : start index (to support rest parameters) // -- rdx : the new target (for [[Construct]] calls) // -- rdi : the target to call (can be any Object) // -- r8 : number of arguments to copy, i.e. arguments count - start index // ----------------------------------- // Check for stack overflow. __ StackOverflowCheck(r8, &stack_overflow, Label::kNear); // Forward the arguments from the caller frame. // Move the arguments already in the stack, // including the receiver and the return address. // r8: Number of arguments to make room for. // rax: Number of arguments already on the stack. // r9: Points to first free slot on the stack after arguments were shifted. Generate_AllocateSpaceAndShiftExistingArguments(masm, r8, rax, r9, r12, r15); // Point to the first argument to copy (skipping receiver). __ leaq(rcx, Operand(rcx, times_system_pointer_size, CommonFrameConstants::kFixedFrameSizeAboveFp + kSystemPointerSize)); __ addq(rcx, rbp); // Copy the additional caller arguments onto the stack. // TODO(victorgomes): Consider using forward order as potentially more cache // friendly. { Register src = rcx, dest = r9, num = r8; Label loop; __ bind(&loop); __ decq(num); __ movq(kScratchRegister, Operand(src, num, times_system_pointer_size, 0)); __ movq(Operand(dest, num, times_system_pointer_size, 0), kScratchRegister); __ j(not_zero, &loop); } } __ jmp(&stack_done, Label::kNear); __ bind(&stack_overflow); __ TailCallRuntime(Runtime::kThrowStackOverflow); __ bind(&stack_done); // Tail-call to the {code} handler. __ Jump(code, RelocInfo::CODE_TARGET); } // static void Builtins::Generate_CallFunction(MacroAssembler* masm, ConvertReceiverMode mode) { // ----------- S t a t e ------------- // -- rax : the number of arguments // -- rdi : the function to call (checked to be a JSFunction) // ----------------------------------- StackArgumentsAccessor args(rax); __ AssertCallableFunction(rdi); __ LoadTaggedField(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); // ----------- S t a t e ------------- // -- rax : the number of arguments // -- rdx : the shared function info. // -- rdi : the function to call (checked to be a JSFunction) // ----------------------------------- // Enter the context of the function; ToObject has to run in the function // context, and we also need to take the global proxy from the function // context in case of conversion. __ LoadTaggedField(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); // We need to convert the receiver for non-native sloppy mode functions. Label done_convert; __ testl(FieldOperand(rdx, SharedFunctionInfo::kFlagsOffset), Immediate(SharedFunctionInfo::IsNativeBit::kMask | SharedFunctionInfo::IsStrictBit::kMask)); __ j(not_zero, &done_convert); { // ----------- S t a t e ------------- // -- rax : the number of arguments // -- rdx : the shared function info. // -- rdi : the function to call (checked to be a JSFunction) // -- rsi : the function context. // ----------------------------------- if (mode == ConvertReceiverMode::kNullOrUndefined) { // Patch receiver to global proxy. __ LoadGlobalProxy(rcx); } else { Label convert_to_object, convert_receiver; __ movq(rcx, args.GetReceiverOperand()); __ JumpIfSmi(rcx, &convert_to_object, Label::kNear); __ JumpIfJSAnyIsNotPrimitive(rcx, rbx, &done_convert, DEBUG_BOOL ? Label::kFar : Label::kNear); if (mode != ConvertReceiverMode::kNotNullOrUndefined) { Label convert_global_proxy; __ JumpIfRoot(rcx, RootIndex::kUndefinedValue, &convert_global_proxy, Label::kNear); __ JumpIfNotRoot(rcx, RootIndex::kNullValue, &convert_to_object, Label::kNear); __ bind(&convert_global_proxy); { // Patch receiver to global proxy. __ LoadGlobalProxy(rcx); } __ jmp(&convert_receiver); } __ bind(&convert_to_object); { // Convert receiver using ToObject. // TODO(bmeurer): Inline the allocation here to avoid building the frame // in the fast case? (fall back to AllocateInNewSpace?) FrameScope scope(masm, StackFrame::INTERNAL); __ SmiTag(rax); __ Push(rax); __ Push(rdi); __ movq(rax, rcx); __ Push(rsi); __ Call(BUILTIN_CODE(masm->isolate(), ToObject), RelocInfo::CODE_TARGET); __ Pop(rsi); __ movq(rcx, rax); __ Pop(rdi); __ Pop(rax); __ SmiUntagUnsigned(rax); } __ LoadTaggedField( rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ bind(&convert_receiver); } __ movq(args.GetReceiverOperand(), rcx); } __ bind(&done_convert); // ----------- S t a t e ------------- // -- rax : the number of arguments // -- rdx : the shared function info. // -- rdi : the function to call (checked to be a JSFunction) // -- rsi : the function context. // ----------------------------------- __ movzxwq( rbx, FieldOperand(rdx, SharedFunctionInfo::kFormalParameterCountOffset)); __ InvokeFunctionCode(rdi, no_reg, rbx, rax, InvokeType::kJump); } namespace { void Generate_PushBoundArguments(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : the number of arguments // -- rdx : new.target (only in case of [[Construct]]) // -- rdi : target (checked to be a JSBoundFunction) // ----------------------------------- // Load [[BoundArguments]] into rcx and length of that into rbx. Label no_bound_arguments; __ LoadTaggedField(rcx, FieldOperand(rdi, JSBoundFunction::kBoundArgumentsOffset)); __ SmiUntagFieldUnsigned(rbx, FieldOperand(rcx, FixedArray::kLengthOffset)); __ testl(rbx, rbx); __ j(zero, &no_bound_arguments); { // ----------- S t a t e ------------- // -- rax : the number of arguments // -- rdx : new.target (only in case of [[Construct]]) // -- rdi : target (checked to be a JSBoundFunction) // -- rcx : the [[BoundArguments]] (implemented as FixedArray) // -- rbx : the number of [[BoundArguments]] (checked to be non-zero) // ----------------------------------- // TODO(victor): Use Generate_StackOverflowCheck here. // Check the stack for overflow. { Label done; __ shlq(rbx, Immediate(kSystemPointerSizeLog2)); __ movq(kScratchRegister, rsp); __ subq(kScratchRegister, rbx); // We are not trying to catch interruptions (i.e. debug break and // preemption) here, so check the "real stack limit". __ cmpq(kScratchRegister, __ StackLimitAsOperand(StackLimitKind::kRealStackLimit)); __ j(above_equal, &done, Label::kNear); { FrameScope scope(masm, StackFrame::MANUAL); __ EnterFrame(StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowStackOverflow); } __ bind(&done); } // Save Return Address and Receiver into registers. __ Pop(r8); __ Pop(r10); // Push [[BoundArguments]] to the stack. { Label loop; __ LoadTaggedField( rcx, FieldOperand(rdi, JSBoundFunction::kBoundArgumentsOffset)); __ SmiUntagFieldUnsigned(rbx, FieldOperand(rcx, FixedArray::kLengthOffset)); __ addq(rax, rbx); // Adjust effective number of arguments. __ bind(&loop); // Instead of doing decl(rbx) here subtract kTaggedSize from the header // offset in order to be able to move decl(rbx) right before the loop // condition. This is necessary in order to avoid flags corruption by // pointer decompression code. __ LoadTaggedField(r12, FieldOperand(rcx, rbx, times_tagged_size, FixedArray::kHeaderSize - kTaggedSize)); __ Push(r12); __ decl(rbx); __ j(greater, &loop); } // Recover Receiver and Return Address. __ Push(r10); __ Push(r8); } __ bind(&no_bound_arguments); } } // namespace // static void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : the number of arguments // -- rdi : the function to call (checked to be a JSBoundFunction) // ----------------------------------- __ AssertBoundFunction(rdi); // Patch the receiver to [[BoundThis]]. StackArgumentsAccessor args(rax); __ LoadTaggedField(rbx, FieldOperand(rdi, JSBoundFunction::kBoundThisOffset)); __ movq(args.GetReceiverOperand(), rbx); // Push the [[BoundArguments]] onto the stack. Generate_PushBoundArguments(masm); // Call the [[BoundTargetFunction]] via the Call builtin. __ LoadTaggedField( rdi, FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset)); __ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) { // ----------- S t a t e ------------- // -- rax : the number of arguments // -- rdi : the target to call (can be any Object) // ----------------------------------- Register argc = rax; Register target = rdi; Register map = rcx; Register instance_type = rdx; DCHECK(!AreAliased(argc, target, map, instance_type)); StackArgumentsAccessor args(argc); Label non_callable, class_constructor; __ JumpIfSmi(target, &non_callable); __ LoadMap(map, target); __ CmpInstanceTypeRange(map, instance_type, FIRST_CALLABLE_JS_FUNCTION_TYPE, LAST_CALLABLE_JS_FUNCTION_TYPE); __ Jump(masm->isolate()->builtins()->CallFunction(mode), RelocInfo::CODE_TARGET, below_equal); __ cmpw(instance_type, Immediate(JS_BOUND_FUNCTION_TYPE)); __ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction), RelocInfo::CODE_TARGET, equal); // Check if target has a [[Call]] internal method. __ testb(FieldOperand(map, Map::kBitFieldOffset), Immediate(Map::Bits1::IsCallableBit::kMask)); __ j(zero, &non_callable, Label::kNear); // Check if target is a proxy and call CallProxy external builtin __ cmpw(instance_type, Immediate(JS_PROXY_TYPE)); __ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET, equal); // Check if target is a wrapped function and call CallWrappedFunction external // builtin __ cmpw(instance_type, Immediate(JS_WRAPPED_FUNCTION_TYPE)); __ Jump(BUILTIN_CODE(masm->isolate(), CallWrappedFunction), RelocInfo::CODE_TARGET, equal); // ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList) // Check that the function is not a "classConstructor". __ cmpw(instance_type, Immediate(JS_CLASS_CONSTRUCTOR_TYPE)); __ j(equal, &class_constructor); // 2. Call to something else, which might have a [[Call]] internal method (if // not we raise an exception). // Overwrite the original receiver with the (original) target. __ movq(args.GetReceiverOperand(), target); // Let the "call_as_function_delegate" take care of the rest. __ LoadNativeContextSlot(target, Context::CALL_AS_FUNCTION_DELEGATE_INDEX); __ Jump(masm->isolate()->builtins()->CallFunction( ConvertReceiverMode::kNotNullOrUndefined), RelocInfo::CODE_TARGET); // 3. Call to something that is not callable. __ bind(&non_callable); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(target); __ CallRuntime(Runtime::kThrowCalledNonCallable); __ Trap(); // Unreachable. } // 4. The function is a "classConstructor", need to raise an exception. __ bind(&class_constructor); { FrameScope frame(masm, StackFrame::INTERNAL); __ Push(target); __ CallRuntime(Runtime::kThrowConstructorNonCallableError); __ Trap(); // Unreachable. } } // static void Builtins::Generate_ConstructFunction(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : the number of arguments // -- rdx : the new target (checked to be a constructor) // -- rdi : the constructor to call (checked to be a JSFunction) // ----------------------------------- __ AssertConstructor(rdi); __ AssertFunction(rdi); // Calling convention for function specific ConstructStubs require // rbx to contain either an AllocationSite or undefined. __ LoadRoot(rbx, RootIndex::kUndefinedValue); // Jump to JSBuiltinsConstructStub or JSConstructStubGeneric. const TaggedRegister shared_function_info(rcx); __ LoadTaggedField(shared_function_info, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ testl(FieldOperand(shared_function_info, SharedFunctionInfo::kFlagsOffset), Immediate(SharedFunctionInfo::ConstructAsBuiltinBit::kMask)); __ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub), RelocInfo::CODE_TARGET, not_zero); __ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : the number of arguments // -- rdx : the new target (checked to be a constructor) // -- rdi : the constructor to call (checked to be a JSBoundFunction) // ----------------------------------- __ AssertConstructor(rdi); __ AssertBoundFunction(rdi); // Push the [[BoundArguments]] onto the stack. Generate_PushBoundArguments(masm); // Patch new.target to [[BoundTargetFunction]] if new.target equals target. { Label done; __ cmpq(rdi, rdx); __ j(not_equal, &done, Label::kNear); __ LoadTaggedField( rdx, FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset)); __ bind(&done); } // Construct the [[BoundTargetFunction]] via the Construct builtin. __ LoadTaggedField( rdi, FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset)); __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_Construct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : the number of arguments // -- rdx : the new target (either the same as the constructor or // the JSFunction on which new was invoked initially) // -- rdi : the constructor to call (can be any Object) // ----------------------------------- Register argc = rax; Register target = rdi; Register map = rcx; Register instance_type = r8; DCHECK(!AreAliased(argc, target, map, instance_type)); StackArgumentsAccessor args(argc); // Check if target is a Smi. Label non_constructor; __ JumpIfSmi(target, &non_constructor); // Check if target has a [[Construct]] internal method. __ LoadMap(map, target); __ testb(FieldOperand(map, Map::kBitFieldOffset), Immediate(Map::Bits1::IsConstructorBit::kMask)); __ j(zero, &non_constructor); // Dispatch based on instance type. __ CmpInstanceTypeRange(map, instance_type, FIRST_JS_FUNCTION_TYPE, LAST_JS_FUNCTION_TYPE); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction), RelocInfo::CODE_TARGET, below_equal); // Only dispatch to bound functions after checking whether they are // constructors. __ cmpw(instance_type, Immediate(JS_BOUND_FUNCTION_TYPE)); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction), RelocInfo::CODE_TARGET, equal); // Only dispatch to proxies after checking whether they are constructors. __ cmpw(instance_type, Immediate(JS_PROXY_TYPE)); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy), RelocInfo::CODE_TARGET, equal); // Called Construct on an exotic Object with a [[Construct]] internal method. { // Overwrite the original receiver with the (original) target. __ movq(args.GetReceiverOperand(), target); // Let the "call_as_constructor_delegate" take care of the rest. __ LoadNativeContextSlot(target, Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX); __ Jump(masm->isolate()->builtins()->CallFunction(), RelocInfo::CODE_TARGET); } // Called Construct on an Object that doesn't have a [[Construct]] internal // method. __ bind(&non_constructor); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable), RelocInfo::CODE_TARGET); } namespace { void Generate_OSREntry(MacroAssembler* masm, Register entry_address) { // Overwrite the return address on the stack and "return" to the OSR entry // point of the function. __ movq(Operand(rsp, 0), entry_address); __ ret(0); } enum class OsrSourceTier { kInterpreter, kBaseline, kMaglev, }; void OnStackReplacement(MacroAssembler* masm, OsrSourceTier source, Register maybe_target_code) { Label jump_to_optimized_code; { // If maybe_target_code is not null, no need to call into runtime. A // precondition here is: if maybe_target_code is a InstructionStream object, // it must NOT be marked_for_deoptimization (callers must ensure this). __ testq(maybe_target_code, maybe_target_code); __ j(not_equal, &jump_to_optimized_code, Label::kNear); } { FrameScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kCompileOptimizedOSR); } // If the code object is null, just return to the caller. __ testq(rax, rax); __ j(not_equal, &jump_to_optimized_code, Label::kNear); __ ret(0); __ bind(&jump_to_optimized_code); DCHECK_EQ(maybe_target_code, rax); // Already in the right spot. if (source == OsrSourceTier::kMaglev) { // Maglev doesn't enter OSR'd code itself, since OSR depends on the // unoptimized (~= Ignition) stack frame layout. Instead, return to Maglev // code and let it deoptimize. __ ret(0); return; } // OSR entry tracing. { Label next; __ cmpb( __ ExternalReferenceAsOperand( ExternalReference::address_of_log_or_trace_osr(), kScratchRegister), Immediate(0)); __ j(equal, &next, Label::kNear); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(rax); // Preserve the code object. __ CallRuntime(Runtime::kLogOrTraceOptimizedOSREntry, 0); __ Pop(rax); } __ bind(&next); } if (source == OsrSourceTier::kInterpreter) { // Drop the handler frame that is be sitting on top of the actual // JavaScript frame. __ leave(); } // Load deoptimization data from the code object. const TaggedRegister deopt_data(rbx); __ LoadTaggedField( deopt_data, FieldOperand(rax, Code::kDeoptimizationDataOrInterpreterDataOffset)); // Load the OSR entrypoint offset from the deoptimization data. __ SmiUntagField( rbx, FieldOperand(deopt_data, FixedArray::OffsetOfElementAt( DeoptimizationData::kOsrPcOffsetIndex))); __ LoadCodeInstructionStart(rax, rax); // Compute the target address = code_entry + osr_offset __ addq(rax, rbx); Generate_OSREntry(masm, rax); } } // namespace void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) { using D = OnStackReplacementDescriptor; static_assert(D::kParameterCount == 1); OnStackReplacement(masm, OsrSourceTier::kInterpreter, D::MaybeTargetCodeRegister()); } void Builtins::Generate_BaselineOnStackReplacement(MacroAssembler* masm) { using D = OnStackReplacementDescriptor; static_assert(D::kParameterCount == 1); __ movq(kContextRegister, MemOperand(rbp, BaselineFrameConstants::kContextOffset)); OnStackReplacement(masm, OsrSourceTier::kBaseline, D::MaybeTargetCodeRegister()); } void Builtins::Generate_MaglevOnStackReplacement(MacroAssembler* masm) { using D = i::CallInterfaceDescriptorFor<Builtin::kMaglevOnStackReplacement>::type; static_assert(D::kParameterCount == 1); OnStackReplacement(masm, OsrSourceTier::kMaglev, D::MaybeTargetCodeRegister()); } #ifdef V8_ENABLE_MAGLEV // static void Builtins::Generate_MaglevFunctionEntryStackCheck(MacroAssembler* masm, bool save_new_target) { // Input (rax): Stack size (Smi). // This builtin can be invoked just after Maglev's prologue. // All registers are available, except (possibly) new.target. ASM_CODE_COMMENT(masm); { FrameScope scope(masm, StackFrame::INTERNAL); __ AssertSmi(rax); if (save_new_target) { if (PointerCompressionIsEnabled()) { __ AssertSmiOrHeapObjectInCompressionCage( kJavaScriptCallNewTargetRegister); } __ Push(kJavaScriptCallNewTargetRegister); } __ Push(rax); __ CallRuntime(Runtime::kStackGuardWithGap, 1); if (save_new_target) { __ Pop(kJavaScriptCallNewTargetRegister); } } __ Ret(); } #endif // V8_ENABLE_MAGLEV #if V8_ENABLE_WEBASSEMBLY // Returns the offset beyond the last saved FP register. int SaveWasmParams(MacroAssembler* masm) { // Save all parameter registers (see wasm-linkage.h). They might be // overwritten in the subsequent runtime call. We don't have any callee-saved // registers in wasm, so no need to store anything else. static_assert(WasmLiftoffSetupFrameConstants::kNumberOfSavedGpParamRegs + 1 == arraysize(wasm::kGpParamRegisters), "frame size mismatch"); for (Register reg : wasm::kGpParamRegisters) { __ Push(reg); } static_assert(WasmLiftoffSetupFrameConstants::kNumberOfSavedFpParamRegs == arraysize(wasm::kFpParamRegisters), "frame size mismatch"); __ AllocateStackSpace(kSimd128Size * arraysize(wasm::kFpParamRegisters)); int offset = 0; for (DoubleRegister reg : wasm::kFpParamRegisters) { __ movdqu(Operand(rsp, offset), reg); offset += kSimd128Size; } return offset; } // Consumes the offset beyond the last saved FP register (as returned by // {SaveWasmParams}). void RestoreWasmParams(MacroAssembler* masm, int offset) { for (DoubleRegister reg : base::Reversed(wasm::kFpParamRegisters)) { offset -= kSimd128Size; __ movdqu(reg, Operand(rsp, offset)); } DCHECK_EQ(0, offset); __ addq(rsp, Immediate(kSimd128Size * arraysize(wasm::kFpParamRegisters))); for (Register reg : base::Reversed(wasm::kGpParamRegisters)) { __ Pop(reg); } } // When this builtin is called, the topmost stack entry is the calling pc. // This is replaced with the following: // // [ calling pc ] <-- rsp; popped by {ret}. // [ feedback vector ] // [ Wasm instance ] // [ WASM frame marker ] // [ saved rbp ] <-- rbp; this is where "calling pc" used to be. void Builtins::Generate_WasmLiftoffFrameSetup(MacroAssembler* masm) { Register func_index = wasm::kLiftoffFrameSetupFunctionReg; Register vector = r15; Register calling_pc = rdi; __ Pop(calling_pc); __ Push(rbp); __ Move(rbp, rsp); __ Push(Immediate(StackFrame::TypeToMarker(StackFrame::WASM))); __ LoadTaggedField(vector, FieldOperand(kWasmInstanceRegister, WasmInstanceObject::kFeedbackVectorsOffset)); __ LoadTaggedField(vector, FieldOperand(vector, func_index, times_tagged_size, FixedArray::kHeaderSize)); Label allocate_vector, done; __ JumpIfSmi(vector, &allocate_vector); __ bind(&done); __ Push(kWasmInstanceRegister); __ Push(vector); __ Push(calling_pc); __ ret(0); __ bind(&allocate_vector); // Feedback vector doesn't exist yet. Call the runtime to allocate it. // We temporarily change the frame type for this, because we need special // handling by the stack walker in case of GC. // For the runtime call, we create the following stack layout: // // [ reserved slot for NativeModule ] <-- arg[2] // [ ("declared") function index ] <-- arg[1] for runtime func. // [ Wasm instance ] <-- arg[0] // [ ...spilled Wasm parameters... ] // [ calling pc ] // [ WASM_LIFTOFF_SETUP marker ] // [ saved rbp ] __ movq(Operand(rbp, TypedFrameConstants::kFrameTypeOffset), Immediate(StackFrame::TypeToMarker(StackFrame::WASM_LIFTOFF_SETUP))); __ set_has_frame(true); __ Push(calling_pc); int offset = SaveWasmParams(masm); // Arguments to the runtime function: instance, func_index. __ Push(kWasmInstanceRegister); __ SmiTag(func_index); __ Push(func_index); // Allocate a stack slot where the runtime function can spill a pointer // to the NativeModule. __ Push(rsp); __ Move(kContextRegister, Smi::zero()); __ CallRuntime(Runtime::kWasmAllocateFeedbackVector, 3); __ movq(vector, kReturnRegister0); RestoreWasmParams(masm, offset); __ Pop(calling_pc); // Restore correct frame type. __ movq(Operand(rbp, TypedFrameConstants::kFrameTypeOffset), Immediate(StackFrame::TypeToMarker(StackFrame::WASM))); __ jmp(&done); } void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) { // The function index was pushed to the stack by the caller as int32. __ Pop(r15); // Convert to Smi for the runtime call. __ SmiTag(r15); { HardAbortScope hard_abort(masm); // Avoid calls to Abort. FrameScope scope(masm, StackFrame::INTERNAL); int offset = SaveWasmParams(masm); // Push arguments for the runtime function. __ Push(kWasmInstanceRegister); __ Push(r15); // Initialize the JavaScript context with 0. CEntry will use it to // set the current context on the isolate. __ Move(kContextRegister, Smi::zero()); __ CallRuntime(Runtime::kWasmCompileLazy, 2); // The runtime function returns the jump table slot offset as a Smi. Use // that to compute the jump target in r15. __ SmiUntagUnsigned(kReturnRegister0); __ movq(r15, kReturnRegister0); RestoreWasmParams(masm, offset); // After the instance register has been restored, we can add the jump table // start to the jump table offset already stored in r15. __ addq(r15, MemOperand(kWasmInstanceRegister, wasm::ObjectAccess::ToTagged( WasmInstanceObject::kJumpTableStartOffset))); } // Finally, jump to the jump table slot for the function. __ jmp(r15); } void Builtins::Generate_WasmDebugBreak(MacroAssembler* masm) { HardAbortScope hard_abort(masm); // Avoid calls to Abort. { FrameScope scope(masm, StackFrame::WASM_DEBUG_BREAK); // Save all parameter registers. They might hold live values, we restore // them after the runtime call. for (Register reg : base::Reversed(WasmDebugBreakFrameConstants::kPushedGpRegs)) { __ Push(reg); } constexpr int kFpStackSize = kSimd128Size * WasmDebugBreakFrameConstants::kNumPushedFpRegisters; __ AllocateStackSpace(kFpStackSize); int offset = kFpStackSize; for (DoubleRegister reg : base::Reversed(WasmDebugBreakFrameConstants::kPushedFpRegs)) { offset -= kSimd128Size; __ movdqu(Operand(rsp, offset), reg); } // Initialize the JavaScript context with 0. CEntry will use it to // set the current context on the isolate. __ Move(kContextRegister, Smi::zero()); __ CallRuntime(Runtime::kWasmDebugBreak, 0); // Restore registers. for (DoubleRegister reg : WasmDebugBreakFrameConstants::kPushedFpRegs) { __ movdqu(reg, Operand(rsp, offset)); offset += kSimd128Size; } __ addq(rsp, Immediate(kFpStackSize)); for (Register reg : WasmDebugBreakFrameConstants::kPushedGpRegs) { __ Pop(reg); } } __ ret(0); } namespace { // Check that the stack was in the old state (if generated code assertions are // enabled), and switch to the new state. void SwitchStackState(MacroAssembler* masm, Register jmpbuf, wasm::JumpBuffer::StackState old_state, wasm::JumpBuffer::StackState new_state) { if (v8_flags.debug_code) { __ cmpl(MemOperand(jmpbuf, wasm::kJmpBufStateOffset), Immediate(old_state)); Label ok; __ j(equal, &ok, Label::kNear); __ Trap(); __ bind(&ok); } __ movl(MemOperand(jmpbuf, wasm::kJmpBufStateOffset), Immediate(new_state)); } void FillJumpBuffer(MacroAssembler* masm, Register jmpbuf, Label* pc) { __ movq(MemOperand(jmpbuf, wasm::kJmpBufSpOffset), rsp); __ movq(MemOperand(jmpbuf, wasm::kJmpBufFpOffset), rbp); __ movq(kScratchRegister, __ StackLimitAsOperand(StackLimitKind::kRealStackLimit)); __ movq(MemOperand(jmpbuf, wasm::kJmpBufStackLimitOffset), kScratchRegister); __ leaq(kScratchRegister, MemOperand(pc, 0)); __ movq(MemOperand(jmpbuf, wasm::kJmpBufPcOffset), kScratchRegister); } void LoadJumpBuffer(MacroAssembler* masm, Register jmpbuf, bool load_pc) { __ movq(rsp, MemOperand(jmpbuf, wasm::kJmpBufSpOffset)); __ movq(rbp, MemOperand(jmpbuf, wasm::kJmpBufFpOffset)); SwitchStackState(masm, jmpbuf, wasm::JumpBuffer::Inactive, wasm::JumpBuffer::Active); if (load_pc) { __ jmp(MemOperand(jmpbuf, wasm::kJmpBufPcOffset)); } // The stack limit is set separately under the ExecutionAccess lock. } void SaveState(MacroAssembler* masm, Register active_continuation, Register tmp, Label* suspend) { Register jmpbuf = tmp; __ LoadExternalPointerField( jmpbuf, FieldOperand(active_continuation, WasmContinuationObject::kJmpbufOffset), kWasmContinuationJmpbufTag, kScratchRegister); FillJumpBuffer(masm, jmpbuf, suspend); } void LoadTargetJumpBuffer(MacroAssembler* masm, Register target_continuation) { Register target_jmpbuf = target_continuation; __ LoadExternalPointerField( target_jmpbuf, FieldOperand(target_continuation, WasmContinuationObject::kJmpbufOffset), kWasmContinuationJmpbufTag, kScratchRegister); MemOperand GCScanSlotPlace = MemOperand(rbp, StackSwitchFrameConstants::kGCScanSlotCountOffset); __ Move(GCScanSlotPlace, 0); // Switch stack! LoadJumpBuffer(masm, target_jmpbuf, false); } void SyncStackLimit(MacroAssembler* masm, const Register& keep1, const Register& keep2 = no_reg) { using ER = ExternalReference; __ Push(keep1); if (keep2 != no_reg) { __ Push(keep2); } { FrameScope scope(masm, StackFrame::MANUAL); __ Move(arg_reg_1, ExternalReference::isolate_address(masm->isolate())); __ PrepareCallCFunction(1); __ CallCFunction(ER::wasm_sync_stack_limit(), 1); } if (keep2 != no_reg) { __ Pop(keep2); } __ Pop(keep1); } void ReloadParentContinuation(MacroAssembler* masm, Register promise, Register tmp1, Register tmp2) { Register active_continuation = tmp1; __ LoadRoot(active_continuation, RootIndex::kActiveContinuation); // We don't need to save the full register state since we are switching out of // this stack for the last time. Mark the stack as retired. Register jmpbuf = kScratchRegister; __ LoadExternalPointerField( jmpbuf, FieldOperand(active_continuation, WasmContinuationObject::kJmpbufOffset), kWasmContinuationJmpbufTag, tmp2); SwitchStackState(masm, jmpbuf, wasm::JumpBuffer::Active, wasm::JumpBuffer::Retired); Register parent = tmp2; __ LoadTaggedField( parent, FieldOperand(active_continuation, WasmContinuationObject::kParentOffset)); // Update active continuation root. __ movq(masm->RootAsOperand(RootIndex::kActiveContinuation), parent); jmpbuf = parent; __ LoadExternalPointerField( jmpbuf, FieldOperand(parent, WasmContinuationObject::kJmpbufOffset), kWasmContinuationJmpbufTag, tmp1); // Switch stack! LoadJumpBuffer(masm, jmpbuf, false); SyncStackLimit(masm, promise); } void RestoreParentSuspender(MacroAssembler* masm, Register tmp1, Register tmp2) { Register suspender = tmp1; __ LoadRoot(suspender, RootIndex::kActiveSuspender); __ StoreTaggedSignedField( FieldOperand(suspender, WasmSuspenderObject::kStateOffset), Smi::FromInt(WasmSuspenderObject::kInactive)); __ LoadTaggedField( suspender, FieldOperand(suspender, WasmSuspenderObject::kParentOffset)); __ CompareRoot(suspender, RootIndex::kUndefinedValue); Label undefined; __ j(equal, &undefined, Label::kNear); #ifdef DEBUG // Check that the parent suspender is active. Label parent_inactive; Register state = tmp2; __ LoadTaggedSignedField( state, FieldOperand(suspender, WasmSuspenderObject::kStateOffset)); __ SmiCompare(state, Smi::FromInt(WasmSuspenderObject::kActive)); __ j(equal, &parent_inactive, Label::kNear); __ Trap(); __ bind(&parent_inactive); #endif __ StoreTaggedSignedField( FieldOperand(suspender, WasmSuspenderObject::kStateOffset), Smi::FromInt(WasmSuspenderObject::kActive)); __ bind(&undefined); __ movq(masm->RootAsOperand(RootIndex::kActiveSuspender), suspender); } void ResetStackSwitchFrameStackSlots(MacroAssembler* masm) { __ Move(kScratchRegister, Smi::zero()); __ movq(MemOperand(rbp, StackSwitchFrameConstants::kInstanceOffset), kScratchRegister); __ movq(MemOperand(rbp, StackSwitchFrameConstants::kResultArrayOffset), kScratchRegister); } void SwitchToAllocatedStack(MacroAssembler* masm, Register wasm_instance, Register wrapper_buffer, Register original_fp, Register new_wrapper_buffer, Register scratch, Label* suspend) { ResetStackSwitchFrameStackSlots(masm); Register parent_continuation = new_wrapper_buffer; __ LoadRoot(parent_continuation, RootIndex::kActiveContinuation); __ LoadTaggedField( parent_continuation, FieldOperand(parent_continuation, WasmContinuationObject::kParentOffset)); SaveState(masm, parent_continuation, scratch, suspend); SyncStackLimit(masm, kWasmInstanceRegister, wrapper_buffer); parent_continuation = no_reg; Register target_continuation = scratch; __ LoadRoot(target_continuation, RootIndex::kActiveContinuation); // Save the old stack's rbp in r9, and use it to access the parameters in // the parent frame. __ movq(original_fp, rbp); LoadTargetJumpBuffer(masm, target_continuation); // Push the loaded rbp. We know it is null, because there is no frame yet, // so we could also push 0 directly. In any case we need to push it, because // this marks the base of the stack segment for the stack frame iterator. __ EnterFrame(StackFrame::STACK_SWITCH); int stack_space = StackSwitchFrameConstants::kNumSpillSlots * kSystemPointerSize + JSToWasmWrapperFrameConstants::kWrapperBufferSize; __ AllocateStackSpace(stack_space); __ movq(new_wrapper_buffer, rsp); // Copy data needed for return handling from old wrapper buffer to new one. // kWrapperBufferRefReturnCount will be copied too, because 8 bytes are copied // at the same time. static_assert(JSToWasmWrapperFrameConstants::kWrapperBufferRefReturnCount == JSToWasmWrapperFrameConstants::kWrapperBufferReturnCount + 4); __ movq(kScratchRegister, MemOperand(wrapper_buffer, JSToWasmWrapperFrameConstants::kWrapperBufferReturnCount)); __ movq(MemOperand(new_wrapper_buffer, JSToWasmWrapperFrameConstants::kWrapperBufferReturnCount), kScratchRegister); __ movq( kScratchRegister, MemOperand( wrapper_buffer, JSToWasmWrapperFrameConstants::kWrapperBufferSigRepresentationArray)); __ movq( MemOperand( new_wrapper_buffer, JSToWasmWrapperFrameConstants::kWrapperBufferSigRepresentationArray), kScratchRegister); } void SwitchBackAndReturnPromise(MacroAssembler* masm, Register tmp1, Register tmp2, Label* return_promise) { // The return value of the wasm function becomes the parameter of the // FulfillPromise builtin, and the promise is the return value of this // wrapper. __ movq(tmp1, kReturnRegister0); Register promise = kReturnRegister0; __ LoadRoot(promise, RootIndex::kActiveSuspender); __ LoadTaggedField( promise, FieldOperand(promise, WasmSuspenderObject::kPromiseOffset)); __ movq(kContextRegister, MemOperand(rbp, StackSwitchFrameConstants::kInstanceOffset)); __ LoadTaggedField( kContextRegister, FieldOperand(kContextRegister, WasmInstanceObject::kNativeContextOffset)); __ Move(MemOperand(rbp, StackSwitchFrameConstants::kGCScanSlotCountOffset), 1); __ Push(promise); __ CallBuiltin(Builtin::kFulfillPromise); __ Pop(promise); __ bind(return_promise); ReloadParentContinuation(masm, promise, tmp1, tmp2); RestoreParentSuspender(masm, tmp1, tmp2); } void GenerateExceptionHandlingLandingPad(MacroAssembler* masm, Label* return_promise) { int catch_handler = __ pc_offset(); // Restore rsp to free the reserved stack slots for the sections. __ leaq(rsp, MemOperand(rbp, StackSwitchFrameConstants::kLastSpillOffset)); // Unset thread_in_wasm_flag. Register thread_in_wasm_flag_addr = r8; __ movq( thread_in_wasm_flag_addr, MemOperand(kRootRegister, Isolate::thread_in_wasm_flag_address_offset())); __ movl(MemOperand(thread_in_wasm_flag_addr, 0), Immediate(0)); thread_in_wasm_flag_addr = no_reg; // The exception becomes the parameter of the RejectPromise builtin, and the // promise is the return value of this wrapper. __ movq(rbx, kReturnRegister0); Register promise = rax; __ LoadRoot(promise, RootIndex::kActiveSuspender); __ LoadTaggedField( promise, FieldOperand(promise, WasmSuspenderObject::kPromiseOffset)); __ movq(kContextRegister, MemOperand(rbp, StackSwitchFrameConstants::kInstanceOffset)); __ LoadTaggedField( kContextRegister, FieldOperand(kContextRegister, WasmInstanceObject::kNativeContextOffset)); __ Move(MemOperand(rbp, StackSwitchFrameConstants::kGCScanSlotCountOffset), 1); __ Push(promise); static const Builtin_RejectPromise_InterfaceDescriptor desc; static_assert(desc.GetRegisterParameter(0) == rax && // promise desc.GetRegisterParameter(1) == rbx && // reason desc.GetRegisterParameter(2) == rcx // debugEvent ); __ LoadRoot(rcx, RootIndex::kTrueValue); __ CallBuiltin(Builtin::kRejectPromise); __ Pop(promise); // Run the rest of the wrapper normally (switch to the old stack, // deconstruct the frame, ...). __ jmp(return_promise); masm->isolate()->builtins()->SetJSPIPromptHandlerOffset(catch_handler); } void JSToWasmWrapperHelper(MacroAssembler* masm, bool stack_switch) { __ EnterFrame(stack_switch ? StackFrame::STACK_SWITCH : StackFrame::JS_TO_WASM); __ AllocateStackSpace(StackSwitchFrameConstants::kNumSpillSlots * kSystemPointerSize); Register wrapper_buffer = WasmJSToWasmWrapperDescriptor::WrapperBufferRegister(); __ movq(kWasmInstanceRegister, MemOperand(rbp, JSToWasmWrapperFrameConstants::kInstanceParamOffset)); Register original_fp = stack_switch ? r9 : rbp; Register new_wrapper_buffer = stack_switch ? rbx : wrapper_buffer; Label suspend; if (stack_switch) { SwitchToAllocatedStack(masm, kWasmInstanceRegister, wrapper_buffer, original_fp, new_wrapper_buffer, rax, &suspend); } __ movq(MemOperand(rbp, JSToWasmWrapperFrameConstants::kWrapperBufferOffset), new_wrapper_buffer); if (stack_switch) { __ movq(MemOperand(rbp, StackSwitchFrameConstants::kInstanceOffset), kWasmInstanceRegister); Register result_array = kScratchRegister; __ movq(result_array, MemOperand(original_fp, JSToWasmWrapperFrameConstants::kResultArrayParamOffset)); __ movq(MemOperand(rbp, StackSwitchFrameConstants::kResultArrayOffset), result_array); } Register result_size = rax; __ movq( result_size, MemOperand( wrapper_buffer, JSToWasmWrapperFrameConstants::kWrapperBufferStackReturnBufferSize)); __ shlq(result_size, Immediate(kSystemPointerSizeLog2)); __ subq(rsp, result_size); __ movq( MemOperand( new_wrapper_buffer, JSToWasmWrapperFrameConstants::kWrapperBufferStackReturnBufferStart), rsp); Register call_target = rdi; // param_start should not alias with any parameter registers. Register params_start = r11; __ movq(params_start, MemOperand(wrapper_buffer, JSToWasmWrapperFrameConstants::kWrapperBufferParamStart)); Register params_end = rbx; __ movq(params_end, MemOperand(wrapper_buffer, JSToWasmWrapperFrameConstants::kWrapperBufferParamEnd)); __ movq(call_target, MemOperand(wrapper_buffer, JSToWasmWrapperFrameConstants::kWrapperBufferCallTarget)); Register last_stack_param = rcx; // The first GP parameter is the instance, which we handle specially. int stack_params_offset = (arraysize(wasm::kGpParamRegisters) - 1) * kSystemPointerSize + arraysize(wasm::kFpParamRegisters) * kDoubleSize; __ leaq(last_stack_param, MemOperand(params_start, stack_params_offset)); Label loop_start; __ bind(&loop_start); Label finish_stack_params; __ cmpq(last_stack_param, params_end); __ j(greater_equal, &finish_stack_params); // Push parameter __ subq(params_end, Immediate(kSystemPointerSize)); __ pushq(MemOperand(params_end, 0)); __ jmp(&loop_start); __ bind(&finish_stack_params); int next_offset = 0; for (size_t i = 1; i < arraysize(wasm::kGpParamRegisters); ++i) { // Check that {params_start} does not overlap with any of the parameter // registers, so that we don't overwrite it by accident with the loads // below. DCHECK_NE(params_start, wasm::kGpParamRegisters[i]); __ movq(wasm::kGpParamRegisters[i], MemOperand(params_start, next_offset)); next_offset += kSystemPointerSize; } for (size_t i = 0; i < arraysize(wasm::kFpParamRegisters); ++i) { __ Movsd(wasm::kFpParamRegisters[i], MemOperand(params_start, next_offset)); next_offset += kDoubleSize; } DCHECK_EQ(next_offset, stack_params_offset); Register thread_in_wasm_flag_addr = r12; __ movq( thread_in_wasm_flag_addr, MemOperand(kRootRegister, Isolate::thread_in_wasm_flag_address_offset())); __ movl(MemOperand(thread_in_wasm_flag_addr, 0), Immediate(1)); __ call(call_target); __ movq( thread_in_wasm_flag_addr, MemOperand(kRootRegister, Isolate::thread_in_wasm_flag_address_offset())); __ movl(MemOperand(thread_in_wasm_flag_addr, 0), Immediate(0)); thread_in_wasm_flag_addr = no_reg; wrapper_buffer = rcx; for (size_t i = 0; i < arraysize(wasm::kGpReturnRegisters); ++i) { DCHECK_NE(wrapper_buffer, wasm::kGpReturnRegisters[i]); } __ movq(wrapper_buffer, MemOperand(rbp, JSToWasmWrapperFrameConstants::kWrapperBufferOffset)); __ Movsd(MemOperand( wrapper_buffer, JSToWasmWrapperFrameConstants::kWrapperBufferFPReturnRegister1), wasm::kFpReturnRegisters[0]); __ Movsd(MemOperand( wrapper_buffer, JSToWasmWrapperFrameConstants::kWrapperBufferFPReturnRegister2), wasm::kFpReturnRegisters[1]); __ movq(MemOperand( wrapper_buffer, JSToWasmWrapperFrameConstants::kWrapperBufferGPReturnRegister1), wasm::kGpReturnRegisters[0]); __ movq(MemOperand( wrapper_buffer, JSToWasmWrapperFrameConstants::kWrapperBufferGPReturnRegister2), wasm::kGpReturnRegisters[1]); // Call the return value builtin with // rax: wasm instance. // rbx: the result JSArray for multi-return. // rcx: pointer to the byte buffer which contains all parameters. if (stack_switch) { __ movq(rbx, MemOperand(rbp, StackSwitchFrameConstants::kResultArrayOffset)); __ movq(rax, MemOperand(rbp, StackSwitchFrameConstants::kInstanceOffset)); } else { __ movq(rbx, MemOperand(rbp, JSToWasmWrapperFrameConstants::kResultArrayParamOffset)); __ movq(rax, MemOperand( rbp, JSToWasmWrapperFrameConstants::kInstanceParamOffset)); } __ Call(BUILTIN_CODE(masm->isolate(), JSToWasmHandleReturns), RelocInfo::CODE_TARGET); Label return_promise; if (stack_switch) { SwitchBackAndReturnPromise(masm, rbx, rcx, &return_promise); } __ bind(&suspend); __ LeaveFrame(stack_switch ? StackFrame::STACK_SWITCH : StackFrame::JS_TO_WASM); __ ret(0); // Catch handler for the stack-switching wrapper: reject the promise with the // thrown exception. if (stack_switch) { GenerateExceptionHandlingLandingPad(masm, &return_promise); } } } // namespace void Builtins::Generate_JSToWasmWrapperAsm(MacroAssembler* masm) { JSToWasmWrapperHelper(masm, false); } void Builtins::Generate_WasmReturnPromiseOnSuspendAsm(MacroAssembler* masm) { JSToWasmWrapperHelper(masm, true); } void Builtins::Generate_WasmToJsWrapperAsm(MacroAssembler* masm) { // Pop the return address into a scratch register and push it later again. The // return address has to be on top of the stack after all registers have been // pushed, so that the return instruction can find it. __ popq(kScratchRegister); int required_stack_space = arraysize(wasm::kFpParamRegisters) * kDoubleSize; __ subq(rsp, Immediate(required_stack_space)); for (int i = 0; i < static_cast<int>(arraysize(wasm::kFpParamRegisters)); ++i) { __ Movsd(MemOperand(rsp, i * kDoubleSize), wasm::kFpParamRegisters[i]); } // Push the GP registers in reverse order so that they are on the stack like // in an array, with the first item being at the lowest address. for (size_t i = arraysize(wasm::kGpParamRegisters) - 1; i > 0; --i) { __ pushq(wasm::kGpParamRegisters[i]); } // Decrement the stack to allocate a stack slot. The signature gets written // into the slot in Torque. __ pushq(rax); // Push the return address again. __ pushq(kScratchRegister); __ TailCallBuiltin(Builtin::kWasmToJsWrapperCSA); } void Builtins::Generate_WasmSuspend(MacroAssembler* masm) { // Set up the stackframe. __ EnterFrame(StackFrame::STACK_SWITCH); Register suspender = rax; __ AllocateStackSpace(StackSwitchFrameConstants::kNumSpillSlots * kSystemPointerSize); // Set a sentinel value for the spill slots visited by the GC. ResetStackSwitchFrameStackSlots(masm); // ------------------------------------------- // Save current state in active jump buffer. // ------------------------------------------- Label resume; Register continuation = rcx; __ LoadRoot(continuation, RootIndex::kActiveContinuation); Register jmpbuf = rdx; __ LoadExternalPointerField( jmpbuf, FieldOperand(continuation, WasmContinuationObject::kJmpbufOffset), kWasmContinuationJmpbufTag, r8); FillJumpBuffer(masm, jmpbuf, &resume); SwitchStackState(masm, jmpbuf, wasm::JumpBuffer::Active, wasm::JumpBuffer::Inactive); __ StoreTaggedSignedField( FieldOperand(suspender, WasmSuspenderObject::kStateOffset), Smi::FromInt(WasmSuspenderObject::kSuspended)); jmpbuf = no_reg; // live: [rax, rbx, rcx] Register suspender_continuation = rdx; __ LoadTaggedField( suspender_continuation, FieldOperand(suspender, WasmSuspenderObject::kContinuationOffset)); #ifdef DEBUG // ------------------------------------------- // Check that the suspender's continuation is the active continuation. // ------------------------------------------- // TODO(thibaudm): Once we add core stack-switching instructions, this check // will not hold anymore: it's possible that the active continuation changed // (due to an internal switch), so we have to update the suspender. __ cmpq(suspender_continuation, continuation); Label ok; __ j(equal, &ok); __ Trap(); __ bind(&ok); #endif // ------------------------------------------- // Update roots. // ------------------------------------------- Register caller = rcx; __ LoadTaggedField(caller, FieldOperand(suspender_continuation, WasmContinuationObject::kParentOffset)); __ movq(masm->RootAsOperand(RootIndex::kActiveContinuation), caller); Register parent = rdx; __ LoadTaggedField( parent, FieldOperand(suspender, WasmSuspenderObject::kParentOffset)); __ movq(masm->RootAsOperand(RootIndex::kActiveSuspender), parent); parent = no_reg; // live: [rax, rcx] // ------------------------------------------- // Load jump buffer. // ------------------------------------------- SyncStackLimit(masm, caller, suspender); jmpbuf = caller; __ LoadExternalPointerField( jmpbuf, FieldOperand(caller, WasmContinuationObject::kJmpbufOffset), kWasmContinuationJmpbufTag, r8); caller = no_reg; __ LoadTaggedField( kReturnRegister0, FieldOperand(suspender, WasmSuspenderObject::kPromiseOffset)); MemOperand GCScanSlotPlace = MemOperand(rbp, StackSwitchFrameConstants::kGCScanSlotCountOffset); __ Move(GCScanSlotPlace, 0); LoadJumpBuffer(masm, jmpbuf, true); __ Trap(); __ bind(&resume); __ LeaveFrame(StackFrame::STACK_SWITCH); __ ret(0); } namespace { // Resume the suspender stored in the closure. We generate two variants of this // builtin: the onFulfilled variant resumes execution at the saved PC and // forwards the value, the onRejected variant throws the value. void Generate_WasmResumeHelper(MacroAssembler* masm, wasm::OnResume on_resume) { __ EnterFrame(StackFrame::STACK_SWITCH); Register param_count = rax; __ decq(param_count); // Exclude receiver. Register closure = kJSFunctionRegister; // rdi __ AllocateStackSpace(StackSwitchFrameConstants::kNumSpillSlots * kSystemPointerSize); // Set a sentinel value for the spill slots visited by the GC. ResetStackSwitchFrameStackSlots(masm); param_count = no_reg; // ------------------------------------------- // Load suspender from closure. // ------------------------------------------- Register sfi = closure; __ LoadTaggedField( sfi, MemOperand( closure, wasm::ObjectAccess::SharedFunctionInfoOffsetInTaggedJSFunction())); Register function_data = sfi; __ LoadTaggedField( function_data, FieldOperand(sfi, SharedFunctionInfo::kFunctionDataOffset)); // The write barrier uses a fixed register for the host object (rdi). The next // barrier is on the suspender, so load it in rdi directly. Register suspender = rdi; __ LoadTaggedField( suspender, FieldOperand(function_data, WasmResumeData::kSuspenderOffset)); // Check the suspender state. Label suspender_is_suspended; Register state = rdx; __ LoadTaggedSignedField( state, FieldOperand(suspender, WasmSuspenderObject::kStateOffset)); __ SmiCompare(state, Smi::FromInt(WasmSuspenderObject::kSuspended)); __ j(equal, &suspender_is_suspended); __ Trap(); // TODO(thibaudm): Throw a wasm trap. closure = no_reg; sfi = no_reg; __ bind(&suspender_is_suspended); // ------------------------------------------- // Save current state. // ------------------------------------------- Label suspend; Register active_continuation = r9; __ LoadRoot(active_continuation, RootIndex::kActiveContinuation); Register current_jmpbuf = rax; __ LoadExternalPointerField( current_jmpbuf, FieldOperand(active_continuation, WasmContinuationObject::kJmpbufOffset), kWasmContinuationJmpbufTag, rdx); FillJumpBuffer(masm, current_jmpbuf, &suspend); SwitchStackState(masm, current_jmpbuf, wasm::JumpBuffer::Active, wasm::JumpBuffer::Inactive); current_jmpbuf = no_reg; // ------------------------------------------- // Set the suspender and continuation parents and update the roots // ------------------------------------------- Register active_suspender = rcx; Register slot_address = WriteBarrierDescriptor::SlotAddressRegister(); // Check that the fixed register isn't one that is already in use. DCHECK(slot_address == rbx || slot_address == r8); __ LoadRoot(active_suspender, RootIndex::kActiveSuspender); __ StoreTaggedField( FieldOperand(suspender, WasmSuspenderObject::kParentOffset), active_suspender); __ RecordWriteField(suspender, WasmSuspenderObject::kParentOffset, active_suspender, slot_address, SaveFPRegsMode::kIgnore); __ StoreTaggedSignedField( FieldOperand(suspender, WasmSuspenderObject::kStateOffset), Smi::FromInt(WasmSuspenderObject::kActive)); __ movq(masm->RootAsOperand(RootIndex::kActiveSuspender), suspender); Register target_continuation = suspender; __ LoadTaggedField( target_continuation, FieldOperand(suspender, WasmSuspenderObject::kContinuationOffset)); suspender = no_reg; __ StoreTaggedField( FieldOperand(target_continuation, WasmContinuationObject::kParentOffset), active_continuation); __ RecordWriteField( target_continuation, WasmContinuationObject::kParentOffset, active_continuation, slot_address, SaveFPRegsMode::kIgnore); active_continuation = no_reg; __ movq(masm->RootAsOperand(RootIndex::kActiveContinuation), target_continuation); SyncStackLimit(masm, target_continuation); // ------------------------------------------- // Load state from target jmpbuf (longjmp). // ------------------------------------------- Register target_jmpbuf = rdi; __ LoadExternalPointerField( target_jmpbuf, FieldOperand(target_continuation, WasmContinuationObject::kJmpbufOffset), kWasmContinuationJmpbufTag, rax); // Move resolved value to return register. __ movq(kReturnRegister0, Operand(rbp, 3 * kSystemPointerSize)); __ Move(MemOperand(rbp, StackSwitchFrameConstants::kGCScanSlotCountOffset), 0); if (on_resume == wasm::OnResume::kThrow) { // Switch to the continuation's stack without restoring the PC. LoadJumpBuffer(masm, target_jmpbuf, false); // Pop this frame now. The unwinder expects that the first STACK_SWITCH // frame is the outermost one. __ LeaveFrame(StackFrame::STACK_SWITCH); // Forward the onRejected value to kThrow. __ pushq(kReturnRegister0); __ Move(kContextRegister, Smi::zero()); __ CallRuntime(Runtime::kThrow); } else { // Resume the continuation normally. LoadJumpBuffer(masm, target_jmpbuf, true); } __ Trap(); __ bind(&suspend); __ LeaveFrame(StackFrame::STACK_SWITCH); // Pop receiver + parameter. __ ret(2 * kSystemPointerSize); } } // namespace void Builtins::Generate_WasmResume(MacroAssembler* masm) { Generate_WasmResumeHelper(masm, wasm::OnResume::kContinue); } void Builtins::Generate_WasmReject(MacroAssembler* masm) { Generate_WasmResumeHelper(masm, wasm::OnResume::kThrow); } void Builtins::Generate_WasmOnStackReplace(MacroAssembler* masm) { MemOperand OSRTargetSlot(rbp, -wasm::kOSRTargetOffset); __ movq(kScratchRegister, OSRTargetSlot); __ Move(OSRTargetSlot, 0); __ jmp(kScratchRegister); } namespace { static constexpr Register kOldSPRegister = r12; void SwitchToTheCentralStackIfNeeded(MacroAssembler* masm, int r12_stack_slot_index) { using ER = ExternalReference; // Store r12 value on the stack to restore on exit from the builtin. __ movq(ExitFrameStackSlotOperand(r12_stack_slot_index * kSystemPointerSize), r12); // kOldSPRegister used as a switch flag, if it is zero - no switch performed // if it is not zero, it contains old sp value. __ Move(kOldSPRegister, 0); // Using arg1-2 regs as temporary registers, because they will be rewritten // before exiting to native code anyway. DCHECK(!AreAliased(arg_reg_1, arg_reg_2, kOldSPRegister, rax, rbx, r15)); ER on_central_stack_flag = ER::Create( IsolateAddressId::kIsOnCentralStackFlagAddress, masm->isolate()); Label do_not_need_to_switch; __ cmpb(__ ExternalReferenceAsOperand(on_central_stack_flag), Immediate(0)); __ j(not_zero, &do_not_need_to_switch); // Perform switching to the central stack. __ movq(kOldSPRegister, rsp); static constexpr Register argc_input = rax; Register central_stack_sp = arg_reg_2; DCHECK(!AreAliased(central_stack_sp, argc_input)); { FrameScope scope(masm, StackFrame::MANUAL); __ pushq(argc_input); __ Move(arg_reg_1, ER::isolate_address(masm->isolate())); __ Move(arg_reg_2, kOldSPRegister); __ PrepareCallCFunction(2); __ CallCFunction(ER::wasm_switch_to_the_central_stack(), 2); __ movq(central_stack_sp, kReturnRegister0); __ popq(argc_input); } static constexpr int kReturnAddressSlotOffset = 1 * kSystemPointerSize; __ subq(central_stack_sp, Immediate(kReturnAddressSlotOffset)); __ movq(rsp, central_stack_sp); // rsp should be aligned by 16 bytes, // but it is not guaranteed for stored SP. __ AlignStackPointer(); #ifdef V8_TARGET_OS_WIN // When we switch stack we leave home space allocated on the old stack. // Allocate home space on the central stack to prevent stack corruption. __ subq(rsp, Immediate(kWindowsHomeStackSlots * kSystemPointerSize)); #endif // V8_TARGET_OS_WIN // Update the sp saved in the frame. // It will be used to calculate the callee pc during GC. // The pc is going to be on the new stack segment, so rewrite it here. __ movq(Operand(rbp, ExitFrameConstants::kSPOffset), rsp); __ bind(&do_not_need_to_switch); } void SwitchFromTheCentralStackIfNeeded(MacroAssembler* masm, int r12_stack_slot_index) { using ER = ExternalReference; Label no_stack_change; __ cmpq(kOldSPRegister, Immediate(0)); __ j(equal, &no_stack_change); __ movq(rsp, kOldSPRegister); { FrameScope scope(masm, StackFrame::MANUAL); __ pushq(kReturnRegister0); __ pushq(kReturnRegister1); __ Move(arg_reg_1, ER::isolate_address(masm->isolate())); __ PrepareCallCFunction(1); __ CallCFunction(ER::wasm_switch_from_the_central_stack(), 1); __ popq(kReturnRegister1); __ popq(kReturnRegister0); } __ bind(&no_stack_change); // Restore previous value of r12. __ movq(r12, ExitFrameStackSlotOperand(r12_stack_slot_index * kSystemPointerSize)); } } // namespace #endif // V8_ENABLE_WEBASSEMBLY void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size, ArgvMode argv_mode, bool builtin_exit_frame, bool switch_to_central_stack) { CHECK(result_size == 1 || result_size == 2); using ER = ExternalReference; // rax: number of arguments including receiver // rbx: pointer to C function (C callee-saved) // rbp: frame pointer of calling JS frame (restored after C call) // rsp: stack pointer (restored after C call) // rsi: current context (restored) // // If argv_mode == ArgvMode::kRegister: // r15: pointer to the first argument const int kSwitchToTheCentralStackSlots = switch_to_central_stack ? 1 : 0; #ifdef V8_TARGET_OS_WIN // Windows 64-bit ABI only allows a single-word to be returned in register // rax. Larger return sizes must be written to an address passed as a hidden // first argument. static constexpr int kMaxRegisterResultSize = 1; const int kReservedStackSlots = kSwitchToTheCentralStackSlots + (result_size <= kMaxRegisterResultSize ? 0 : result_size); #else // Simple results are returned in rax, and a struct of two pointers are // returned in rax+rdx. static constexpr int kMaxRegisterResultSize = 2; const int kReservedStackSlots = kSwitchToTheCentralStackSlots; CHECK_LE(result_size, kMaxRegisterResultSize); #endif // V8_TARGET_OS_WIN #if V8_ENABLE_WEBASSEMBLY const int kR12SpillSlot = kReservedStackSlots - 1; #endif // V8_ENABLE_WEBASSEMBLY __ EnterExitFrame( kReservedStackSlots, builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT, rbx); // Set up argv in a callee-saved register. It is reused below so it must be // retained across the C call. In case of ArgvMode::kRegister, r15 has // already been set by the caller. static constexpr Register kArgvRegister = r15; if (argv_mode == ArgvMode::kStack) { int offset = StandardFrameConstants::kFixedFrameSizeAboveFp - kReceiverOnStackSize; __ leaq(kArgvRegister, Operand(rbp, rax, times_system_pointer_size, offset)); } // rbx: pointer to builtin function (C callee-saved). // rbp: frame pointer of exit frame (restored after C call). // rsp: stack pointer (restored after C call). // rax: number of arguments including receiver // r15: argv pointer (C callee-saved). #if V8_ENABLE_WEBASSEMBLY if (switch_to_central_stack) { SwitchToTheCentralStackIfNeeded(masm, kR12SpillSlot); } #endif // V8_ENABLE_WEBASSEMBLY // Check stack alignment. if (v8_flags.debug_code) { __ CheckStackAlignment(); } // Call C function. The arguments object will be created by stubs declared by // DECLARE_RUNTIME_FUNCTION(). if (result_size <= kMaxRegisterResultSize) { // Pass a pointer to the Arguments object as the first argument. // Return result in single register (rax), or a register pair (rax, rdx). __ movq(arg_reg_1, rax); // argc. __ movq(arg_reg_2, kArgvRegister); // argv. __ Move(arg_reg_3, ER::isolate_address(masm->isolate())); } else { #ifdef V8_TARGET_OS_WIN DCHECK_LE(result_size, 2); // Pass a pointer to the result location as the first argument. __ leaq(arg_reg_1, ExitFrameStackSlotOperand(0 * kSystemPointerSize)); // Pass a pointer to the Arguments object as the second argument. __ movq(arg_reg_2, rax); // argc. __ movq(arg_reg_3, kArgvRegister); // argv. __ Move(arg_reg_4, ER::isolate_address(masm->isolate())); #else UNREACHABLE(); #endif // V8_TARGET_OS_WIN } __ call(rbx); #ifdef V8_TARGET_OS_WIN if (result_size > kMaxRegisterResultSize) { // Read result values stored on stack. DCHECK_EQ(result_size, 2); __ movq(kReturnRegister0, ExitFrameStackSlotOperand(0 * kSystemPointerSize)); __ movq(kReturnRegister1, ExitFrameStackSlotOperand(1 * kSystemPointerSize)); } #endif // V8_TARGET_OS_WIN // Result is in rax or rdx:rax - do not destroy these registers! #if V8_ENABLE_WEBASSEMBLY if (switch_to_central_stack) { SwitchFromTheCentralStackIfNeeded(masm, kR12SpillSlot); } #endif // V8_ENABLE_WEBASSEMBLY // Check result for exception sentinel. Label exception_returned; __ CompareRoot(rax, RootIndex::kException); __ j(equal, &exception_returned); // Check that there is no pending exception, otherwise we // should have returned the exception sentinel. if (v8_flags.debug_code) { Label okay; __ LoadRoot(kScratchRegister, RootIndex::kTheHoleValue); ER pending_exception_address = ER::Create(IsolateAddressId::kPendingExceptionAddress, masm->isolate()); __ cmp_tagged(kScratchRegister, masm->ExternalReferenceAsOperand(pending_exception_address)); __ j(equal, &okay, Label::kNear); __ int3(); __ bind(&okay); } __ LeaveExitFrame(); if (argv_mode == ArgvMode::kStack) { // Drop arguments and the receiver from the caller stack. __ PopReturnAddressTo(rcx); __ leaq(rsp, Operand(kArgvRegister, kReceiverOnStackSize)); __ PushReturnAddressFrom(rcx); } __ ret(0); // Handling of exception. __ bind(&exception_returned); ER pending_handler_context_address = ER::Create( IsolateAddressId::kPendingHandlerContextAddress, masm->isolate()); ER pending_handler_entrypoint_address = ER::Create( IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate()); ER pending_handler_fp_address = ER::Create(IsolateAddressId::kPendingHandlerFPAddress, masm->isolate()); ER pending_handler_sp_address = ER::Create(IsolateAddressId::kPendingHandlerSPAddress, masm->isolate()); // Ask the runtime for help to determine the handler. This will set rax to // contain the current pending exception, don't clobber it. ER find_handler = ER::Create(Runtime::kUnwindAndFindExceptionHandler); { FrameScope scope(masm, StackFrame::MANUAL); __ Move(arg_reg_1, 0); // argc. __ Move(arg_reg_2, 0); // argv. __ Move(arg_reg_3, ER::isolate_address(masm->isolate())); __ PrepareCallCFunction(3); __ CallCFunction(find_handler, 3); } #ifdef V8_ENABLE_CET_SHADOW_STACK // Drop frames from the shadow stack. ER num_frames_above_pending_handler_address = ER::Create( IsolateAddressId::kNumFramesAbovePendingHandlerAddress, masm->isolate()); __ movq(rcx, masm->ExternalReferenceAsOperand( num_frames_above_pending_handler_address)); __ IncsspqIfSupported(rcx, kScratchRegister); #endif // V8_ENABLE_CET_SHADOW_STACK // Retrieve the handler context, SP and FP. __ movq(rsi, masm->ExternalReferenceAsOperand(pending_handler_context_address)); __ movq(rsp, masm->ExternalReferenceAsOperand(pending_handler_sp_address)); __ movq(rbp, masm->ExternalReferenceAsOperand(pending_handler_fp_address)); // If the handler is a JS frame, restore the context to the frame. Note that // the context will be set to (rsi == 0) for non-JS frames. Label skip; __ testq(rsi, rsi); __ j(zero, &skip, Label::kNear); __ movq(Operand(rbp, StandardFrameConstants::kContextOffset), rsi); __ bind(&skip); // Clear c_entry_fp, like we do in `LeaveExitFrame`. ER c_entry_fp_address = ER::Create(IsolateAddressId::kCEntryFPAddress, masm->isolate()); Operand c_entry_fp_operand = masm->ExternalReferenceAsOperand(c_entry_fp_address); __ movq(c_entry_fp_operand, Immediate(0)); // Compute the handler entry address and jump to it. __ movq(rdi, masm->ExternalReferenceAsOperand(pending_handler_entrypoint_address)); __ jmp(rdi); } void Builtins::Generate_DoubleToI(MacroAssembler* masm) { Label check_negative, process_64_bits, done; // Account for return address and saved regs. const int kArgumentOffset = 4 * kSystemPointerSize; MemOperand mantissa_operand(MemOperand(rsp, kArgumentOffset)); MemOperand exponent_operand( MemOperand(rsp, kArgumentOffset + kDoubleSize / 2)); // The result is returned on the stack. MemOperand return_operand = mantissa_operand; Register scratch1 = rbx; // Since we must use rcx for shifts below, use some other register (rax) // to calculate the result if ecx is the requested return register. Register result_reg = rax; // Save ecx if it isn't the return register and therefore volatile, or if it // is the return register, then save the temp register we use in its stead // for the result. Register save_reg = rax; __ pushq(rcx); __ pushq(scratch1); __ pushq(save_reg); __ movl(scratch1, mantissa_operand); __ Movsd(kScratchDoubleReg, mantissa_operand); __ movl(rcx, exponent_operand); __ andl(rcx, Immediate(HeapNumber::kExponentMask)); __ shrl(rcx, Immediate(HeapNumber::kExponentShift)); __ leal(result_reg, MemOperand(rcx, -HeapNumber::kExponentBias)); __ cmpl(result_reg, Immediate(HeapNumber::kMantissaBits)); __ j(below, &process_64_bits, Label::kNear); // Result is entirely in lower 32-bits of mantissa int delta = HeapNumber::kExponentBias + base::Double::kPhysicalSignificandSize; __ subl(rcx, Immediate(delta)); __ xorl(result_reg, result_reg); __ cmpl(rcx, Immediate(31)); __ j(above, &done, Label::kNear); __ shll_cl(scratch1); __ jmp(&check_negative, Label::kNear); __ bind(&process_64_bits); __ Cvttsd2siq(result_reg, kScratchDoubleReg); __ jmp(&done, Label::kNear); // If the double was negative, negate the integer result. __ bind(&check_negative); __ movl(result_reg, scratch1); __ negl(result_reg); __ cmpl(exponent_operand, Immediate(0)); __ cmovl(greater, result_reg, scratch1); // Restore registers __ bind(&done); __ movl(return_operand, result_reg); __ popq(save_reg); __ popq(scratch1); __ popq(rcx); __ ret(0); } // TODO(jgruber): Instead of explicitly setting up implicit_args_ on the stack // in CallApiCallback, we could use the calling convention to set up the stack // correctly in the first place. // // TODO(jgruber): I suspect that most of CallApiCallback could be implemented // as a C++ trampoline, vastly simplifying the assembly implementation. void Builtins::Generate_CallApiCallbackImpl(MacroAssembler* masm, CallApiCallbackMode mode) { // ----------- S t a t e ------------- // CallApiCallbackMode::kGeneric mode: // -- rcx : arguments count (not including the receiver) // -- rbx : call handler info // -- r8 : holder // CallApiCallbackMode::kOptimizedNoProfiling/kOptimized modes: // -- rdx : api function address // -- rcx : arguments count (not including the receiver) // -- rbx : call data // -- rdi : holder // Both modes: // -- rsi : context // -- rsp[0] : return address // -- rsp[8] : argument 0 (receiver) // -- rsp[16] : argument 1 // -- ... // -- rsp[argc * 8] : argument (argc - 1) // -- rsp[(argc + 1) * 8] : argument argc // ----------------------------------- Register function_callback_info_arg = arg_reg_1; Register api_function_address = no_reg; Register argc = no_reg; Register call_data = no_reg; Register callback = no_reg; Register holder = no_reg; Register scratch = rax; Register scratch2 = no_reg; switch (mode) { case CallApiCallbackMode::kGeneric: api_function_address = rdx; scratch2 = r9; argc = CallApiCallbackGenericDescriptor::ActualArgumentsCountRegister(); callback = CallApiCallbackGenericDescriptor::CallHandlerInfoRegister(); holder = CallApiCallbackGenericDescriptor::HolderRegister(); break; case CallApiCallbackMode::kOptimizedNoProfiling: case CallApiCallbackMode::kOptimized: api_function_address = CallApiCallbackOptimizedDescriptor::ApiFunctionAddressRegister(); argc = CallApiCallbackOptimizedDescriptor::ActualArgumentsCountRegister(); call_data = CallApiCallbackOptimizedDescriptor::CallDataRegister(); holder = CallApiCallbackOptimizedDescriptor::HolderRegister(); break; } DCHECK(!AreAliased(api_function_address, argc, holder, call_data, callback, scratch, scratch2, kScratchRegister)); using FCA = FunctionCallbackArguments; static_assert(FCA::kArgsLength == 6); static_assert(FCA::kNewTargetIndex == 5); static_assert(FCA::kDataIndex == 4); static_assert(FCA::kReturnValueIndex == 3); static_assert(FCA::kUnusedIndex == 2); static_assert(FCA::kIsolateIndex == 1); static_assert(FCA::kHolderIndex == 0); // Set up FunctionCallbackInfo's implicit_args on the stack as follows: // // Current state: // rsp[0]: return address // // Target state: // rsp[0 * kSystemPointerSize]: return address // rsp[1 * kSystemPointerSize]: kHolder <= implicit_args_ // rsp[2 * kSystemPointerSize]: kIsolate // rsp[3 * kSystemPointerSize]: undefined (padding, unused) // rsp[4 * kSystemPointerSize]: undefined (kReturnValue) // rsp[5 * kSystemPointerSize]: kData // rsp[6 * kSystemPointerSize]: undefined (kNewTarget) // Existing state: // rsp[7 * kSystemPointerSize]: <= FCA:::values_ __ PopReturnAddressTo(scratch); __ LoadRoot(kScratchRegister, RootIndex::kUndefinedValue); __ Push(kScratchRegister); // kNewTarget switch (mode) { case CallApiCallbackMode::kGeneric: __ PushTaggedField(FieldOperand(callback, CallHandlerInfo::kDataOffset), scratch2); break; case CallApiCallbackMode::kOptimizedNoProfiling: case CallApiCallbackMode::kOptimized: __ Push(call_data); break; } __ Push(kScratchRegister); // kReturnValue __ Push(kScratchRegister); // kUnused __ PushAddress(ExternalReference::isolate_address(masm->isolate())); __ Push(holder); // Keep a pointer to kHolder (= implicit_args) in a {holder} register. // We use it below to set up the FunctionCallbackInfo object. __ movq(holder, rsp); // Allocate v8::FunctionCallbackInfo object and a number of bytes to drop // from the stack after the callback in non-GCed space of the exit frame. static constexpr int kApiStackSpace = 4; static_assert((kApiStackSpace - 1) * kSystemPointerSize == FCA::kSize); const int exit_frame_params_count = mode == CallApiCallbackMode::kGeneric ? ApiCallbackExitFrameConstants::kAdditionalParametersCount : 0; if (mode == CallApiCallbackMode::kGeneric) { ASM_CODE_COMMENT_STRING(masm, "Push API_CALLBACK_EXIT frame arguments"); // No padding is required. static_assert(ApiCallbackExitFrameConstants::kOptionalPaddingSize == 0); // Context parameter. static_assert(ApiCallbackExitFrameConstants::kContextOffset == 4 * kSystemPointerSize); __ Push(kContextRegister); // Argc parameter as a Smi. static_assert(ApiCallbackExitFrameConstants::kArgcOffset == 3 * kSystemPointerSize); __ Move(kScratchRegister, argc); __ SmiTag(kScratchRegister); __ Push(kScratchRegister); // argc as a Smi // Target parameter. static_assert(ApiCallbackExitFrameConstants::kTargetOffset == 2 * kSystemPointerSize); __ PushTaggedField( FieldOperand(callback, CallHandlerInfo::kOwnerTemplateOffset), scratch2); __ PushReturnAddressFrom(scratch); __ LoadExternalPointerField( api_function_address, FieldOperand(callback, CallHandlerInfo::kMaybeRedirectedCallbackOffset), kCallHandlerInfoCallbackTag, kScratchRegister); __ EnterExitFrame(kApiStackSpace, StackFrame::API_CALLBACK_EXIT, api_function_address); } else { __ PushReturnAddressFrom(scratch); __ EnterExitFrame(kApiStackSpace, StackFrame::EXIT, api_function_address); } { ASM_CODE_COMMENT_STRING(masm, "Initialize FunctionCallbackInfo"); // FunctionCallbackInfo::implicit_args_ (points at kHolder as set up above). __ movq(ExitFrameStackSlotOperand(FCA::kImplicitArgsOffset), holder); // FunctionCallbackInfo::values_ (points at the first varargs argument // passed on the stack). __ leaq(holder, Operand(holder, FCA::kArgsLengthWithReceiver * kSystemPointerSize)); __ movq(ExitFrameStackSlotOperand(FCA::kValuesOffset), holder); // FunctionCallbackInfo::length_. __ movq(ExitFrameStackSlotOperand(FCA::kLengthOffset), argc); } // We also store the number of bytes to drop from the stack after returning // from the API function here. constexpr int kBytesToDropOffset = FCA::kLengthOffset + kSystemPointerSize; static_assert(kBytesToDropOffset == (kApiStackSpace - 1) * kSystemPointerSize); __ leaq(kScratchRegister, Operand(argc, times_system_pointer_size, (FCA::kArgsLengthWithReceiver + exit_frame_params_count) * kSystemPointerSize)); __ movq(ExitFrameStackSlotOperand(kBytesToDropOffset), kScratchRegister); __ RecordComment("v8::FunctionCallback's argument."); __ leaq(function_callback_info_arg, ExitFrameStackSlotOperand(FCA::kImplicitArgsOffset)); DCHECK(!AreAliased(api_function_address, function_callback_info_arg)); ExternalReference thunk_ref = ExternalReference::invoke_function_callback(mode); // Pass api function address to thunk wrapper in case profiler or side-effect // checking is enabled. Register thunk_arg = api_function_address; Operand return_value_operand = ExitFrameCallerStackSlotOperand( FCA::kReturnValueIndex + exit_frame_params_count); static constexpr int kUseExitFrameStackSlotOperand = 0; Operand stack_space_operand = ExitFrameStackSlotOperand(kBytesToDropOffset); const bool with_profiling = mode != CallApiCallbackMode::kOptimizedNoProfiling; Label* no_done = nullptr; CallApiFunctionAndReturn(masm, with_profiling, api_function_address, thunk_ref, thunk_arg, kUseExitFrameStackSlotOperand, &stack_space_operand, return_value_operand, no_done); } void Builtins::Generate_CallApiGetter(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rsi : context // -- rdx : receiver // -- rcx : holder // -- rbx : accessor info // -- rsp[0] : return address // ----------------------------------- Register name_arg = arg_reg_1; Register property_callback_info_arg = arg_reg_2; Register api_function_address = r8; Register receiver = ApiGetterDescriptor::ReceiverRegister(); Register holder = ApiGetterDescriptor::HolderRegister(); Register callback = ApiGetterDescriptor::CallbackRegister(); Register scratch = rax; Register decompr_scratch1 = COMPRESS_POINTERS_BOOL ? r15 : no_reg; DCHECK(!AreAliased(receiver, holder, callback, scratch, decompr_scratch1)); // Build v8::PropertyCallbackInfo::args_ array on the stack and push property // name below the exit frame to make GC aware of them. using PCI = PropertyCallbackInfo<v8::Value>; using PCA = PropertyCallbackArguments; static_assert(PCA::kShouldThrowOnErrorIndex == 0); static_assert(PCA::kHolderIndex == 1); static_assert(PCA::kIsolateIndex == 2); static_assert(PCA::kUnusedIndex == 3); static_assert(PCA::kReturnValueIndex == 4); static_assert(PCA::kDataIndex == 5); static_assert(PCA::kThisIndex == 6); static_assert(PCA::kArgsLength == 7); // Set up PropertyCallbackInfo's args_ on the stack as follows: // // Current state: // rsp[0]: return address // // Target state: // rsp[0 * kSystemPointerSize]: return address // rsp[1 * kSystemPointerSize]: name // rsp[2 * kSystemPointerSize]: kShouldThrowOnErrorIndex <= PCI:args_ // rsp[3 * kSystemPointerSize]: kHolderIndex // rsp[4 * kSystemPointerSize]: kIsolateIndex // rsp[5 * kSystemPointerSize]: kUnusedIndex // rsp[6 * kSystemPointerSize]: kReturnValueIndex // rsp[7 * kSystemPointerSize]: kDataIndex // rsp[8 * kSystemPointerSize]: kThisIndex / receiver __ PopReturnAddressTo(scratch); __ Push(receiver); __ PushTaggedField(FieldOperand(callback, AccessorInfo::kDataOffset), decompr_scratch1); __ LoadRoot(kScratchRegister, RootIndex::kUndefinedValue); __ Push(kScratchRegister); // return value __ Push(Smi::zero()); // unused value __ PushAddress(ExternalReference::isolate_address(masm->isolate())); __ Push(holder); __ Push(Smi::zero()); // should_throw_on_error -> false // Initialize a pointer to PropertyCallbackInfo::args_ array (= &ShouldThrow). Register args_array = ReassignRegister(holder); __ Move(args_array, rsp); __ PushTaggedField(FieldOperand(callback, AccessorInfo::kNameOffset), decompr_scratch1); __ PushReturnAddressFrom(scratch); // v8::PropertyCallbackInfo::args_ array and name handle. static constexpr int kNameOnStackSize = 1; static constexpr int kStackUnwindSpace = PCA::kArgsLength + kNameOnStackSize; // Allocate v8::PropertyCallbackInfo in non-GCed stack space. static constexpr int kApiStackSpace = 1; static_assert(kApiStackSpace * kSystemPointerSize == sizeof(PCI)); __ EnterExitFrame(kApiStackSpace, StackFrame::EXIT, api_function_address); __ RecordComment("Create v8::PropertyCallbackInfo object on the stack."); // Initialize v8::PropertyCallbackInfo::args_ field. Operand info_object = ExitFrameStackSlotOperand(0); __ movq(info_object, args_array); // name_arg = Handle<Name>(&name), name value was pushed to GC-ed stack space. __ leaq(name_arg, Operand(args_array, -kSystemPointerSize)); // The context register (rsi) might overlap with property_callback_info_arg // but the context value has been saved in EnterExitFrame and thus it could // be used to pass arguments. // property_callback_info_arg = v8::PropertyCallbackInfo& __ leaq(property_callback_info_arg, info_object); __ RecordComment("Load api_function_address"); __ LoadExternalPointerField( api_function_address, FieldOperand(callback, AccessorInfo::kMaybeRedirectedGetterOffset), kAccessorInfoGetterTag, kScratchRegister); DCHECK( !AreAliased(api_function_address, property_callback_info_arg, name_arg)); ExternalReference thunk_ref = ExternalReference::invoke_accessor_getter_callback(); // Pass AccessorInfo to thunk wrapper in case profiler or side-effect // checking is enabled. Register thunk_arg = callback; Operand return_value_operand = ExitFrameCallerStackSlotOperand( PCA::kReturnValueIndex + kNameOnStackSize); Operand* const kUseStackSpaceConstant = nullptr; const bool with_profiling = true; Label* no_done = nullptr; CallApiFunctionAndReturn( masm, with_profiling, api_function_address, thunk_ref, thunk_arg, kStackUnwindSpace, kUseStackSpaceConstant, return_value_operand, no_done); } void Builtins::Generate_DirectCEntry(MacroAssembler* masm) { __ int3(); // Unused on this architecture. } namespace { void Generate_DeoptimizationEntry(MacroAssembler* masm, DeoptimizeKind deopt_kind) { Isolate* isolate = masm->isolate(); // Save all double registers, they will later be copied to the deoptimizer's // FrameDescription. static constexpr int kDoubleRegsSize = kDoubleSize * XMMRegister::kNumRegisters; __ AllocateStackSpace(kDoubleRegsSize); const RegisterConfiguration* config = RegisterConfiguration::Default(); for (int i = 0; i < config->num_allocatable_double_registers(); ++i) { int code = config->GetAllocatableDoubleCode(i); XMMRegister xmm_reg = XMMRegister::from_code(code); int offset = code * kDoubleSize; __ Movsd(Operand(rsp, offset), xmm_reg); } // Save all general purpose registers, they will later be copied to the // deoptimizer's FrameDescription. static constexpr int kNumberOfRegisters = Register::kNumRegisters; for (int i = 0; i < kNumberOfRegisters; i++) { __ pushq(Register::from_code(i)); } static constexpr int kSavedRegistersAreaSize = kNumberOfRegisters * kSystemPointerSize + kDoubleRegsSize; static constexpr int kCurrentOffsetToReturnAddress = kSavedRegistersAreaSize; static constexpr int kCurrentOffsetToParentSP = kCurrentOffsetToReturnAddress + kPCOnStackSize; __ Store( ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate), rbp); // Get the address of the location in the code object // and compute the fp-to-sp delta in register arg5. __ movq(arg_reg_3, Operand(rsp, kCurrentOffsetToReturnAddress)); // Load the fp-to-sp-delta. __ leaq(arg_reg_4, Operand(rsp, kCurrentOffsetToParentSP)); __ subq(arg_reg_4, rbp); __ negq(arg_reg_4); // Allocate a new deoptimizer object. __ PrepareCallCFunction(5); __ Move(rax, 0); Label context_check; __ movq(rdi, Operand(rbp, CommonFrameConstants::kContextOrFrameTypeOffset)); __ JumpIfSmi(rdi, &context_check); __ movq(rax, Operand(rbp, StandardFrameConstants::kFunctionOffset)); __ bind(&context_check); __ movq(arg_reg_1, rax); __ Move(arg_reg_2, static_cast<int>(deopt_kind)); // Args 3 and 4 are already in the right registers. // On windows put the arguments on the stack (PrepareCallCFunction // has created space for this). On linux pass the arguments in r8. #ifdef V8_TARGET_OS_WIN Register arg5 = r15; __ LoadAddress(arg5, ExternalReference::isolate_address(isolate)); __ movq(Operand(rsp, 4 * kSystemPointerSize), arg5); #else // r8 is arg_reg_5 on Linux __ LoadAddress(r8, ExternalReference::isolate_address(isolate)); #endif { AllowExternalCallThatCantCauseGC scope(masm); __ CallCFunction(ExternalReference::new_deoptimizer_function(), 5); } // Preserve deoptimizer object in register rax and get the input // frame descriptor pointer. __ movq(rbx, Operand(rax, Deoptimizer::input_offset())); // Fill in the input registers. for (int i = kNumberOfRegisters - 1; i >= 0; i--) { int offset = (i * kSystemPointerSize) + FrameDescription::registers_offset(); __ PopQuad(Operand(rbx, offset)); } // Fill in the double input registers. int double_regs_offset = FrameDescription::double_registers_offset(); for (int i = 0; i < XMMRegister::kNumRegisters; i++) { int dst_offset = i * kDoubleSize + double_regs_offset; __ popq(Operand(rbx, dst_offset)); } // Mark the stack as not iterable for the CPU profiler which won't be able to // walk the stack without the return address. __ movb(__ ExternalReferenceAsOperand( ExternalReference::stack_is_iterable_address(isolate)), Immediate(0)); // Remove the return address from the stack. __ addq(rsp, Immediate(kPCOnStackSize)); // Compute a pointer to the unwinding limit in register rcx; that is // the first stack slot not part of the input frame. __ movq(rcx, Operand(rbx, FrameDescription::frame_size_offset())); __ addq(rcx, rsp); // Unwind the stack down to - but not including - the unwinding // limit and copy the contents of the activation frame to the input // frame description. __ leaq(rdx, Operand(rbx, FrameDescription::frame_content_offset())); Label pop_loop_header; __ jmp(&pop_loop_header); Label pop_loop; __ bind(&pop_loop); __ Pop(Operand(rdx, 0)); __ addq(rdx, Immediate(sizeof(intptr_t))); __ bind(&pop_loop_header); __ cmpq(rcx, rsp); __ j(not_equal, &pop_loop); // Compute the output frame in the deoptimizer. __ pushq(rax); __ PrepareCallCFunction(2); __ movq(arg_reg_1, rax); __ LoadAddress(arg_reg_2, ExternalReference::isolate_address(isolate)); { AllowExternalCallThatCantCauseGC scope(masm); __ CallCFunction(ExternalReference::compute_output_frames_function(), 2); } __ popq(rax); __ movq(rsp, Operand(rax, Deoptimizer::caller_frame_top_offset())); // Replace the current (input) frame with the output frames. Label outer_push_loop, inner_push_loop, outer_loop_header, inner_loop_header; // Outer loop state: rax = current FrameDescription**, rdx = one past the // last FrameDescription**. __ movl(rdx, Operand(rax, Deoptimizer::output_count_offset())); __ movq(rax, Operand(rax, Deoptimizer::output_offset())); __ leaq(rdx, Operand(rax, rdx, times_system_pointer_size, 0)); __ jmp(&outer_loop_header); __ bind(&outer_push_loop); // Inner loop state: rbx = current FrameDescription*, rcx = loop index. __ movq(rbx, Operand(rax, 0)); __ movq(rcx, Operand(rbx, FrameDescription::frame_size_offset())); __ jmp(&inner_loop_header); __ bind(&inner_push_loop); __ subq(rcx, Immediate(sizeof(intptr_t))); __ Push(Operand(rbx, rcx, times_1, FrameDescription::frame_content_offset())); __ bind(&inner_loop_header); __ testq(rcx, rcx); __ j(not_zero, &inner_push_loop); __ addq(rax, Immediate(kSystemPointerSize)); __ bind(&outer_loop_header); __ cmpq(rax, rdx); __ j(below, &outer_push_loop); for (int i = 0; i < config->num_allocatable_double_registers(); ++i) { int code = config->GetAllocatableDoubleCode(i); XMMRegister xmm_reg = XMMRegister::from_code(code); int src_offset = code * kDoubleSize + double_regs_offset; __ Movsd(xmm_reg, Operand(rbx, src_offset)); } // Push pc and continuation from the last output frame. __ PushQuad(Operand(rbx, FrameDescription::pc_offset())); __ PushQuad(Operand(rbx, FrameDescription::continuation_offset())); // Push the registers from the last output frame. for (int i = 0; i < kNumberOfRegisters; i++) { int offset = (i * kSystemPointerSize) + FrameDescription::registers_offset(); __ PushQuad(Operand(rbx, offset)); } // Restore the registers from the stack. for (int i = kNumberOfRegisters - 1; i >= 0; i--) { Register r = Register::from_code(i); // Do not restore rsp, simply pop the value into the next register // and overwrite this afterwards. if (r == rsp) { DCHECK_GT(i, 0); r = Register::from_code(i - 1); } __ popq(r); } __ movb(__ ExternalReferenceAsOperand( ExternalReference::stack_is_iterable_address(isolate)), Immediate(1)); // Return to the continuation point. __ ret(0); } } // namespace void Builtins::Generate_DeoptimizationEntry_Eager(MacroAssembler* masm) { Generate_DeoptimizationEntry(masm, DeoptimizeKind::kEager); } void Builtins::Generate_DeoptimizationEntry_Lazy(MacroAssembler* masm) { Generate_DeoptimizationEntry(masm, DeoptimizeKind::kLazy); } namespace { // Restarts execution either at the current or next (in execution order) // bytecode. If there is baseline code on the shared function info, converts an // interpreter frame into a baseline frame and continues execution in baseline // code. Otherwise execution continues with bytecode. void Generate_BaselineOrInterpreterEntry(MacroAssembler* masm, bool next_bytecode, bool is_osr = false) { Label start; __ bind(&start); // Get function from the frame. Register closure = rdi; __ movq(closure, MemOperand(rbp, StandardFrameConstants::kFunctionOffset)); // Get the InstructionStream object from the shared function info. Register code_obj = rbx; Register shared_function_info(code_obj); __ LoadTaggedField( shared_function_info, FieldOperand(closure, JSFunction::kSharedFunctionInfoOffset)); if (is_osr) { ResetSharedFunctionInfoAge(masm, shared_function_info); } __ LoadTaggedField(code_obj, FieldOperand(shared_function_info, SharedFunctionInfo::kFunctionDataOffset)); // Check if we have baseline code. For OSR entry it is safe to assume we // always have baseline code. if (!is_osr) { Label start_with_baseline; __ IsObjectType(code_obj, CODE_TYPE, kScratchRegister); __ j(equal, &start_with_baseline); // Start with bytecode as there is no baseline code. Builtin builtin_id = next_bytecode ? Builtin::kInterpreterEnterAtNextBytecode : Builtin::kInterpreterEnterAtBytecode; __ Jump(masm->isolate()->builtins()->code_handle(builtin_id), RelocInfo::CODE_TARGET); // Start with baseline code. __ bind(&start_with_baseline); } else if (v8_flags.debug_code) { __ IsObjectType(code_obj, CODE_TYPE, kScratchRegister); __ Assert(equal, AbortReason::kExpectedBaselineData); } if (v8_flags.debug_code) { AssertCodeIsBaseline(masm, code_obj, r11); } // Load the feedback cell and feedback vector. Register feedback_cell = r8; Register feedback_vector = r11; __ LoadTaggedField(feedback_cell, FieldOperand(closure, JSFunction::kFeedbackCellOffset)); __ LoadTaggedField(feedback_vector, FieldOperand(feedback_cell, FeedbackCell::kValueOffset)); Label install_baseline_code; // Check if feedback vector is valid. If not, call prepare for baseline to // allocate it. __ IsObjectType(feedback_vector, FEEDBACK_VECTOR_TYPE, kScratchRegister); __ j(not_equal, &install_baseline_code); // Save bytecode offset from the stack frame. __ SmiUntagUnsigned( kInterpreterBytecodeOffsetRegister, MemOperand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); // Replace bytecode offset with feedback cell. static_assert(InterpreterFrameConstants::kBytecodeOffsetFromFp == BaselineFrameConstants::kFeedbackCellFromFp); __ movq(MemOperand(rbp, BaselineFrameConstants::kFeedbackCellFromFp), feedback_cell); feedback_cell = no_reg; // Update feedback vector cache. static_assert(InterpreterFrameConstants::kFeedbackVectorFromFp == BaselineFrameConstants::kFeedbackVectorFromFp); __ movq(MemOperand(rbp, InterpreterFrameConstants::kFeedbackVectorFromFp), feedback_vector); feedback_vector = no_reg; // Compute baseline pc for bytecode offset. ExternalReference get_baseline_pc_extref; if (next_bytecode || is_osr) { get_baseline_pc_extref = ExternalReference::baseline_pc_for_next_executed_bytecode(); } else { get_baseline_pc_extref = ExternalReference::baseline_pc_for_bytecode_offset(); } Register get_baseline_pc = r11; __ LoadAddress(get_baseline_pc, get_baseline_pc_extref); // If the code deoptimizes during the implicit function entry stack interrupt // check, it will have a bailout ID of kFunctionEntryBytecodeOffset, which is // not a valid bytecode offset. // TODO(pthier): Investigate if it is feasible to handle this special case // in TurboFan instead of here. Label valid_bytecode_offset, function_entry_bytecode; if (!is_osr) { __ cmpq(kInterpreterBytecodeOffsetRegister, Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag + kFunctionEntryBytecodeOffset)); __ j(equal, &function_entry_bytecode); } __ subq(kInterpreterBytecodeOffsetRegister, Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag)); __ bind(&valid_bytecode_offset); // Get bytecode array from the stack frame. __ movq(kInterpreterBytecodeArrayRegister, MemOperand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ pushq(kInterpreterAccumulatorRegister); { FrameScope scope(masm, StackFrame::INTERNAL); __ PrepareCallCFunction(3); __ movq(arg_reg_1, code_obj); __ movq(arg_reg_2, kInterpreterBytecodeOffsetRegister); __ movq(arg_reg_3, kInterpreterBytecodeArrayRegister); __ CallCFunction(get_baseline_pc, 3); } __ LoadCodeInstructionStart(code_obj, code_obj); __ addq(code_obj, kReturnRegister0); __ popq(kInterpreterAccumulatorRegister); if (is_osr) { Generate_OSREntry(masm, code_obj); } else { __ jmp(code_obj); } __ Trap(); // Unreachable. if (!is_osr) { __ bind(&function_entry_bytecode); // If the bytecode offset is kFunctionEntryOffset, get the start address of // the first bytecode. __ Move(kInterpreterBytecodeOffsetRegister, 0); if (next_bytecode) { __ LoadAddress(get_baseline_pc, ExternalReference::baseline_pc_for_bytecode_offset()); } __ jmp(&valid_bytecode_offset); } __ bind(&install_baseline_code); { FrameScope scope(masm, StackFrame::INTERNAL); __ pushq(kInterpreterAccumulatorRegister); __ Push(closure); __ CallRuntime(Runtime::kInstallBaselineCode, 1); __ popq(kInterpreterAccumulatorRegister); } // Retry from the start after installing baseline code. __ jmp(&start); } } // namespace void Builtins::Generate_BaselineOrInterpreterEnterAtBytecode( MacroAssembler* masm) { Generate_BaselineOrInterpreterEntry(masm, false); } void Builtins::Generate_BaselineOrInterpreterEnterAtNextBytecode( MacroAssembler* masm) { Generate_BaselineOrInterpreterEntry(masm, true); } void Builtins::Generate_InterpreterOnStackReplacement_ToBaseline( MacroAssembler* masm) { Generate_BaselineOrInterpreterEntry(masm, false, true); } void Builtins::Generate_RestartFrameTrampoline(MacroAssembler* masm) { // Restart the current frame: // - Look up current function on the frame. // - Leave the frame. // - Restart the frame by calling the function. __ movq(rdi, Operand(rbp, StandardFrameConstants::kFunctionOffset)); __ movq(rax, Operand(rbp, StandardFrameConstants::kArgCOffset)); __ LeaveFrame(StackFrame::INTERPRETED); // The arguments are already in the stack (including any necessary padding), // we should not try to massage the arguments again. __ movq(rbx, Immediate(kDontAdaptArgumentsSentinel)); __ InvokeFunction(rdi, no_reg, rbx, rax, InvokeType::kJump); } #undef __ } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_X64