%PDF- %PDF-
Direktori : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/codegen/arm/ |
Current File : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/codegen/arm/constants-arm.h |
// Copyright 2011 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_CODEGEN_ARM_CONSTANTS_ARM_H_ #define V8_CODEGEN_ARM_CONSTANTS_ARM_H_ #include <stdint.h> #include "src/base/logging.h" #include "src/base/macros.h" #include "src/common/globals.h" #include "src/utils/boxed-float.h" #include "src/utils/utils.h" // ARM EABI is required. #if defined(__arm__) && !defined(__ARM_EABI__) #error ARM EABI support is required. #endif namespace v8 { namespace internal { // Constant pool marker. // Use UDF, the permanently undefined instruction. const int kConstantPoolMarkerMask = 0xfff000f0; const int kConstantPoolMarker = 0xe7f000f0; const int kConstantPoolLengthMaxMask = 0xffff; inline int EncodeConstantPoolLength(int length) { DCHECK((length & kConstantPoolLengthMaxMask) == length); return ((length & 0xfff0) << 4) | (length & 0xf); } inline int DecodeConstantPoolLength(int instr) { DCHECK_EQ(instr & kConstantPoolMarkerMask, kConstantPoolMarker); return ((instr >> 4) & 0xfff0) | (instr & 0xf); } // Number of registers in normal ARM mode. constexpr int kNumRegisters = 16; constexpr int kRegSizeInBitsLog2 = 5; // VFP support. constexpr int kNumVFPSingleRegisters = 32; constexpr int kNumVFPDoubleRegisters = 32; constexpr int kNumVFPRegisters = kNumVFPSingleRegisters + kNumVFPDoubleRegisters; // PC is register 15. constexpr int kPCRegister = 15; constexpr int kNoRegister = -1; // Used in embedded constant pool builder - max reach in bits for // various load instructions (unsigned) constexpr int kLdrMaxReachBits = 12; constexpr int kVldrMaxReachBits = 10; // The actual value of the kRootRegister is offset from the IsolateData's start // to take advantage of negative displacement values. // // Loads allow a uint12 value with a separate sign bit (range [-4095, +4095]), // so the first root is still addressable with a single load instruction. constexpr int kRootRegisterBias = 4095; // TODO(pkasting): For all the enum type aliases below, if overload resolution // is desired, we could try to add some kind of constexpr class with implicit // conversion to/from int and operator overloads, then inherit from that. // ----------------------------------------------------------------------------- // Conditions. // Defines constants and accessor classes to assemble, disassemble and // simulate ARM instructions. // // Section references in the code refer to the "ARM Architecture Reference // Manual" from July 2005 (available at http://www.arm.com/miscPDFs/14128.pdf) // // Constants for specific fields are defined in their respective named enums. // General constants are in an anonymous enum in class Instr. // Values for the condition field as defined in section A3.2 enum Condition : int { kNoCondition = -1, eq = 0 << 28, // Z set Equal. ne = 1 << 28, // Z clear Not equal. cs = 2 << 28, // C set Unsigned higher or same. cc = 3 << 28, // C clear Unsigned lower. mi = 4 << 28, // N set Negative. pl = 5 << 28, // N clear Positive or zero. vs = 6 << 28, // V set Overflow. vc = 7 << 28, // V clear No overflow. hi = 8 << 28, // C set, Z clear Unsigned higher. ls = 9 << 28, // C clear or Z set Unsigned lower or same. ge = 10 << 28, // N == V Greater or equal. lt = 11 << 28, // N != V Less than. gt = 12 << 28, // Z clear, N == V Greater than. le = 13 << 28, // Z set or N != V Less then or equal al = 14 << 28, // Always. // Special condition (refer to section A3.2.1). kSpecialCondition = 15 << 28, kNumberOfConditions = 16, // Aliases. hs = cs, // C set Unsigned higher or same. lo = cc, // C clear Unsigned lower. // Unified cross-platform condition names/aliases. kEqual = eq, kNotEqual = ne, kLessThan = lt, kGreaterThan = gt, kLessThanEqual = le, kGreaterThanEqual = ge, kUnsignedLessThan = lo, kUnsignedGreaterThan = hi, kUnsignedLessThanEqual = ls, kUnsignedGreaterThanEqual = hs, kOverflow = vs, kNoOverflow = vc, kZero = eq, kNotZero = ne, }; inline Condition NegateCondition(Condition cond) { DCHECK(cond != al); return static_cast<Condition>(cond ^ ne); } // ----------------------------------------------------------------------------- // Instructions encoding. // Instr is merely used by the Assembler to distinguish 32bit integers // representing instructions from usual 32 bit values. // Instruction objects are pointers to 32bit values, and provide methods to // access the various ISA fields. using Instr = int32_t; // Opcodes for Data-processing instructions (instructions with a type 0 and 1) // as defined in section A3.4 using Opcode = int; constexpr Opcode AND = 0 << 21; // Logical AND. constexpr Opcode EOR = 1 << 21; // Logical Exclusive OR. constexpr Opcode SUB = 2 << 21; // Subtract. constexpr Opcode RSB = 3 << 21; // Reverse Subtract. constexpr Opcode ADD = 4 << 21; // Add. constexpr Opcode ADC = 5 << 21; // Add with Carry. constexpr Opcode SBC = 6 << 21; // Subtract with Carry. constexpr Opcode RSC = 7 << 21; // Reverse Subtract with Carry. constexpr Opcode TST = 8 << 21; // Test. constexpr Opcode TEQ = 9 << 21; // Test Equivalence. constexpr Opcode CMP = 10 << 21; // Compare. constexpr Opcode CMN = 11 << 21; // Compare Negated. constexpr Opcode ORR = 12 << 21; // Logical (inclusive) OR. constexpr Opcode MOV = 13 << 21; // Move. constexpr Opcode BIC = 14 << 21; // Bit Clear. constexpr Opcode MVN = 15 << 21; // Move Not. // The bits for bit 7-4 for some type 0 miscellaneous instructions. using MiscInstructionsBits74 = int; // With bits 22-21 01. constexpr MiscInstructionsBits74 BX = 1 << 4; constexpr MiscInstructionsBits74 BXJ = 2 << 4; constexpr MiscInstructionsBits74 BLX = 3 << 4; constexpr MiscInstructionsBits74 BKPT = 7 << 4; // With bits 22-21 11. constexpr MiscInstructionsBits74 CLZ = 1 << 4; // Instruction encoding bits and masks. constexpr int H = 1 << 5; // Halfword (or byte). constexpr int S6 = 1 << 6; // Signed (or unsigned). constexpr int L = 1 << 20; // Load (or store). constexpr int S = 1 << 20; // Set condition code (or leave unchanged). constexpr int W = 1 << 21; // Writeback base register (or leave unchanged). constexpr int A = 1 << 21; // Accumulate in multiply instruction (or not). constexpr int B = 1 << 22; // Unsigned byte (or word). constexpr int N = 1 << 22; // Long (or short). constexpr int U = 1 << 23; // Positive (or negative) offset/index. constexpr int P = 1 << 24; // Offset/pre-indexed addressing (or post-indexed addressing). constexpr int I = 1 << 25; // Immediate shifter operand (or not). constexpr int B0 = 1 << 0; constexpr int B4 = 1 << 4; constexpr int B5 = 1 << 5; constexpr int B6 = 1 << 6; constexpr int B7 = 1 << 7; constexpr int B8 = 1 << 8; constexpr int B9 = 1 << 9; constexpr int B10 = 1 << 10; constexpr int B12 = 1 << 12; constexpr int B16 = 1 << 16; constexpr int B17 = 1 << 17; constexpr int B18 = 1 << 18; constexpr int B19 = 1 << 19; constexpr int B20 = 1 << 20; constexpr int B21 = 1 << 21; constexpr int B22 = 1 << 22; constexpr int B23 = 1 << 23; constexpr int B24 = 1 << 24; constexpr int B25 = 1 << 25; constexpr int B26 = 1 << 26; constexpr int B27 = 1 << 27; constexpr int B28 = 1 << 28; // Instruction bit masks. constexpr int kCondMask = 15 << 28; constexpr int kALUMask = 0x6f << 21; constexpr int kRdMask = 15 << 12; // In str instruction. constexpr int kCoprocessorMask = 15 << 8; constexpr int kOpCodeMask = 15 << 21; // In data-processing instructions. constexpr int kImm24Mask = (1 << 24) - 1; constexpr int kImm16Mask = (1 << 16) - 1; constexpr int kImm8Mask = (1 << 8) - 1; constexpr int kOff12Mask = (1 << 12) - 1; constexpr int kOff8Mask = (1 << 8) - 1; using BarrierOption = int; constexpr BarrierOption OSHLD = 0x1; constexpr BarrierOption OSHST = 0x2; constexpr BarrierOption OSH = 0x3; constexpr BarrierOption NSHLD = 0x5; constexpr BarrierOption NSHST = 0x6; constexpr BarrierOption NSH = 0x7; constexpr BarrierOption ISHLD = 0x9; constexpr BarrierOption ISHST = 0xa; constexpr BarrierOption ISH = 0xb; constexpr BarrierOption LD = 0xd; constexpr BarrierOption ST = 0xe; constexpr BarrierOption SY = 0xf; // ----------------------------------------------------------------------------- // Addressing modes and instruction variants. // Condition code updating mode. using SBit = int; constexpr SBit SetCC = 1 << 20; // Set condition code. constexpr SBit LeaveCC = 0 << 20; // Leave condition code unchanged. // Status register selection. using SRegister = int; constexpr SRegister CPSR = 0 << 22; constexpr SRegister SPSR = 1 << 22; // Shifter types for Data-processing operands as defined in section A5.1.2. using ShiftOp = int; constexpr ShiftOp LSL = 0 << 5; // Logical shift left. constexpr ShiftOp LSR = 1 << 5; // Logical shift right. constexpr ShiftOp ASR = 2 << 5; // Arithmetic shift right. constexpr ShiftOp ROR = 3 << 5; // Rotate right. // RRX is encoded as ROR with shift_imm == 0. // Use a special code to make the distinction. The RRX ShiftOp is only used // as an argument, and will never actually be encoded. The Assembler will // detect it and emit the correct ROR shift operand with shift_imm == 0. constexpr ShiftOp RRX = -1; constexpr ShiftOp kNumberOfShifts = 4; // Status register fields. using SRegisterField = int; constexpr SRegisterField CPSR_c = CPSR | 1 << 16; constexpr SRegisterField CPSR_x = CPSR | 1 << 17; constexpr SRegisterField CPSR_s = CPSR | 1 << 18; constexpr SRegisterField CPSR_f = CPSR | 1 << 19; constexpr SRegisterField SPSR_c = SPSR | 1 << 16; constexpr SRegisterField SPSR_x = SPSR | 1 << 17; constexpr SRegisterField SPSR_s = SPSR | 1 << 18; constexpr SRegisterField SPSR_f = SPSR | 1 << 19; // Status register field mask (or'ed SRegisterField enum values). using SRegisterFieldMask = uint32_t; // Memory operand addressing mode. using AddrMode = int; // Bit encoding P U W. constexpr AddrMode Offset = (8 | 4 | 0) << 21; // Offset (without writeback to base). constexpr AddrMode PreIndex = (8 | 4 | 1) << 21; // Pre-indexed addressing with writeback. constexpr AddrMode PostIndex = (0 | 4 | 0) << 21; // Post-indexed addressing with writeback. constexpr AddrMode NegOffset = (8 | 0 | 0) << 21; // Negative offset (without writeback to base). constexpr AddrMode NegPreIndex = (8 | 0 | 1) << 21; // Negative pre-indexed with writeback. constexpr AddrMode NegPostIndex = (0 | 0 | 0) << 21; // Negative post-indexed with writeback. // Load/store multiple addressing mode. using BlockAddrMode = int; // Bit encoding P U W . constexpr BlockAddrMode da = (0 | 0 | 0) << 21; // Decrement after. constexpr BlockAddrMode ia = (0 | 4 | 0) << 21; // Increment after. constexpr BlockAddrMode db = (8 | 0 | 0) << 21; // Decrement before. constexpr BlockAddrMode ib = (8 | 4 | 0) << 21; // Increment before. constexpr BlockAddrMode da_w = (0 | 0 | 1) << 21; // Decrement after with writeback to base. constexpr BlockAddrMode ia_w = (0 | 4 | 1) << 21; // Increment after with writeback to base. constexpr BlockAddrMode db_w = (8 | 0 | 1) << 21; // Decrement before with writeback to base. constexpr BlockAddrMode ib_w = (8 | 4 | 1) << 21; // Increment before with writeback to base. // Alias modes for comparison when writeback does not matter. constexpr BlockAddrMode da_x = (0 | 0 | 0) << 21; // Decrement after. constexpr BlockAddrMode ia_x = (0 | 4 | 0) << 21; // Increment after. constexpr BlockAddrMode db_x = (8 | 0 | 0) << 21; // Decrement before. constexpr BlockAddrMode ib_x = (8 | 4 | 0) << 21; // Increment before. constexpr BlockAddrMode kBlockAddrModeMask = (8 | 4 | 1) << 21; // Coprocessor load/store operand size. using LFlag = int; constexpr LFlag Long = 1 << 22; // Long load/store coprocessor. constexpr LFlag Short = 0 << 22; // Short load/store coprocessor. // Neon sizes. using NeonSize = int; constexpr NeonSize Neon8 = 0x0; constexpr NeonSize Neon16 = 0x1; constexpr NeonSize Neon32 = 0x2; constexpr NeonSize Neon64 = 0x3; // NEON data type, top bit set for unsigned data types. using NeonDataType = int; constexpr NeonDataType NeonS8 = 0; constexpr NeonDataType NeonS16 = 1; constexpr NeonDataType NeonS32 = 2; constexpr NeonDataType NeonS64 = 3; constexpr NeonDataType NeonU8 = 4; constexpr NeonDataType NeonU16 = 5; constexpr NeonDataType NeonU32 = 6; constexpr NeonDataType NeonU64 = 7; inline int NeonU(NeonDataType dt) { return static_cast<int>(dt) >> 2; } inline int NeonSz(NeonDataType dt) { return static_cast<int>(dt) & 0x3; } // Convert sizes to data types (U bit is clear). inline NeonDataType NeonSizeToDataType(NeonSize size) { DCHECK_NE(Neon64, size); return static_cast<NeonDataType>(size); } inline NeonSize NeonDataTypeToSize(NeonDataType dt) { return static_cast<NeonSize>(NeonSz(dt)); } using NeonListType = int; constexpr NeonListType nlt_1 = 0x7; constexpr NeonListType nlt_2 = 0xA; constexpr NeonListType nlt_3 = 0x6; constexpr NeonListType nlt_4 = 0x2; // ----------------------------------------------------------------------------- // Supervisor Call (svc) specific support. // Special Software Interrupt codes when used in the presence of the ARM // simulator. // svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for // standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature. using SoftwareInterruptCodes = int; // transition to C code constexpr SoftwareInterruptCodes kCallRtRedirected = 0x10; // break point constexpr SoftwareInterruptCodes kBreakpoint = 0x20; // stop constexpr SoftwareInterruptCodes kStopCode = 1 << 23; constexpr uint32_t kStopCodeMask = kStopCode - 1; constexpr uint32_t kMaxStopCode = kStopCode - 1; constexpr int32_t kDefaultStopCode = -1; // Type of VFP register. Determines register encoding. using VFPRegPrecision = int; constexpr VFPRegPrecision kSinglePrecision = 0; constexpr VFPRegPrecision kDoublePrecision = 1; constexpr VFPRegPrecision kSimd128Precision = 2; // VFP FPSCR constants. using VFPConversionMode = int; constexpr VFPConversionMode kFPSCRRounding = 0; constexpr VFPConversionMode kDefaultRoundToZero = 1; // This mask does not include the "inexact" or "input denormal" cumulative // exceptions flags, because we usually don't want to check for it. constexpr uint32_t kVFPExceptionMask = 0xf; constexpr uint32_t kVFPInvalidOpExceptionBit = 1 << 0; constexpr uint32_t kVFPOverflowExceptionBit = 1 << 2; constexpr uint32_t kVFPUnderflowExceptionBit = 1 << 3; constexpr uint32_t kVFPInexactExceptionBit = 1 << 4; constexpr uint32_t kVFPFlushToZeroMask = 1 << 24; constexpr uint32_t kVFPDefaultNaNModeControlBit = 1 << 25; constexpr uint32_t kVFPNConditionFlagBit = 1 << 31; constexpr uint32_t kVFPZConditionFlagBit = 1 << 30; constexpr uint32_t kVFPCConditionFlagBit = 1 << 29; constexpr uint32_t kVFPVConditionFlagBit = 1 << 28; // VFP rounding modes. See ARM DDI 0406B Page A2-29. using VFPRoundingMode = int; constexpr VFPRoundingMode RN = 0 << 22; // Round to Nearest. constexpr VFPRoundingMode RP = 1 << 22; // Round towards Plus Infinity. constexpr VFPRoundingMode RM = 2 << 22; // Round towards Minus Infinity. constexpr VFPRoundingMode RZ = 3 << 22; // Round towards zero. // Aliases. constexpr VFPRoundingMode kRoundToNearest = RN; constexpr VFPRoundingMode kRoundToPlusInf = RP; constexpr VFPRoundingMode kRoundToMinusInf = RM; constexpr VFPRoundingMode kRoundToZero = RZ; const uint32_t kVFPRoundingModeMask = 3 << 22; enum CheckForInexactConversion { kCheckForInexactConversion, kDontCheckForInexactConversion }; // ----------------------------------------------------------------------------- // Hints. // Branch hints are not used on the ARM. They are defined so that they can // appear in shared function signatures, but will be ignored in ARM // implementations. enum Hint { no_hint }; // Hints are not used on the arm. Negating is trivial. inline Hint NegateHint(Hint ignored) { return no_hint; } // ----------------------------------------------------------------------------- // Instruction abstraction. // The class Instruction enables access to individual fields defined in the ARM // architecture instruction set encoding as described in figure A3-1. // Note that the Assembler uses typedef int32_t Instr. // // Example: Test whether the instruction at ptr does set the condition code // bits. // // bool InstructionSetsConditionCodes(uint8_t* ptr) { // Instruction* instr = Instruction::At(ptr); // int type = instr->TypeValue(); // return ((type == 0) || (type == 1)) && instr->HasS(); // } // constexpr uint8_t kInstrSize = 4; constexpr uint8_t kInstrSizeLog2 = 2; class Instruction { public: // Difference between address of current opcode and value read from pc // register. static constexpr int kPcLoadDelta = 8; // Helper macro to define static accessors. // We use the cast to char* trick to bypass the strict anti-aliasing rules. #define DECLARE_STATIC_TYPED_ACCESSOR(return_type, Name) \ static inline return_type Name(Instr instr) { \ char* temp = reinterpret_cast<char*>(&instr); \ return reinterpret_cast<Instruction*>(temp)->Name(); \ } #define DECLARE_STATIC_ACCESSOR(Name) DECLARE_STATIC_TYPED_ACCESSOR(int, Name) // Get the raw instruction bits. inline Instr InstructionBits() const { return *reinterpret_cast<const Instr*>(this); } // Set the raw instruction bits to value. inline void SetInstructionBits(Instr value) { *reinterpret_cast<Instr*>(this) = value; } // Extract a single bit from the instruction bits and return it as bit 0 in // the result. inline int Bit(int nr) const { return (InstructionBits() >> nr) & 1; } // Extract a bit field <hi:lo> from the instruction bits and return it in the // least-significant bits of the result. inline int Bits(int hi, int lo) const { return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1); } // Read a bit field <hi:lo>, leaving its position unchanged in the result. inline int BitField(int hi, int lo) const { return InstructionBits() & (((2 << (hi - lo)) - 1) << lo); } // Accessors for the different named fields used in the ARM encoding. // The naming of these accessor corresponds to figure A3-1. // // Two kind of accessors are declared: // - <Name>Field() will return the raw field, i.e. the field's bits at their // original place in the instruction encoding. // e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as // 0xC0810002 ConditionField(instr) will return 0xC0000000. // - <Name>Value() will return the field value, shifted back to bit 0. // e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as // 0xC0810002 ConditionField(instr) will return 0xC. // Generally applicable fields inline int ConditionValue() const { return Bits(31, 28); } inline Condition ConditionField() const { return static_cast<Condition>(BitField(31, 28)); } DECLARE_STATIC_TYPED_ACCESSOR(int, ConditionValue) DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionField) inline int TypeValue() const { return Bits(27, 25); } inline int SpecialValue() const { return Bits(27, 23); } inline int RnValue() const { return Bits(19, 16); } DECLARE_STATIC_ACCESSOR(RnValue) inline int RdValue() const { return Bits(15, 12); } DECLARE_STATIC_ACCESSOR(RdValue) inline int CoprocessorValue() const { return Bits(11, 8); } // Support for VFP. // Vn(19-16) | Vd(15-12) | Vm(3-0) inline int VnValue() const { return Bits(19, 16); } inline int VmValue() const { return Bits(3, 0); } inline int VdValue() const { return Bits(15, 12); } inline int NValue() const { return Bit(7); } inline int MValue() const { return Bit(5); } inline int DValue() const { return Bit(22); } inline int RtValue() const { return Bits(15, 12); } inline int PValue() const { return Bit(24); } inline int UValue() const { return Bit(23); } inline int Opc1Value() const { return (Bit(23) << 2) | Bits(21, 20); } inline int Opc2Value() const { return Bits(19, 16); } inline int Opc3Value() const { return Bits(7, 6); } inline int SzValue() const { return Bit(8); } inline int VLValue() const { return Bit(20); } inline int VCValue() const { return Bit(8); } inline int VAValue() const { return Bits(23, 21); } inline int VBValue() const { return Bits(6, 5); } inline int VFPNRegValue(VFPRegPrecision pre) { return VFPGlueRegValue(pre, 16, 7); } inline int VFPMRegValue(VFPRegPrecision pre) { return VFPGlueRegValue(pre, 0, 5); } inline int VFPDRegValue(VFPRegPrecision pre) { return VFPGlueRegValue(pre, 12, 22); } // Fields used in Data processing instructions inline int OpcodeValue() const { return static_cast<Opcode>(Bits(24, 21)); } inline Opcode OpcodeField() const { return static_cast<Opcode>(BitField(24, 21)); } inline int SValue() const { return Bit(20); } // with register inline int RmValue() const { return Bits(3, 0); } DECLARE_STATIC_ACCESSOR(RmValue) inline int ShiftValue() const { return static_cast<ShiftOp>(Bits(6, 5)); } inline ShiftOp ShiftField() const { return static_cast<ShiftOp>(BitField(6, 5)); } inline int RegShiftValue() const { return Bit(4); } inline int RsValue() const { return Bits(11, 8); } inline int ShiftAmountValue() const { return Bits(11, 7); } // with immediate inline int RotateValue() const { return Bits(11, 8); } DECLARE_STATIC_ACCESSOR(RotateValue) inline int Immed8Value() const { return Bits(7, 0); } DECLARE_STATIC_ACCESSOR(Immed8Value) inline int Immed4Value() const { return Bits(19, 16); } inline int ImmedMovwMovtValue() const { return Immed4Value() << 12 | Offset12Value(); } DECLARE_STATIC_ACCESSOR(ImmedMovwMovtValue) // Fields used in Load/Store instructions inline int PUValue() const { return Bits(24, 23); } inline int PUField() const { return BitField(24, 23); } inline int BValue() const { return Bit(22); } inline int WValue() const { return Bit(21); } inline int LValue() const { return Bit(20); } // with register uses same fields as Data processing instructions above // with immediate inline int Offset12Value() const { return Bits(11, 0); } // multiple inline int RlistValue() const { return Bits(15, 0); } // extra loads and stores inline int SignValue() const { return Bit(6); } inline int HValue() const { return Bit(5); } inline int ImmedHValue() const { return Bits(11, 8); } inline int ImmedLValue() const { return Bits(3, 0); } // Fields used in Branch instructions inline int LinkValue() const { return Bit(24); } inline int SImmed24Value() const { return signed_bitextract_32(23, 0, InstructionBits()); } bool IsBranch() { return Bit(27) == 1 && Bit(25) == 1; } int GetBranchOffset() { DCHECK(IsBranch()); return SImmed24Value() * kInstrSize; } void SetBranchOffset(int32_t branch_offset) { DCHECK(IsBranch()); DCHECK_EQ(branch_offset % kInstrSize, 0); int32_t new_imm24 = branch_offset / kInstrSize; CHECK(is_int24(new_imm24)); SetInstructionBits((InstructionBits() & ~(kImm24Mask)) | (new_imm24 & kImm24Mask)); } // Fields used in Software interrupt instructions inline SoftwareInterruptCodes SvcValue() const { return static_cast<SoftwareInterruptCodes>(Bits(23, 0)); } // Test for special encodings of type 0 instructions (extra loads and stores, // as well as multiplications). inline bool IsSpecialType0() const { return (Bit(7) == 1) && (Bit(4) == 1); } // Test for miscellaneous instructions encodings of type 0 instructions. inline bool IsMiscType0() const { return (Bit(24) == 1) && (Bit(23) == 0) && (Bit(20) == 0) && ((Bit(7) == 0)); } // Test for nop-like instructions which fall under type 1. inline bool IsNopLikeType1() const { return Bits(24, 8) == 0x120F0; } // Test for a stop instruction. inline bool IsStop() const { return (TypeValue() == 7) && (Bit(24) == 1) && (SvcValue() >= kStopCode); } // Special accessors that test for existence of a value. inline bool HasS() const { return SValue() == 1; } inline bool HasB() const { return BValue() == 1; } inline bool HasW() const { return WValue() == 1; } inline bool HasL() const { return LValue() == 1; } inline bool HasU() const { return UValue() == 1; } inline bool HasSign() const { return SignValue() == 1; } inline bool HasH() const { return HValue() == 1; } inline bool HasLink() const { return LinkValue() == 1; } // Decode the double immediate from a vmov instruction. Float64 DoubleImmedVmov() const; // Instructions are read of out a code stream. The only way to get a // reference to an instruction is to convert a pointer. There is no way // to allocate or create instances of class Instruction. // Use the At(pc) function to create references to Instruction. static Instruction* At(Address pc) { return reinterpret_cast<Instruction*>(pc); } private: // Join split register codes, depending on register precision. // four_bit is the position of the least-significant bit of the four // bit specifier. one_bit is the position of the additional single bit // specifier. inline int VFPGlueRegValue(VFPRegPrecision pre, int four_bit, int one_bit) { if (pre == kSinglePrecision) { return (Bits(four_bit + 3, four_bit) << 1) | Bit(one_bit); } else { int reg_num = (Bit(one_bit) << 4) | Bits(four_bit + 3, four_bit); if (pre == kDoublePrecision) { return reg_num; } DCHECK_EQ(kSimd128Precision, pre); DCHECK_EQ(reg_num & 1, 0); return reg_num / 2; } } // We need to prevent the creation of instances of class Instruction. DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction); }; // Helper functions for converting between register numbers and names. class Registers { public: // Return the name of the register. static const char* Name(int reg); // Lookup the register number for the name provided. static int Number(const char* name); struct RegisterAlias { int reg; const char* name; }; private: static const char* names_[kNumRegisters]; static const RegisterAlias aliases_[]; }; // Helper functions for converting between VFP register numbers and names. class VFPRegisters { public: // Return the name of the register. static const char* Name(int reg, bool is_double); // Lookup the register number for the name provided. // Set flag pointed by is_double to true if register // is double-precision. static int Number(const char* name, bool* is_double); private: static const char* names_[kNumVFPRegisters]; }; // The maximum size of the code range s.t. pc-relative calls are possible // between all Code objects in the range. // // Relative jumps on ARM can address ±32 MB. constexpr size_t kMaxPCRelativeCodeRangeInMB = 32; } // namespace internal } // namespace v8 #endif // V8_CODEGEN_ARM_CONSTANTS_ARM_H_