%PDF- %PDF-
Direktori : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/codegen/ |
Current File : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/codegen/code-stub-assembler.h |
// Copyright 2016 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_CODEGEN_CODE_STUB_ASSEMBLER_H_ #define V8_CODEGEN_CODE_STUB_ASSEMBLER_H_ #include <functional> #include "src/base/macros.h" #include "src/codegen/bailout-reason.h" #include "src/codegen/code-factory.h" #include "src/codegen/tnode.h" #include "src/common/globals.h" #include "src/common/message-template.h" #include "src/compiler/code-assembler.h" #include "src/numbers/integer-literal.h" #include "src/objects/api-callbacks.h" #include "src/objects/arguments.h" #include "src/objects/bigint.h" #include "src/objects/cell.h" #include "src/objects/feedback-vector.h" #include "src/objects/heap-number.h" #include "src/objects/hole.h" #include "src/objects/js-function.h" #include "src/objects/js-promise.h" #include "src/objects/js-proxy.h" #include "src/objects/objects.h" #include "src/objects/oddball.h" #include "src/objects/shared-function-info.h" #include "src/objects/smi.h" #include "src/objects/string.h" #include "src/objects/swiss-name-dictionary.h" #include "src/objects/tagged-index.h" #include "src/objects/tagged.h" #include "src/roots/roots.h" #include "torque-generated/exported-macros-assembler.h" #if V8_ENABLE_WEBASSEMBLY #include "src/wasm/wasm-objects.h" #endif // V8_ENABLE_WEBASSEMBLY namespace v8 { namespace internal { class CallInterfaceDescriptor; class CodeStubArguments; class CodeStubAssembler; class StatsCounter; class StubCache; enum class PrimitiveType { kBoolean, kNumber, kString, kSymbol }; #define HEAP_MUTABLE_IMMOVABLE_OBJECT_LIST(V) \ V(ArrayIteratorProtector, array_iterator_protector, ArrayIteratorProtector) \ V(ArraySpeciesProtector, array_species_protector, ArraySpeciesProtector) \ V(IsConcatSpreadableProtector, is_concat_spreadable_protector, \ IsConcatSpreadableProtector) \ V(MapIteratorProtector, map_iterator_protector, MapIteratorProtector) \ V(NoElementsProtector, no_elements_protector, NoElementsProtector) \ V(MegaDOMProtector, mega_dom_protector, MegaDOMProtector) \ V(NumberStringCache, number_string_cache, NumberStringCache) \ V(NumberStringNotRegexpLikeProtector, \ number_string_not_regexp_like_protector, \ NumberStringNotRegexpLikeProtector) \ V(PromiseResolveProtector, promise_resolve_protector, \ PromiseResolveProtector) \ V(PromiseSpeciesProtector, promise_species_protector, \ PromiseSpeciesProtector) \ V(PromiseThenProtector, promise_then_protector, PromiseThenProtector) \ V(RegExpSpeciesProtector, regexp_species_protector, RegExpSpeciesProtector) \ V(SetIteratorProtector, set_iterator_protector, SetIteratorProtector) \ V(StringIteratorProtector, string_iterator_protector, \ StringIteratorProtector) \ V(TypedArraySpeciesProtector, typed_array_species_protector, \ TypedArraySpeciesProtector) \ V(AsyncFunctionAwaitRejectSharedFun, async_function_await_reject_shared_fun, \ AsyncFunctionAwaitRejectSharedFun) \ V(AsyncFunctionAwaitResolveSharedFun, \ async_function_await_resolve_shared_fun, \ AsyncFunctionAwaitResolveSharedFun) \ V(AsyncGeneratorAwaitRejectSharedFun, \ async_generator_await_reject_shared_fun, \ AsyncGeneratorAwaitRejectSharedFun) \ V(AsyncGeneratorAwaitResolveSharedFun, \ async_generator_await_resolve_shared_fun, \ AsyncGeneratorAwaitResolveSharedFun) \ V(AsyncGeneratorReturnClosedRejectSharedFun, \ async_generator_return_closed_reject_shared_fun, \ AsyncGeneratorReturnClosedRejectSharedFun) \ V(AsyncGeneratorReturnClosedResolveSharedFun, \ async_generator_return_closed_resolve_shared_fun, \ AsyncGeneratorReturnClosedResolveSharedFun) \ V(AsyncGeneratorReturnResolveSharedFun, \ async_generator_return_resolve_shared_fun, \ AsyncGeneratorReturnResolveSharedFun) \ V(AsyncGeneratorYieldWithAwaitResolveSharedFun, \ async_generator_yield_with_await_resolve_shared_fun, \ AsyncGeneratorYieldWithAwaitResolveSharedFun) \ V(AsyncIteratorValueUnwrapSharedFun, async_iterator_value_unwrap_shared_fun, \ AsyncIteratorValueUnwrapSharedFun) \ V(PromiseAllResolveElementSharedFun, promise_all_resolve_element_shared_fun, \ PromiseAllResolveElementSharedFun) \ V(PromiseAllSettledRejectElementSharedFun, \ promise_all_settled_reject_element_shared_fun, \ PromiseAllSettledRejectElementSharedFun) \ V(PromiseAllSettledResolveElementSharedFun, \ promise_all_settled_resolve_element_shared_fun, \ PromiseAllSettledResolveElementSharedFun) \ V(PromiseAnyRejectElementSharedFun, promise_any_reject_element_shared_fun, \ PromiseAnyRejectElementSharedFun) \ V(PromiseCapabilityDefaultRejectSharedFun, \ promise_capability_default_reject_shared_fun, \ PromiseCapabilityDefaultRejectSharedFun) \ V(PromiseCapabilityDefaultResolveSharedFun, \ promise_capability_default_resolve_shared_fun, \ PromiseCapabilityDefaultResolveSharedFun) \ V(PromiseCatchFinallySharedFun, promise_catch_finally_shared_fun, \ PromiseCatchFinallySharedFun) \ V(PromiseGetCapabilitiesExecutorSharedFun, \ promise_get_capabilities_executor_shared_fun, \ PromiseGetCapabilitiesExecutorSharedFun) \ V(PromiseThenFinallySharedFun, promise_then_finally_shared_fun, \ PromiseThenFinallySharedFun) \ V(PromiseThrowerFinallySharedFun, promise_thrower_finally_shared_fun, \ PromiseThrowerFinallySharedFun) \ V(PromiseValueThunkFinallySharedFun, promise_value_thunk_finally_shared_fun, \ PromiseValueThunkFinallySharedFun) \ V(ProxyRevokeSharedFun, proxy_revoke_shared_fun, ProxyRevokeSharedFun) \ V(ShadowRealmImportValueFulfilledSFI, \ shadow_realm_import_value_fulfilled_sfi, \ ShadowRealmImportValueFulfilledSFI) \ V(ArrayFromAsyncOnFulfilledSharedFun, \ array_from_async_on_fulfilled_shared_fun, \ ArrayFromAsyncOnFulfilledSharedFun) \ V(ArrayFromAsyncOnRejectedSharedFun, \ array_from_async_on_rejected_shared_fun, \ ArrayFromAsyncOnRejectedSharedFun) #define UNIQUE_INSTANCE_TYPE_IMMUTABLE_IMMOVABLE_MAP_ADAPTER( \ V, rootIndexName, rootAccessorName, class_name) \ V(rootIndexName, rootAccessorName, class_name##Map) #define HEAP_IMMUTABLE_IMMOVABLE_OBJECT_LIST(V) \ V(AllocationSiteWithoutWeakNextMap, allocation_site_without_weaknext_map, \ AllocationSiteWithoutWeakNextMap) \ V(AllocationSiteWithWeakNextMap, allocation_site_map, AllocationSiteMap) \ V(arguments_to_string, arguments_to_string, ArgumentsToString) \ V(ArrayListMap, array_list_map, ArrayListMap) \ V(Array_string, Array_string, ArrayString) \ V(array_to_string, array_to_string, ArrayToString) \ V(BooleanMap, boolean_map, BooleanMap) \ V(boolean_to_string, boolean_to_string, BooleanToString) \ V(class_fields_symbol, class_fields_symbol, ClassFieldsSymbol) \ V(ConsOneByteStringMap, cons_one_byte_string_map, ConsOneByteStringMap) \ V(ConsTwoByteStringMap, cons_two_byte_string_map, ConsTwoByteStringMap) \ V(constructor_string, constructor_string, ConstructorString) \ V(date_to_string, date_to_string, DateToString) \ V(default_string, default_string, DefaultString) \ V(EmptyArrayList, empty_array_list, EmptyArrayList) \ V(EmptyByteArray, empty_byte_array, EmptyByteArray) \ V(EmptyFixedArray, empty_fixed_array, EmptyFixedArray) \ V(EmptyScopeInfo, empty_scope_info, EmptyScopeInfo) \ V(EmptyPropertyDictionary, empty_property_dictionary, \ EmptyPropertyDictionary) \ V(EmptyOrderedPropertyDictionary, empty_ordered_property_dictionary, \ EmptyOrderedPropertyDictionary) \ V(EmptySwissPropertyDictionary, empty_swiss_property_dictionary, \ EmptySwissPropertyDictionary) \ V(EmptySlowElementDictionary, empty_slow_element_dictionary, \ EmptySlowElementDictionary) \ V(empty_string, empty_string, EmptyString) \ V(error_to_string, error_to_string, ErrorToString) \ V(errors_string, errors_string, ErrorsString) \ V(FalseValue, false_value, False) \ V(FixedArrayMap, fixed_array_map, FixedArrayMap) \ V(FixedCOWArrayMap, fixed_cow_array_map, FixedCOWArrayMap) \ V(Function_string, function_string, FunctionString) \ V(function_to_string, function_to_string, FunctionToString) \ V(get_string, get_string, GetString) \ V(has_instance_symbol, has_instance_symbol, HasInstanceSymbol) \ V(has_string, has_string, HasString) \ V(Infinity_string, Infinity_string, InfinityString) \ V(is_concat_spreadable_symbol, is_concat_spreadable_symbol, \ IsConcatSpreadableSymbol) \ V(iterator_symbol, iterator_symbol, IteratorSymbol) \ V(keys_string, keys_string, KeysString) \ V(async_iterator_symbol, async_iterator_symbol, AsyncIteratorSymbol) \ V(length_string, length_string, LengthString) \ V(ManyClosuresCellMap, many_closures_cell_map, ManyClosuresCellMap) \ V(match_symbol, match_symbol, MatchSymbol) \ V(megamorphic_symbol, megamorphic_symbol, MegamorphicSymbol) \ V(mega_dom_symbol, mega_dom_symbol, MegaDOMSymbol) \ V(message_string, message_string, MessageString) \ V(minus_Infinity_string, minus_Infinity_string, MinusInfinityString) \ V(MinusZeroValue, minus_zero_value, MinusZero) \ V(name_string, name_string, NameString) \ V(NanValue, nan_value, Nan) \ V(NaN_string, NaN_string, NaNString) \ V(next_string, next_string, NextString) \ V(NoClosuresCellMap, no_closures_cell_map, NoClosuresCellMap) \ V(null_to_string, null_to_string, NullToString) \ V(NullValue, null_value, Null) \ IF_WASM(V, WasmNull, wasm_null, WasmNull) \ V(number_string, number_string, NumberString) \ V(number_to_string, number_to_string, NumberToString) \ V(Object_string, Object_string, ObjectString) \ V(object_to_string, object_to_string, ObjectToString) \ V(SeqOneByteStringMap, seq_one_byte_string_map, SeqOneByteStringMap) \ V(OneClosureCellMap, one_closure_cell_map, OneClosureCellMap) \ V(OnePointerFillerMap, one_pointer_filler_map, OnePointerFillerMap) \ V(PromiseCapabilityMap, promise_capability_map, PromiseCapabilityMap) \ V(promise_forwarding_handler_symbol, promise_forwarding_handler_symbol, \ PromiseForwardingHandlerSymbol) \ V(PromiseFulfillReactionJobTaskMap, promise_fulfill_reaction_job_task_map, \ PromiseFulfillReactionJobTaskMap) \ V(promise_handled_by_symbol, promise_handled_by_symbol, \ PromiseHandledBySymbol) \ V(PromiseReactionMap, promise_reaction_map, PromiseReactionMap) \ V(PromiseRejectReactionJobTaskMap, promise_reject_reaction_job_task_map, \ PromiseRejectReactionJobTaskMap) \ V(PromiseResolveThenableJobTaskMap, promise_resolve_thenable_job_task_map, \ PromiseResolveThenableJobTaskMap) \ V(prototype_string, prototype_string, PrototypeString) \ V(replace_symbol, replace_symbol, ReplaceSymbol) \ V(regexp_to_string, regexp_to_string, RegexpToString) \ V(resolve_string, resolve_string, ResolveString) \ V(return_string, return_string, ReturnString) \ V(search_symbol, search_symbol, SearchSymbol) \ V(SingleCharacterStringTable, single_character_string_table, \ SingleCharacterStringTable) \ V(size_string, size_string, SizeString) \ V(species_symbol, species_symbol, SpeciesSymbol) \ V(StaleRegister, stale_register, StaleRegister) \ V(StoreHandler0Map, store_handler0_map, StoreHandler0Map) \ V(string_string, string_string, StringString) \ V(string_to_string, string_to_string, StringToString) \ V(SeqTwoByteStringMap, seq_two_byte_string_map, SeqTwoByteStringMap) \ V(TheHoleValue, the_hole_value, TheHole) \ V(PropertyCellHoleValue, property_cell_hole_value, PropertyCellHole) \ V(HashTableHoleValue, hash_table_hole_value, HashTableHole) \ V(then_string, then_string, ThenString) \ V(toJSON_string, toJSON_string, ToJSONString) \ V(toString_string, toString_string, ToStringString) \ V(to_primitive_symbol, to_primitive_symbol, ToPrimitiveSymbol) \ V(to_string_tag_symbol, to_string_tag_symbol, ToStringTagSymbol) \ V(TrueValue, true_value, True) \ V(undefined_to_string, undefined_to_string, UndefinedToString) \ V(UndefinedValue, undefined_value, Undefined) \ V(uninitialized_symbol, uninitialized_symbol, UninitializedSymbol) \ V(valueOf_string, valueOf_string, ValueOfString) \ V(wasm_wrapped_object_symbol, wasm_wrapped_object_symbol, \ WasmWrappedObjectSymbol) \ V(zero_string, zero_string, ZeroString) \ UNIQUE_INSTANCE_TYPE_MAP_LIST_GENERATOR( \ UNIQUE_INSTANCE_TYPE_IMMUTABLE_IMMOVABLE_MAP_ADAPTER, V) #define HEAP_IMMOVABLE_OBJECT_LIST(V) \ HEAP_MUTABLE_IMMOVABLE_OBJECT_LIST(V) \ HEAP_IMMUTABLE_IMMOVABLE_OBJECT_LIST(V) #ifdef DEBUG #define CSA_CHECK(csa, x) \ (csa)->Check([&]() -> TNode<BoolT> { return x; }, #x, __FILE__, __LINE__) #else #define CSA_CHECK(csa, x) (csa)->FastCheck(x) #endif #ifdef DEBUG // CSA_DCHECK_ARGS generates an // std::initializer_list<CodeStubAssembler::ExtraNode> from __VA_ARGS__. It // currently supports between 0 and 2 arguments. // clang-format off #define CSA_DCHECK_0_ARGS(...) {} #define CSA_DCHECK_1_ARG(a, ...) {{a, #a}} #define CSA_DCHECK_2_ARGS(a, b, ...) {{a, #a}, {b, #b}} // clang-format on #define SWITCH_CSA_DCHECK_ARGS(dummy, a, b, FUNC, ...) FUNC(a, b) #define CSA_DCHECK_ARGS(...) \ CALL(SWITCH_CSA_DCHECK_ARGS, (, ##__VA_ARGS__, CSA_DCHECK_2_ARGS, \ CSA_DCHECK_1_ARG, CSA_DCHECK_0_ARGS)) // Workaround for MSVC to skip comma in empty __VA_ARGS__. #define CALL(x, y) x y // CSA_DCHECK(csa, <condition>, <extra values to print...>) #define CSA_DCHECK(csa, condition_node, ...) \ (csa)->Dcheck(condition_node, #condition_node, __FILE__, __LINE__, \ CSA_DCHECK_ARGS(__VA_ARGS__)) // CSA_DCHECK_BRANCH(csa, [](Label* ok, Label* not_ok) {...}, // <extra values to print...>) #define CSA_DCHECK_BRANCH(csa, gen, ...) \ (csa)->Dcheck(gen, #gen, __FILE__, __LINE__, CSA_DCHECK_ARGS(__VA_ARGS__)) #define CSA_DCHECK_JS_ARGC_OP(csa, Op, op, expected) \ (csa)->Dcheck( \ [&]() -> TNode<BoolT> { \ const TNode<Word32T> argc = (csa)->UncheckedParameter<Word32T>( \ Descriptor::kJSActualArgumentsCount); \ return (csa)->Op(argc, \ (csa)->Int32Constant(i::JSParameterCount(expected))); \ }, \ "argc " #op " " #expected, __FILE__, __LINE__, \ {{SmiFromInt32((csa)->UncheckedParameter<Int32T>( \ Descriptor::kJSActualArgumentsCount)), \ "argc"}}) #define CSA_DCHECK_JS_ARGC_EQ(csa, expected) \ CSA_DCHECK_JS_ARGC_OP(csa, Word32Equal, ==, expected) #define CSA_DEBUG_INFO(name) \ { #name, __FILE__, __LINE__ } #define BIND(label) Bind(label, CSA_DEBUG_INFO(label)) #define TYPED_VARIABLE_DEF(type, name, ...) \ TVariable<type> name(CSA_DEBUG_INFO(name), __VA_ARGS__) #define TYPED_VARIABLE_CONSTRUCTOR(name, ...) \ name(CSA_DEBUG_INFO(name), __VA_ARGS__) #else // DEBUG #define CSA_DCHECK(csa, ...) ((void)0) #define CSA_DCHECK_BRANCH(csa, ...) ((void)0) #define CSA_DCHECK_JS_ARGC_EQ(csa, expected) ((void)0) #define BIND(label) Bind(label) #define TYPED_VARIABLE_DEF(type, name, ...) TVariable<type> name(__VA_ARGS__) #define TYPED_VARIABLE_CONSTRUCTOR(name, ...) name(__VA_ARGS__) #endif // DEBUG #define TVARIABLE(...) EXPAND(TYPED_VARIABLE_DEF(__VA_ARGS__, this)) #define TVARIABLE_CONSTRUCTOR(...) \ EXPAND(TYPED_VARIABLE_CONSTRUCTOR(__VA_ARGS__, this)) #ifdef ENABLE_SLOW_DCHECKS #define CSA_SLOW_DCHECK(csa, ...) \ if (v8_flags.enable_slow_asserts) { \ CSA_DCHECK(csa, __VA_ARGS__); \ } #else #define CSA_SLOW_DCHECK(csa, ...) ((void)0) #endif // Provides JavaScript-specific "macro-assembler" functionality on top of the // CodeAssembler. By factoring the JavaScript-isms out of the CodeAssembler, // it's possible to add JavaScript-specific useful CodeAssembler "macros" // without modifying files in the compiler directory (and requiring a review // from a compiler directory OWNER). class V8_EXPORT_PRIVATE CodeStubAssembler : public compiler::CodeAssembler, public TorqueGeneratedExportedMacrosAssembler { public: using ScopedExceptionHandler = compiler::ScopedExceptionHandler; template <typename T> using LazyNode = std::function<TNode<T>()>; explicit CodeStubAssembler(compiler::CodeAssemblerState* state); enum class AllocationFlag : uint8_t { kNone = 0, kDoubleAlignment = 1, kPretenured = 1 << 1 }; enum SlackTrackingMode { kWithSlackTracking, kNoSlackTracking, kDontInitializeInObjectProperties, }; using AllocationFlags = base::Flags<AllocationFlag>; TNode<IntPtrT> ParameterToIntPtr(TNode<Smi> value) { return SmiUntag(value); } TNode<IntPtrT> ParameterToIntPtr(TNode<IntPtrT> value) { return value; } TNode<IntPtrT> ParameterToIntPtr(TNode<UintPtrT> value) { return Signed(value); } TNode<Smi> ParameterToTagged(TNode<Smi> value) { return value; } TNode<Smi> ParameterToTagged(TNode<IntPtrT> value) { return SmiTag(value); } template <typename TIndex> TNode<TIndex> TaggedToParameter(TNode<Smi> value); bool ToParameterConstant(TNode<Smi> node, intptr_t* out) { if (TryToIntPtrConstant(node, out)) { return true; } return false; } bool ToParameterConstant(TNode<IntPtrT> node, intptr_t* out) { intptr_t constant; if (TryToIntPtrConstant(node, &constant)) { *out = constant; return true; } return false; } #if defined(BINT_IS_SMI) TNode<Smi> BIntToSmi(TNode<BInt> source) { return source; } TNode<IntPtrT> BIntToIntPtr(TNode<BInt> source) { return SmiToIntPtr(source); } TNode<BInt> SmiToBInt(TNode<Smi> source) { return source; } TNode<BInt> IntPtrToBInt(TNode<IntPtrT> source) { return SmiFromIntPtr(source); } #elif defined(BINT_IS_INTPTR) TNode<Smi> BIntToSmi(TNode<BInt> source) { return SmiFromIntPtr(source); } TNode<IntPtrT> BIntToIntPtr(TNode<BInt> source) { return source; } TNode<BInt> SmiToBInt(TNode<Smi> source) { return SmiToIntPtr(source); } TNode<BInt> IntPtrToBInt(TNode<IntPtrT> source) { return source; } #else #error Unknown architecture. #endif TNode<IntPtrT> TaggedIndexToIntPtr(TNode<TaggedIndex> value); TNode<TaggedIndex> IntPtrToTaggedIndex(TNode<IntPtrT> value); // TODO(v8:10047): Get rid of these convertions eventually. TNode<Smi> TaggedIndexToSmi(TNode<TaggedIndex> value); TNode<TaggedIndex> SmiToTaggedIndex(TNode<Smi> value); // Pointer compression specific. Ensures that the upper 32 bits of a Smi // contain the sign of a lower 32 bits so that the Smi can be directly used // as an index in element offset computation. TNode<Smi> NormalizeSmiIndex(TNode<Smi> smi_index); TNode<Smi> TaggedToSmi(TNode<Object> value, Label* fail) { GotoIf(TaggedIsNotSmi(value), fail); return UncheckedCast<Smi>(value); } TNode<Smi> TaggedToPositiveSmi(TNode<Object> value, Label* fail) { GotoIfNot(TaggedIsPositiveSmi(value), fail); return UncheckedCast<Smi>(value); } TNode<String> TaggedToDirectString(TNode<Object> value, Label* fail); TNode<HeapObject> TaggedToHeapObject(TNode<Object> value, Label* fail) { GotoIf(TaggedIsSmi(value), fail); return UncheckedCast<HeapObject>(value); } TNode<Uint16T> Uint16Constant(uint16_t t) { return UncheckedCast<Uint16T>(Int32Constant(t)); } TNode<JSDataView> HeapObjectToJSDataView(TNode<HeapObject> heap_object, Label* fail) { GotoIfNot(IsJSDataView(heap_object), fail); return CAST(heap_object); } TNode<JSProxy> HeapObjectToJSProxy(TNode<HeapObject> heap_object, Label* fail) { GotoIfNot(IsJSProxy(heap_object), fail); return CAST(heap_object); } TNode<JSStringIterator> HeapObjectToJSStringIterator( TNode<HeapObject> heap_object, Label* fail) { GotoIfNot(IsJSStringIterator(heap_object), fail); return CAST(heap_object); } TNode<JSReceiver> HeapObjectToCallable(TNode<HeapObject> heap_object, Label* fail) { GotoIfNot(IsCallable(heap_object), fail); return CAST(heap_object); } TNode<String> HeapObjectToString(TNode<HeapObject> heap_object, Label* fail) { GotoIfNot(IsString(heap_object), fail); return CAST(heap_object); } TNode<JSReceiver> HeapObjectToConstructor(TNode<HeapObject> heap_object, Label* fail) { GotoIfNot(IsConstructor(heap_object), fail); return CAST(heap_object); } TNode<JSFunction> HeapObjectToJSFunctionWithPrototypeSlot( TNode<HeapObject> heap_object, Label* fail) { GotoIfNot(IsJSFunctionWithPrototypeSlot(heap_object), fail); return CAST(heap_object); } template <typename T> TNode<T> RunLazy(LazyNode<T> lazy) { return lazy(); } #define PARAMETER_BINOP(OpName, IntPtrOpName, SmiOpName) \ TNode<Smi> OpName(TNode<Smi> a, TNode<Smi> b) { return SmiOpName(a, b); } \ TNode<IntPtrT> OpName(TNode<IntPtrT> a, TNode<IntPtrT> b) { \ return IntPtrOpName(a, b); \ } \ TNode<UintPtrT> OpName(TNode<UintPtrT> a, TNode<UintPtrT> b) { \ return Unsigned(IntPtrOpName(Signed(a), Signed(b))); \ } \ TNode<RawPtrT> OpName(TNode<RawPtrT> a, TNode<RawPtrT> b) { \ return ReinterpretCast<RawPtrT>(IntPtrOpName( \ ReinterpretCast<IntPtrT>(a), ReinterpretCast<IntPtrT>(b))); \ } // TODO(v8:9708): Define BInt operations once all uses are ported. PARAMETER_BINOP(IntPtrOrSmiAdd, IntPtrAdd, SmiAdd) PARAMETER_BINOP(IntPtrOrSmiSub, IntPtrSub, SmiSub) #undef PARAMETER_BINOP #define PARAMETER_BINOP(OpName, IntPtrOpName, SmiOpName) \ TNode<BoolT> OpName(TNode<Smi> a, TNode<Smi> b) { return SmiOpName(a, b); } \ TNode<BoolT> OpName(TNode<IntPtrT> a, TNode<IntPtrT> b) { \ return IntPtrOpName(a, b); \ } \ /* IntPtrXXX comparisons shouldn't be used with unsigned types, use \ * UintPtrXXX operations explicitly instead. */ \ TNode<BoolT> OpName(TNode<UintPtrT> a, TNode<UintPtrT> b) { UNREACHABLE(); } \ TNode<BoolT> OpName(TNode<RawPtrT> a, TNode<RawPtrT> b) { UNREACHABLE(); } // TODO(v8:9708): Define BInt operations once all uses are ported. PARAMETER_BINOP(IntPtrOrSmiEqual, WordEqual, SmiEqual) PARAMETER_BINOP(IntPtrOrSmiNotEqual, WordNotEqual, SmiNotEqual) PARAMETER_BINOP(IntPtrOrSmiLessThan, IntPtrLessThan, SmiLessThan) PARAMETER_BINOP(IntPtrOrSmiLessThanOrEqual, IntPtrLessThanOrEqual, SmiLessThanOrEqual) PARAMETER_BINOP(IntPtrOrSmiGreaterThan, IntPtrGreaterThan, SmiGreaterThan) #undef PARAMETER_BINOP #define PARAMETER_BINOP(OpName, UintPtrOpName, SmiOpName) \ TNode<BoolT> OpName(TNode<Smi> a, TNode<Smi> b) { return SmiOpName(a, b); } \ TNode<BoolT> OpName(TNode<IntPtrT> a, TNode<IntPtrT> b) { \ return UintPtrOpName(Unsigned(a), Unsigned(b)); \ } \ TNode<BoolT> OpName(TNode<UintPtrT> a, TNode<UintPtrT> b) { \ return UintPtrOpName(a, b); \ } \ TNode<BoolT> OpName(TNode<RawPtrT> a, TNode<RawPtrT> b) { \ return UintPtrOpName(a, b); \ } // TODO(v8:9708): Define BInt operations once all uses are ported. PARAMETER_BINOP(UintPtrOrSmiEqual, WordEqual, SmiEqual) PARAMETER_BINOP(UintPtrOrSmiNotEqual, WordNotEqual, SmiNotEqual) PARAMETER_BINOP(UintPtrOrSmiLessThan, UintPtrLessThan, SmiBelow) PARAMETER_BINOP(UintPtrOrSmiLessThanOrEqual, UintPtrLessThanOrEqual, SmiBelowOrEqual) PARAMETER_BINOP(UintPtrOrSmiGreaterThan, UintPtrGreaterThan, SmiAbove) PARAMETER_BINOP(UintPtrOrSmiGreaterThanOrEqual, UintPtrGreaterThanOrEqual, SmiAboveOrEqual) #undef PARAMETER_BINOP uintptr_t ConstexprUintPtrShl(uintptr_t a, int32_t b) { return a << b; } uintptr_t ConstexprUintPtrShr(uintptr_t a, int32_t b) { return a >> b; } intptr_t ConstexprIntPtrAdd(intptr_t a, intptr_t b) { return a + b; } uintptr_t ConstexprUintPtrAdd(uintptr_t a, uintptr_t b) { return a + b; } intptr_t ConstexprWordNot(intptr_t a) { return ~a; } uintptr_t ConstexprWordNot(uintptr_t a) { return ~a; } TNode<BoolT> TaggedEqual(TNode<AnyTaggedT> a, TNode<AnyTaggedT> b) { if (COMPRESS_POINTERS_BOOL) { return Word32Equal(ReinterpretCast<Word32T>(a), ReinterpretCast<Word32T>(b)); } else { return WordEqual(ReinterpretCast<WordT>(a), ReinterpretCast<WordT>(b)); } } TNode<BoolT> TaggedNotEqual(TNode<AnyTaggedT> a, TNode<AnyTaggedT> b) { return Word32BinaryNot(TaggedEqual(a, b)); } TNode<Smi> NoContextConstant(); TNode<IntPtrT> StackAlignmentInBytes() { // This node makes the graph platform-specific. To make sure that the graph // structure is still platform independent, UniqueIntPtrConstants are used // here. #if V8_TARGET_ARCH_ARM64 return UniqueIntPtrConstant(16); #else return UniqueIntPtrConstant(kSystemPointerSize); #endif } #define HEAP_CONSTANT_ACCESSOR(rootIndexName, rootAccessorName, name) \ TNode<RemoveTagged< \ decltype(std::declval<ReadOnlyRoots>().rootAccessorName())>::type> \ name##Constant(); HEAP_IMMUTABLE_IMMOVABLE_OBJECT_LIST(HEAP_CONSTANT_ACCESSOR) #undef HEAP_CONSTANT_ACCESSOR #define HEAP_CONSTANT_ACCESSOR(rootIndexName, rootAccessorName, name) \ TNode<RemoveTagged<decltype(std::declval<Heap>().rootAccessorName())>::type> \ name##Constant(); HEAP_MUTABLE_IMMOVABLE_OBJECT_LIST(HEAP_CONSTANT_ACCESSOR) #undef HEAP_CONSTANT_ACCESSOR #define HEAP_CONSTANT_TEST(rootIndexName, rootAccessorName, name) \ TNode<BoolT> Is##name(TNode<Object> value); \ TNode<BoolT> IsNot##name(TNode<Object> value); HEAP_IMMOVABLE_OBJECT_LIST(HEAP_CONSTANT_TEST) #undef HEAP_CONSTANT_TEST TNode<BInt> BIntConstant(int value); template <typename TIndex> TNode<TIndex> IntPtrOrSmiConstant(int value); bool TryGetIntPtrOrSmiConstantValue(TNode<Smi> maybe_constant, int* value); bool TryGetIntPtrOrSmiConstantValue(TNode<IntPtrT> maybe_constant, int* value); TNode<IntPtrT> PopulationCountFallback(TNode<UintPtrT> value); TNode<Int64T> PopulationCount64(TNode<Word64T> value); TNode<Int32T> PopulationCount32(TNode<Word32T> value); TNode<Int64T> CountTrailingZeros64(TNode<Word64T> value); TNode<Int32T> CountTrailingZeros32(TNode<Word32T> value); TNode<Int64T> CountLeadingZeros64(TNode<Word64T> value); TNode<Int32T> CountLeadingZeros32(TNode<Word32T> value); // Round the 32bits payload of the provided word up to the next power of two. TNode<IntPtrT> IntPtrRoundUpToPowerOfTwo32(TNode<IntPtrT> value); // Select the maximum of the two provided IntPtr values. TNode<IntPtrT> IntPtrMax(TNode<IntPtrT> left, TNode<IntPtrT> right); // Select the minimum of the two provided IntPtr values. TNode<IntPtrT> IntPtrMin(TNode<IntPtrT> left, TNode<IntPtrT> right); TNode<UintPtrT> UintPtrMin(TNode<UintPtrT> left, TNode<UintPtrT> right); // Float64 operations. TNode<BoolT> Float64AlmostEqual(TNode<Float64T> x, TNode<Float64T> y, double max_relative_error = 0.0000001); TNode<Float64T> Float64Ceil(TNode<Float64T> x); TNode<Float64T> Float64Floor(TNode<Float64T> x); TNode<Float64T> Float64Round(TNode<Float64T> x); TNode<Float64T> Float64RoundToEven(TNode<Float64T> x); TNode<Float64T> Float64Trunc(TNode<Float64T> x); // Select the minimum of the two provided Number values. TNode<Number> NumberMax(TNode<Number> left, TNode<Number> right); // Select the minimum of the two provided Number values. TNode<Number> NumberMin(TNode<Number> left, TNode<Number> right); // Returns true iff the given value fits into smi range and is >= 0. TNode<BoolT> IsValidPositiveSmi(TNode<IntPtrT> value); // Tag an IntPtr as a Smi value. TNode<Smi> SmiTag(TNode<IntPtrT> value); // Untag a Smi value as an IntPtr. TNode<IntPtrT> SmiUntag(TNode<Smi> value); // Untag a positive Smi value as an IntPtr, it's slightly better than // SmiUntag() because it doesn't have to do sign extension. TNode<IntPtrT> PositiveSmiUntag(TNode<Smi> value); // Smi conversions. TNode<Float64T> SmiToFloat64(TNode<Smi> value); TNode<Smi> SmiFromIntPtr(TNode<IntPtrT> value) { return SmiTag(value); } TNode<Smi> SmiFromInt32(TNode<Int32T> value); TNode<Smi> SmiFromUint32(TNode<Uint32T> value); TNode<IntPtrT> SmiToIntPtr(TNode<Smi> value) { return SmiUntag(value); } TNode<Int32T> SmiToInt32(TNode<Smi> value); TNode<Uint32T> PositiveSmiToUint32(TNode<Smi> value); // Smi operations. #define SMI_ARITHMETIC_BINOP(SmiOpName, IntPtrOpName, Int32OpName) \ TNode<Smi> SmiOpName(TNode<Smi> a, TNode<Smi> b) { \ if (SmiValuesAre32Bits()) { \ return BitcastWordToTaggedSigned( \ IntPtrOpName(BitcastTaggedToWordForTagAndSmiBits(a), \ BitcastTaggedToWordForTagAndSmiBits(b))); \ } else { \ DCHECK(SmiValuesAre31Bits()); \ return BitcastWordToTaggedSigned(ChangeInt32ToIntPtr(Int32OpName( \ TruncateIntPtrToInt32(BitcastTaggedToWordForTagAndSmiBits(a)), \ TruncateIntPtrToInt32(BitcastTaggedToWordForTagAndSmiBits(b))))); \ } \ } SMI_ARITHMETIC_BINOP(SmiAdd, IntPtrAdd, Int32Add) SMI_ARITHMETIC_BINOP(SmiSub, IntPtrSub, Int32Sub) SMI_ARITHMETIC_BINOP(SmiAnd, WordAnd, Word32And) SMI_ARITHMETIC_BINOP(SmiOr, WordOr, Word32Or) SMI_ARITHMETIC_BINOP(SmiXor, WordXor, Word32Xor) #undef SMI_ARITHMETIC_BINOP TNode<IntPtrT> TryIntPtrAdd(TNode<IntPtrT> a, TNode<IntPtrT> b, Label* if_overflow); TNode<IntPtrT> TryIntPtrSub(TNode<IntPtrT> a, TNode<IntPtrT> b, Label* if_overflow); TNode<IntPtrT> TryIntPtrMul(TNode<IntPtrT> a, TNode<IntPtrT> b, Label* if_overflow); TNode<IntPtrT> TryIntPtrDiv(TNode<IntPtrT> a, TNode<IntPtrT> b, Label* if_div_zero); TNode<IntPtrT> TryIntPtrMod(TNode<IntPtrT> a, TNode<IntPtrT> b, Label* if_div_zero); TNode<Int32T> TryInt32Mul(TNode<Int32T> a, TNode<Int32T> b, Label* if_overflow); TNode<Smi> TrySmiAdd(TNode<Smi> a, TNode<Smi> b, Label* if_overflow); TNode<Smi> TrySmiSub(TNode<Smi> a, TNode<Smi> b, Label* if_overflow); TNode<Smi> TrySmiAbs(TNode<Smi> a, Label* if_overflow); TNode<Smi> SmiShl(TNode<Smi> a, int shift) { TNode<Smi> result = BitcastWordToTaggedSigned( WordShl(BitcastTaggedToWordForTagAndSmiBits(a), shift)); // Smi shift have different result to int32 shift when the inputs are not // strictly limited. The CSA_DCHECK is to ensure valid inputs. CSA_DCHECK( this, TaggedEqual(result, BitwiseOp(SmiToInt32(a), Int32Constant(shift), Operation::kShiftLeft))); return result; } TNode<Smi> SmiShr(TNode<Smi> a, int shift) { TNode<Smi> result; if (kTaggedSize == kInt64Size) { result = BitcastWordToTaggedSigned( WordAnd(WordShr(BitcastTaggedToWordForTagAndSmiBits(a), shift), BitcastTaggedToWordForTagAndSmiBits(SmiConstant(-1)))); } else { // For pointer compressed Smis, we want to make sure that we truncate to // int32 before shifting, to avoid the values of the top 32-bits from // leaking into the sign bit of the smi. result = BitcastWordToTaggedSigned(WordAnd( ChangeInt32ToIntPtr(Word32Shr( TruncateWordToInt32(BitcastTaggedToWordForTagAndSmiBits(a)), shift)), BitcastTaggedToWordForTagAndSmiBits(SmiConstant(-1)))); } // Smi shift have different result to int32 shift when the inputs are not // strictly limited. The CSA_DCHECK is to ensure valid inputs. CSA_DCHECK( this, TaggedEqual(result, BitwiseOp(SmiToInt32(a), Int32Constant(shift), Operation::kShiftRightLogical))); return result; } TNode<Smi> SmiSar(TNode<Smi> a, int shift) { // The number of shift bits is |shift % 64| for 64-bits value and |shift % // 32| for 32-bits value. The DCHECK is to ensure valid inputs. DCHECK_LT(shift, 32); if (kTaggedSize == kInt64Size) { return BitcastWordToTaggedSigned( WordAnd(WordSar(BitcastTaggedToWordForTagAndSmiBits(a), shift), BitcastTaggedToWordForTagAndSmiBits(SmiConstant(-1)))); } else { // For pointer compressed Smis, we want to make sure that we truncate to // int32 before shifting, to avoid the values of the top 32-bits from // changing the sign bit of the smi. return BitcastWordToTaggedSigned(WordAnd( ChangeInt32ToIntPtr(Word32Sar( TruncateWordToInt32(BitcastTaggedToWordForTagAndSmiBits(a)), shift)), BitcastTaggedToWordForTagAndSmiBits(SmiConstant(-1)))); } } TNode<Smi> WordOrSmiShr(TNode<Smi> a, int shift) { return SmiShr(a, shift); } TNode<IntPtrT> WordOrSmiShr(TNode<IntPtrT> a, int shift) { return WordShr(a, shift); } #define SMI_COMPARISON_OP(SmiOpName, IntPtrOpName, Int32OpName) \ TNode<BoolT> SmiOpName(TNode<Smi> a, TNode<Smi> b) { \ if (kTaggedSize == kInt64Size) { \ return IntPtrOpName(BitcastTaggedToWordForTagAndSmiBits(a), \ BitcastTaggedToWordForTagAndSmiBits(b)); \ } else { \ DCHECK_EQ(kTaggedSize, kInt32Size); \ DCHECK(SmiValuesAre31Bits()); \ return Int32OpName( \ TruncateIntPtrToInt32(BitcastTaggedToWordForTagAndSmiBits(a)), \ TruncateIntPtrToInt32(BitcastTaggedToWordForTagAndSmiBits(b))); \ } \ } SMI_COMPARISON_OP(SmiEqual, WordEqual, Word32Equal) SMI_COMPARISON_OP(SmiNotEqual, WordNotEqual, Word32NotEqual) SMI_COMPARISON_OP(SmiAbove, UintPtrGreaterThan, Uint32GreaterThan) SMI_COMPARISON_OP(SmiAboveOrEqual, UintPtrGreaterThanOrEqual, Uint32GreaterThanOrEqual) SMI_COMPARISON_OP(SmiBelow, UintPtrLessThan, Uint32LessThan) SMI_COMPARISON_OP(SmiBelowOrEqual, UintPtrLessThanOrEqual, Uint32LessThanOrEqual) SMI_COMPARISON_OP(SmiLessThan, IntPtrLessThan, Int32LessThan) SMI_COMPARISON_OP(SmiLessThanOrEqual, IntPtrLessThanOrEqual, Int32LessThanOrEqual) SMI_COMPARISON_OP(SmiGreaterThan, IntPtrGreaterThan, Int32GreaterThan) SMI_COMPARISON_OP(SmiGreaterThanOrEqual, IntPtrGreaterThanOrEqual, Int32GreaterThanOrEqual) #undef SMI_COMPARISON_OP TNode<Smi> SmiMax(TNode<Smi> a, TNode<Smi> b); TNode<Smi> SmiMin(TNode<Smi> a, TNode<Smi> b); // Computes a % b for Smi inputs a and b; result is not necessarily a Smi. TNode<Number> SmiMod(TNode<Smi> a, TNode<Smi> b); // Computes a * b for Smi inputs a and b; result is not necessarily a Smi. TNode<Number> SmiMul(TNode<Smi> a, TNode<Smi> b); // Tries to compute dividend / divisor for Smi inputs; branching to bailout // if the division needs to be performed as a floating point operation. TNode<Smi> TrySmiDiv(TNode<Smi> dividend, TNode<Smi> divisor, Label* bailout); // Compares two Smis a and b as if they were converted to strings and then // compared lexicographically. Returns: // -1 iff x < y. // 0 iff x == y. // 1 iff x > y. TNode<Smi> SmiLexicographicCompare(TNode<Smi> x, TNode<Smi> y); // Returns Smi::zero() if no CoverageInfo exists. TNode<Object> GetCoverageInfo(TNode<SharedFunctionInfo> sfi); #ifdef BINT_IS_SMI #define BINT_COMPARISON_OP(BIntOpName, SmiOpName, IntPtrOpName) \ TNode<BoolT> BIntOpName(TNode<BInt> a, TNode<BInt> b) { \ return SmiOpName(a, b); \ } #else #define BINT_COMPARISON_OP(BIntOpName, SmiOpName, IntPtrOpName) \ TNode<BoolT> BIntOpName(TNode<BInt> a, TNode<BInt> b) { \ return IntPtrOpName(a, b); \ } #endif BINT_COMPARISON_OP(BIntEqual, SmiEqual, WordEqual) BINT_COMPARISON_OP(BIntNotEqual, SmiNotEqual, WordNotEqual) BINT_COMPARISON_OP(BIntAbove, SmiAbove, UintPtrGreaterThan) BINT_COMPARISON_OP(BIntAboveOrEqual, SmiAboveOrEqual, UintPtrGreaterThanOrEqual) BINT_COMPARISON_OP(BIntBelow, SmiBelow, UintPtrLessThan) BINT_COMPARISON_OP(BIntLessThan, SmiLessThan, IntPtrLessThan) BINT_COMPARISON_OP(BIntLessThanOrEqual, SmiLessThanOrEqual, IntPtrLessThanOrEqual) BINT_COMPARISON_OP(BIntGreaterThan, SmiGreaterThan, IntPtrGreaterThan) BINT_COMPARISON_OP(BIntGreaterThanOrEqual, SmiGreaterThanOrEqual, IntPtrGreaterThanOrEqual) #undef BINT_COMPARISON_OP // Smi | HeapNumber operations. TNode<Number> NumberInc(TNode<Number> value); TNode<Number> NumberDec(TNode<Number> value); TNode<Number> NumberAdd(TNode<Number> a, TNode<Number> b); TNode<Number> NumberSub(TNode<Number> a, TNode<Number> b); void GotoIfNotNumber(TNode<Object> value, Label* is_not_number); void GotoIfNumber(TNode<Object> value, Label* is_number); TNode<Number> SmiToNumber(TNode<Smi> v) { return v; } // BigInt operations. void GotoIfLargeBigInt(TNode<BigInt> bigint, Label* true_label); TNode<Word32T> NormalizeShift32OperandIfNecessary(TNode<Word32T> right32); TNode<Number> BitwiseOp(TNode<Word32T> left32, TNode<Word32T> right32, Operation bitwise_op); TNode<Number> BitwiseSmiOp(TNode<Smi> left32, TNode<Smi> right32, Operation bitwise_op); // Align the value to kObjectAlignment8GbHeap if V8_COMPRESS_POINTERS_8GB is // defined. TNode<IntPtrT> AlignToAllocationAlignment(TNode<IntPtrT> value); // Allocate an object of the given size. TNode<HeapObject> AllocateInNewSpace( TNode<IntPtrT> size, AllocationFlags flags = AllocationFlag::kNone); TNode<HeapObject> AllocateInNewSpace( int size, AllocationFlags flags = AllocationFlag::kNone); TNode<HeapObject> Allocate(TNode<IntPtrT> size, AllocationFlags flags = AllocationFlag::kNone); TNode<HeapObject> Allocate(int size, AllocationFlags flags = AllocationFlag::kNone); TNode<BoolT> IsRegularHeapObjectSize(TNode<IntPtrT> size); using BranchGenerator = std::function<void(Label*, Label*)>; template <typename T> using NodeGenerator = std::function<TNode<T>()>; using ExtraNode = std::pair<TNode<Object>, const char*>; void Dcheck(const BranchGenerator& branch, const char* message, const char* file, int line, std::initializer_list<ExtraNode> extra_nodes = {}); void Dcheck(const NodeGenerator<BoolT>& condition_body, const char* message, const char* file, int line, std::initializer_list<ExtraNode> extra_nodes = {}); void Dcheck(TNode<Word32T> condition_node, const char* message, const char* file, int line, std::initializer_list<ExtraNode> extra_nodes = {}); void Check(const BranchGenerator& branch, const char* message, const char* file, int line, std::initializer_list<ExtraNode> extra_nodes = {}); void Check(const NodeGenerator<BoolT>& condition_body, const char* message, const char* file, int line, std::initializer_list<ExtraNode> extra_nodes = {}); void Check(TNode<Word32T> condition_node, const char* message, const char* file, int line, std::initializer_list<ExtraNode> extra_nodes = {}); void FailAssert(const char* message, const std::vector<FileAndLine>& files_and_lines, std::initializer_list<ExtraNode> extra_nodes = {}); void FastCheck(TNode<BoolT> condition); TNode<RawPtrT> LoadCodeInstructionStart(TNode<Code> code); TNode<BoolT> IsMarkedForDeoptimization(TNode<Code> code); // The following Call wrappers call an object according to the semantics that // one finds in the EcmaScript spec, operating on an Callable (e.g. a // JSFunction or proxy) rather than a InstructionStream object. template <class... TArgs> TNode<Object> Call(TNode<Context> context, TNode<Object> callable, TNode<JSReceiver> receiver, TArgs... args) { return CallJS( CodeFactory::Call(isolate(), ConvertReceiverMode::kNotNullOrUndefined), context, callable, receiver, args...); } template <class... TArgs> TNode<Object> Call(TNode<Context> context, TNode<Object> callable, TNode<Object> receiver, TArgs... args) { if (IsUndefinedConstant(receiver) || IsNullConstant(receiver)) { return CallJS( CodeFactory::Call(isolate(), ConvertReceiverMode::kNullOrUndefined), context, callable, receiver, args...); } return CallJS(CodeFactory::Call(isolate()), context, callable, receiver, args...); } TNode<Object> CallApiCallback(TNode<Object> context, TNode<RawPtrT> callback, TNode<Int32T> argc, TNode<Object> data, TNode<Object> holder, TNode<Object> receiver); TNode<Object> CallApiCallback(TNode<Object> context, TNode<RawPtrT> callback, TNode<Int32T> argc, TNode<Object> data, TNode<Object> holder, TNode<Object> receiver, TNode<Object> value); TNode<Object> CallRuntimeNewArray(TNode<Context> context, TNode<Object> receiver, TNode<Object> length, TNode<Object> new_target, TNode<Object> allocation_site); void TailCallRuntimeNewArray(TNode<Context> context, TNode<Object> receiver, TNode<Object> length, TNode<Object> new_target, TNode<Object> allocation_site); template <class... TArgs> TNode<JSReceiver> ConstructWithTarget(TNode<Context> context, TNode<JSReceiver> target, TNode<JSReceiver> new_target, TArgs... args) { return CAST(ConstructJSWithTarget(CodeFactory::Construct(isolate()), context, target, new_target, implicit_cast<TNode<Object>>(args)...)); } template <class... TArgs> TNode<JSReceiver> Construct(TNode<Context> context, TNode<JSReceiver> new_target, TArgs... args) { return ConstructWithTarget(context, new_target, new_target, args...); } template <typename T> TNode<T> Select(TNode<BoolT> condition, const NodeGenerator<T>& true_body, const NodeGenerator<T>& false_body) { TVARIABLE(T, value); Label vtrue(this), vfalse(this), end(this); Branch(condition, &vtrue, &vfalse); BIND(&vtrue); { value = true_body(); Goto(&end); } BIND(&vfalse); { value = false_body(); Goto(&end); } BIND(&end); return value.value(); } template <class A> TNode<A> SelectConstant(TNode<BoolT> condition, TNode<A> true_value, TNode<A> false_value) { return Select<A>( condition, [=] { return true_value; }, [=] { return false_value; }); } TNode<Int32T> SelectInt32Constant(TNode<BoolT> condition, int true_value, int false_value); TNode<IntPtrT> SelectIntPtrConstant(TNode<BoolT> condition, int true_value, int false_value); TNode<Boolean> SelectBooleanConstant(TNode<BoolT> condition); TNode<Smi> SelectSmiConstant(TNode<BoolT> condition, Tagged<Smi> true_value, Tagged<Smi> false_value); TNode<Smi> SelectSmiConstant(TNode<BoolT> condition, int true_value, Tagged<Smi> false_value) { return SelectSmiConstant(condition, Smi::FromInt(true_value), false_value); } TNode<Smi> SelectSmiConstant(TNode<BoolT> condition, Tagged<Smi> true_value, int false_value) { return SelectSmiConstant(condition, true_value, Smi::FromInt(false_value)); } TNode<Smi> SelectSmiConstant(TNode<BoolT> condition, int true_value, int false_value) { return SelectSmiConstant(condition, Smi::FromInt(true_value), Smi::FromInt(false_value)); } TNode<String> SingleCharacterStringConstant(char const* single_char) { DCHECK_EQ(strlen(single_char), 1); return HeapConstant( isolate()->factory()->LookupSingleCharacterStringFromCode( single_char[0])); } TNode<Int32T> TruncateWordToInt32(TNode<WordT> value); TNode<Int32T> TruncateIntPtrToInt32(TNode<IntPtrT> value); // Check a value for smi-ness TNode<BoolT> TaggedIsSmi(TNode<MaybeObject> a); TNode<BoolT> TaggedIsNotSmi(TNode<MaybeObject> a); // Check that the value is a non-negative smi. TNode<BoolT> TaggedIsPositiveSmi(TNode<Object> a); // Check that a word has a word-aligned address. TNode<BoolT> WordIsAligned(TNode<WordT> word, size_t alignment); TNode<BoolT> WordIsPowerOfTwo(TNode<IntPtrT> value); // Check if lower_limit <= value <= higher_limit. template <typename U> TNode<BoolT> IsInRange(TNode<Word32T> value, U lower_limit, U higher_limit) { DCHECK_LE(lower_limit, higher_limit); static_assert(sizeof(U) <= kInt32Size); return Uint32LessThanOrEqual(Int32Sub(value, Int32Constant(lower_limit)), Int32Constant(higher_limit - lower_limit)); } TNode<BoolT> IsInRange(TNode<UintPtrT> value, TNode<UintPtrT> lower_limit, TNode<UintPtrT> higher_limit) { CSA_DCHECK(this, UintPtrLessThanOrEqual(lower_limit, higher_limit)); return UintPtrLessThanOrEqual(UintPtrSub(value, lower_limit), UintPtrSub(higher_limit, lower_limit)); } TNode<BoolT> IsInRange(TNode<WordT> value, intptr_t lower_limit, intptr_t higher_limit) { DCHECK_LE(lower_limit, higher_limit); return UintPtrLessThanOrEqual(IntPtrSub(value, IntPtrConstant(lower_limit)), IntPtrConstant(higher_limit - lower_limit)); } #if DEBUG void Bind(Label* label, AssemblerDebugInfo debug_info); #endif // DEBUG void Bind(Label* label); template <class... T> void Bind(compiler::CodeAssemblerParameterizedLabel<T...>* label, TNode<T>*... phis) { CodeAssembler::Bind(label, phis...); } void BranchIfSmiEqual(TNode<Smi> a, TNode<Smi> b, Label* if_true, Label* if_false) { Branch(SmiEqual(a, b), if_true, if_false); } void BranchIfSmiLessThan(TNode<Smi> a, TNode<Smi> b, Label* if_true, Label* if_false) { Branch(SmiLessThan(a, b), if_true, if_false); } void BranchIfSmiLessThanOrEqual(TNode<Smi> a, TNode<Smi> b, Label* if_true, Label* if_false) { Branch(SmiLessThanOrEqual(a, b), if_true, if_false); } void BranchIfFloat64IsNaN(TNode<Float64T> value, Label* if_true, Label* if_false) { Branch(Float64Equal(value, value), if_false, if_true); } // Branches to {if_true} if ToBoolean applied to {value} yields true, // otherwise goes to {if_false}. void BranchIfToBooleanIsTrue(TNode<Object> value, Label* if_true, Label* if_false); // Branches to {if_false} if ToBoolean applied to {value} yields false, // otherwise goes to {if_true}. void BranchIfToBooleanIsFalse(TNode<Object> value, Label* if_false, Label* if_true) { BranchIfToBooleanIsTrue(value, if_true, if_false); } void BranchIfJSReceiver(TNode<Object> object, Label* if_true, Label* if_false); // Branches to {if_true} when --force-slow-path flag has been passed. // It's used for testing to ensure that slow path implementation behave // equivalent to corresponding fast paths (where applicable). // // Works only with V8_ENABLE_FORCE_SLOW_PATH compile time flag. Nop otherwise. void GotoIfForceSlowPath(Label* if_true); // // Sandboxed pointer related functionality. // // Load a sandboxed pointer value from an object. TNode<RawPtrT> LoadSandboxedPointerFromObject(TNode<HeapObject> object, int offset) { return LoadSandboxedPointerFromObject(object, IntPtrConstant(offset)); } TNode<RawPtrT> LoadSandboxedPointerFromObject(TNode<HeapObject> object, TNode<IntPtrT> offset); // Stored a sandboxed pointer value to an object. void StoreSandboxedPointerToObject(TNode<HeapObject> object, int offset, TNode<RawPtrT> pointer) { StoreSandboxedPointerToObject(object, IntPtrConstant(offset), pointer); } void StoreSandboxedPointerToObject(TNode<HeapObject> object, TNode<IntPtrT> offset, TNode<RawPtrT> pointer); TNode<RawPtrT> EmptyBackingStoreBufferConstant(); // // Bounded size related functionality. // // Load a bounded size value from an object. TNode<UintPtrT> LoadBoundedSizeFromObject(TNode<HeapObject> object, int offset) { return LoadBoundedSizeFromObject(object, IntPtrConstant(offset)); } TNode<UintPtrT> LoadBoundedSizeFromObject(TNode<HeapObject> object, TNode<IntPtrT> offset); // Stored a bounded size value to an object. void StoreBoundedSizeToObject(TNode<HeapObject> object, int offset, TNode<UintPtrT> value) { StoreBoundedSizeToObject(object, IntPtrConstant(offset), value); } void StoreBoundedSizeToObject(TNode<HeapObject> object, TNode<IntPtrT> offset, TNode<UintPtrT> value); // // ExternalPointerT-related functionality. // TNode<RawPtrT> ExternalPointerTableAddress(ExternalPointerTag tag); // Load an external pointer value from an object. TNode<RawPtrT> LoadExternalPointerFromObject(TNode<HeapObject> object, int offset, ExternalPointerTag tag) { return LoadExternalPointerFromObject(object, IntPtrConstant(offset), tag); } TNode<RawPtrT> LoadExternalPointerFromObject(TNode<HeapObject> object, TNode<IntPtrT> offset, ExternalPointerTag tag); // Store external object pointer to object. void StoreExternalPointerToObject(TNode<HeapObject> object, int offset, TNode<RawPtrT> pointer, ExternalPointerTag tag) { StoreExternalPointerToObject(object, IntPtrConstant(offset), pointer, tag); } void StoreExternalPointerToObject(TNode<HeapObject> object, TNode<IntPtrT> offset, TNode<RawPtrT> pointer, ExternalPointerTag tag); // Load an indirect pointer field. TNode<HeapObject> LoadIndirectPointerFromObject(TNode<HeapObject> object, int offset); // Load a field that contains either an indirect pointer (if the sandbox is // enabled) or a regular/tagged pointer (otherwise). TNode<HeapObject> LoadMaybeIndirectPointerFromObject(TNode<HeapObject> object, int offset); // Load the pointer to a Code's entrypoint via an indirect pointer to the // Code object. // Only available when the sandbox is enabled. TNode<RawPtrT> LoadCodeEntrypointViaIndirectPointerField( TNode<HeapObject> object, int offset) { return LoadCodeEntrypointViaIndirectPointerField(object, IntPtrConstant(offset)); } TNode<RawPtrT> LoadCodeEntrypointViaIndirectPointerField( TNode<HeapObject> object, TNode<IntPtrT> offset); #ifdef V8_ENABLE_SANDBOX // Helper function to load a CodePointerHandle from an object and compute the // offset into the code pointer table from it. TNode<UintPtrT> ComputeCodePointerTableEntryOffset( TNode<HeapObject> object, TNode<IntPtrT> field_offset); #endif TNode<RawPtrT> LoadForeignForeignAddressPtr(TNode<Foreign> object) { return LoadExternalPointerFromObject(object, Foreign::kForeignAddressOffset, kForeignForeignAddressTag); } TNode<RawPtrT> LoadCallHandlerInfoJsCallbackPtr( TNode<CallHandlerInfo> object) { return LoadExternalPointerFromObject( object, CallHandlerInfo::kMaybeRedirectedCallbackOffset, kCallHandlerInfoCallbackTag); } TNode<RawPtrT> LoadExternalStringResourcePtr(TNode<ExternalString> object) { return LoadExternalPointerFromObject( object, ExternalString::kResourceOffset, kExternalStringResourceTag); } TNode<RawPtrT> LoadExternalStringResourceDataPtr( TNode<ExternalString> object) { // This is only valid for ExternalStrings where the resource data // pointer is cached (i.e. no uncached external strings). CSA_DCHECK(this, Word32NotEqual( Word32And(LoadInstanceType(object), Int32Constant(kUncachedExternalStringMask)), Int32Constant(kUncachedExternalStringTag))); return LoadExternalPointerFromObject(object, ExternalString::kResourceDataOffset, kExternalStringResourceDataTag); } TNode<RawPtr<Uint64T>> Log10OffsetTable() { return ReinterpretCast<RawPtr<Uint64T>>( ExternalConstant(ExternalReference::address_of_log10_offset_table())); } #if V8_ENABLE_WEBASSEMBLY TNode<RawPtrT> LoadWasmInternalFunctionCallTargetPtr( TNode<WasmInternalFunction> object) { return LoadExternalPointerFromObject( object, WasmInternalFunction::kCallTargetOffset, kWasmInternalFunctionCallTargetTag); } TNode<RawPtrT> LoadWasmTypeInfoNativeTypePtr(TNode<WasmTypeInfo> object) { return LoadExternalPointerFromObject( object, WasmTypeInfo::kNativeTypeOffset, kWasmTypeInfoNativeTypeTag); } TNode<RawPtrT> LoadWasmExportedFunctionDataSigPtr( TNode<WasmExportedFunctionData> object) { return LoadExternalPointerFromObject(object, WasmExportedFunctionData::kSigOffset, kWasmExportedFunctionDataSignatureTag); } #endif // V8_ENABLE_WEBASSEMBLY TNode<RawPtrT> LoadJSTypedArrayExternalPointerPtr( TNode<JSTypedArray> holder) { return LoadSandboxedPointerFromObject(holder, JSTypedArray::kExternalPointerOffset); } void StoreJSTypedArrayExternalPointerPtr(TNode<JSTypedArray> holder, TNode<RawPtrT> value) { StoreSandboxedPointerToObject(holder, JSTypedArray::kExternalPointerOffset, value); } // Load value from current parent frame by given offset in bytes. TNode<Object> LoadFromParentFrame(int offset); // Load an object pointer from a buffer that isn't in the heap. TNode<Object> LoadBufferObject(TNode<RawPtrT> buffer, int offset) { return LoadFullTagged(buffer, IntPtrConstant(offset)); } template <typename T> TNode<T> LoadBufferData(TNode<RawPtrT> buffer, int offset) { return UncheckedCast<T>( Load(MachineTypeOf<T>::value, buffer, IntPtrConstant(offset))); } TNode<RawPtrT> LoadBufferPointer(TNode<RawPtrT> buffer, int offset) { return LoadBufferData<RawPtrT>(buffer, offset); } TNode<Smi> LoadBufferSmi(TNode<RawPtrT> buffer, int offset) { return CAST(LoadBufferObject(buffer, offset)); } TNode<IntPtrT> LoadBufferIntptr(TNode<RawPtrT> buffer, int offset) { return LoadBufferData<IntPtrT>(buffer, offset); } TNode<Uint8T> LoadUint8Ptr(TNode<RawPtrT> ptr, TNode<IntPtrT> offset); TNode<Uint64T> LoadUint64Ptr(TNode<RawPtrT> ptr, TNode<IntPtrT> index); // Load a field from an object on the heap. template <class T, typename std::enable_if< std::is_convertible<TNode<T>, TNode<Object>>::value && std::is_base_of<T, Map>::value, int>::type = 0> TNode<T> LoadObjectField(TNode<HeapObject> object, int offset) { const MachineType machine_type = offset == HeapObject::kMapOffset ? MachineType::MapInHeader() : MachineTypeOf<T>::value; return CAST(LoadFromObject(machine_type, object, IntPtrConstant(offset - kHeapObjectTag))); } template <class T, typename std::enable_if< std::is_convertible<TNode<T>, TNode<Object>>::value && !std::is_base_of<T, Map>::value, int>::type = 0> TNode<T> LoadObjectField(TNode<HeapObject> object, int offset) { return CAST(LoadFromObject(MachineTypeOf<T>::value, object, IntPtrConstant(offset - kHeapObjectTag))); } template <class T, typename std::enable_if< std::is_convertible<TNode<T>, TNode<UntaggedT>>::value, int>::type = 0> TNode<T> LoadObjectField(TNode<HeapObject> object, int offset) { return UncheckedCast<T>( LoadFromObject(MachineTypeOf<T>::value, object, IntPtrConstant(offset - kHeapObjectTag))); } TNode<Object> LoadObjectField(TNode<HeapObject> object, int offset) { return UncheckedCast<Object>( LoadFromObject(MachineType::AnyTagged(), object, IntPtrConstant(offset - kHeapObjectTag))); } TNode<Object> LoadObjectField(TNode<HeapObject> object, TNode<IntPtrT> offset) { return UncheckedCast<Object>( LoadFromObject(MachineType::AnyTagged(), object, IntPtrSub(offset, IntPtrConstant(kHeapObjectTag)))); } template <class T, typename std::enable_if< std::is_convertible<TNode<T>, TNode<UntaggedT>>::value, int>::type = 0> TNode<T> LoadObjectField(TNode<HeapObject> object, TNode<IntPtrT> offset) { return UncheckedCast<T>( LoadFromObject(MachineTypeOf<T>::value, object, IntPtrSub(offset, IntPtrConstant(kHeapObjectTag)))); } // Load a positive SMI field and untag it. TNode<IntPtrT> LoadAndUntagPositiveSmiObjectField(TNode<HeapObject> object, int offset); // Load a SMI field, untag it, and convert to Word32. TNode<Int32T> LoadAndUntagToWord32ObjectField(TNode<HeapObject> object, int offset); TNode<MaybeObject> LoadMaybeWeakObjectField(TNode<HeapObject> object, int offset) { return UncheckedCast<MaybeObject>(LoadObjectField(object, offset)); } TNode<Object> LoadConstructorOrBackPointer(TNode<Map> map) { return LoadObjectField(map, Map::kConstructorOrBackPointerOrNativeContextOffset); } TNode<Simd128T> LoadSimd128(TNode<IntPtrT> ptr) { return Load<Simd128T>(ptr); } // Reference is the CSA-equivalent of a Torque reference value, representing // an inner pointer into a HeapObject. // // The object can be a HeapObject or an all-zero bitpattern. The latter is // used for off-heap data, in which case the offset holds the actual address // and the data must be untagged (i.e. accessed via the Load-/StoreReference // overloads for TNode<UntaggedT>-convertible types below). // // TODO(gsps): Remove in favor of flattened {Load,Store}Reference interface. struct Reference { TNode<Object> object; TNode<IntPtrT> offset; std::tuple<TNode<Object>, TNode<IntPtrT>> Flatten() const { return std::make_tuple(object, offset); } }; template <class T, typename std::enable_if< std::is_convertible<TNode<T>, TNode<Object>>::value, int>::type = 0> TNode<T> LoadReference(Reference reference) { if (IsMapOffsetConstant(reference.offset)) { TNode<Map> map = LoadMap(CAST(reference.object)); DCHECK((std::is_base_of<T, Map>::value)); return ReinterpretCast<T>(map); } TNode<IntPtrT> offset = IntPtrSub(reference.offset, IntPtrConstant(kHeapObjectTag)); CSA_DCHECK(this, TaggedIsNotSmi(reference.object)); return CAST( LoadFromObject(MachineTypeOf<T>::value, reference.object, offset)); } template <class T, typename std::enable_if< std::is_convertible<TNode<T>, TNode<UntaggedT>>::value || std::is_same<T, MaybeObject>::value, int>::type = 0> TNode<T> LoadReference(Reference reference) { DCHECK(!IsMapOffsetConstant(reference.offset)); TNode<IntPtrT> offset = IntPtrSub(reference.offset, IntPtrConstant(kHeapObjectTag)); return UncheckedCast<T>( LoadFromObject(MachineTypeOf<T>::value, reference.object, offset)); } template <class T, typename std::enable_if< std::is_convertible<TNode<T>, TNode<Object>>::value || std::is_same<T, MaybeObject>::value, int>::type = 0> void StoreReference(Reference reference, TNode<T> value) { if (IsMapOffsetConstant(reference.offset)) { DCHECK((std::is_base_of<T, Map>::value)); return StoreMap(CAST(reference.object), ReinterpretCast<Map>(value)); } MachineRepresentation rep = MachineRepresentationOf<T>::value; StoreToObjectWriteBarrier write_barrier = StoreToObjectWriteBarrier::kFull; if (std::is_same<T, Smi>::value) { write_barrier = StoreToObjectWriteBarrier::kNone; } else if (std::is_same<T, Map>::value) { write_barrier = StoreToObjectWriteBarrier::kMap; } TNode<IntPtrT> offset = IntPtrSub(reference.offset, IntPtrConstant(kHeapObjectTag)); CSA_DCHECK(this, TaggedIsNotSmi(reference.object)); StoreToObject(rep, reference.object, offset, value, write_barrier); } template <class T, typename std::enable_if< std::is_convertible<TNode<T>, TNode<UntaggedT>>::value, int>::type = 0> void StoreReference(Reference reference, TNode<T> value) { DCHECK(!IsMapOffsetConstant(reference.offset)); TNode<IntPtrT> offset = IntPtrSub(reference.offset, IntPtrConstant(kHeapObjectTag)); StoreToObject(MachineRepresentationOf<T>::value, reference.object, offset, value, StoreToObjectWriteBarrier::kNone); } TNode<RawPtrT> GCUnsafeReferenceToRawPtr(TNode<Object> object, TNode<IntPtrT> offset) { return ReinterpretCast<RawPtrT>( IntPtrAdd(BitcastTaggedToWord(object), IntPtrSub(offset, IntPtrConstant(kHeapObjectTag)))); } // Load the floating point value of a HeapNumber. TNode<Float64T> LoadHeapNumberValue(TNode<HeapObject> object); // Load the Map of an HeapObject. TNode<Map> LoadMap(TNode<HeapObject> object); // Load the instance type of an HeapObject. TNode<Uint16T> LoadInstanceType(TNode<HeapObject> object); // Compare the instance the type of the object against the provided one. TNode<BoolT> HasInstanceType(TNode<HeapObject> object, InstanceType type); TNode<BoolT> DoesntHaveInstanceType(TNode<HeapObject> object, InstanceType type); TNode<BoolT> TaggedDoesntHaveInstanceType(TNode<HeapObject> any_tagged, InstanceType type); TNode<Word32T> IsStringWrapperElementsKind(TNode<Map> map); void GotoIfMapHasSlowProperties(TNode<Map> map, Label* if_slow); // Load the properties backing store of a JSReceiver. TNode<HeapObject> LoadSlowProperties(TNode<JSReceiver> object); TNode<HeapObject> LoadFastProperties(TNode<JSReceiver> object, bool skip_empty_check = false); // Load the elements backing store of a JSObject. TNode<FixedArrayBase> LoadElements(TNode<JSObject> object) { return LoadJSObjectElements(object); } // Load the length of a JSArray instance. TNode<Object> LoadJSArgumentsObjectLength(TNode<Context> context, TNode<JSArgumentsObject> array); // Load the length of a fast JSArray instance. Returns a positive Smi. TNode<Smi> LoadFastJSArrayLength(TNode<JSArray> array); // Load the length of a fixed array base instance. TNode<Smi> LoadFixedArrayBaseLength(TNode<FixedArrayBase> array); // Load the length of a fixed array base instance. TNode<IntPtrT> LoadAndUntagFixedArrayBaseLength(TNode<FixedArrayBase> array); TNode<Uint32T> LoadAndUntagFixedArrayBaseLengthAsUint32( TNode<FixedArrayBase> array); // Load the length of a WeakFixedArray. TNode<Smi> LoadWeakFixedArrayLength(TNode<WeakFixedArray> array); TNode<IntPtrT> LoadAndUntagWeakFixedArrayLength(TNode<WeakFixedArray> array); TNode<Uint32T> LoadAndUntagWeakFixedArrayLengthAsUint32( TNode<WeakFixedArray> array); // Load the number of descriptors in DescriptorArray. TNode<Int32T> LoadNumberOfDescriptors(TNode<DescriptorArray> array); // Load the number of own descriptors of a map. TNode<Int32T> LoadNumberOfOwnDescriptors(TNode<Map> map); // Load the bit field of a Map. TNode<Int32T> LoadMapBitField(TNode<Map> map); // Load bit field 2 of a map. TNode<Int32T> LoadMapBitField2(TNode<Map> map); // Load bit field 3 of a map. TNode<Uint32T> LoadMapBitField3(TNode<Map> map); // Load the instance type of a map. TNode<Uint16T> LoadMapInstanceType(TNode<Map> map); // Load the ElementsKind of a map. TNode<Int32T> LoadMapElementsKind(TNode<Map> map); TNode<Int32T> LoadElementsKind(TNode<HeapObject> object); // Load the instance descriptors of a map. TNode<DescriptorArray> LoadMapDescriptors(TNode<Map> map); // Load the prototype of a map. TNode<HeapObject> LoadMapPrototype(TNode<Map> map); // Load the instance size of a Map. TNode<IntPtrT> LoadMapInstanceSizeInWords(TNode<Map> map); // Load the inobject properties start of a Map (valid only for JSObjects). TNode<IntPtrT> LoadMapInobjectPropertiesStartInWords(TNode<Map> map); // Load the constructor function index of a Map (only for primitive maps). TNode<IntPtrT> LoadMapConstructorFunctionIndex(TNode<Map> map); // Load the constructor of a Map (equivalent to Map::GetConstructor()). TNode<Object> LoadMapConstructor(TNode<Map> map); // Load the EnumLength of a Map. TNode<Uint32T> LoadMapEnumLength(TNode<Map> map); // Load the back-pointer of a Map. TNode<Object> LoadMapBackPointer(TNode<Map> map); // Compute the used instance size in words of a map. TNode<IntPtrT> MapUsedInstanceSizeInWords(TNode<Map> map); // Compute the number of used inobject properties on a map. TNode<IntPtrT> MapUsedInObjectProperties(TNode<Map> map); // Checks that |map| has only simple properties, returns bitfield3. TNode<Uint32T> EnsureOnlyHasSimpleProperties(TNode<Map> map, TNode<Int32T> instance_type, Label* bailout); // Load the identity hash of a JSRececiver. TNode<Uint32T> LoadJSReceiverIdentityHash(TNode<JSReceiver> receiver, Label* if_no_hash = nullptr); // This is only used on a newly allocated PropertyArray which // doesn't have an existing hash. void InitializePropertyArrayLength(TNode<PropertyArray> property_array, TNode<IntPtrT> length); // Check if the map is set for slow properties. TNode<BoolT> IsDictionaryMap(TNode<Map> map); // Load the Name::hash() value of a name as an uint32 value. // If {if_hash_not_computed} label is specified then it also checks if // hash is actually computed. TNode<Uint32T> LoadNameHash(TNode<Name> name, Label* if_hash_not_computed = nullptr); TNode<Uint32T> LoadNameHashAssumeComputed(TNode<Name> name); // Load the Name::RawHash() value of a name as an uint32 value. Follows // through the forwarding table. TNode<Uint32T> LoadNameRawHash(TNode<Name> name); // Load length field of a String object as Smi value. TNode<Smi> LoadStringLengthAsSmi(TNode<String> string); // Load length field of a String object as intptr_t value. TNode<IntPtrT> LoadStringLengthAsWord(TNode<String> string); // Load length field of a String object as uint32_t value. TNode<Uint32T> LoadStringLengthAsWord32(TNode<String> string); // Load value field of a JSPrimitiveWrapper object. TNode<Object> LoadJSPrimitiveWrapperValue(TNode<JSPrimitiveWrapper> object); // Figures out whether the value of maybe_object is: // - a SMI (jump to "if_smi", "extracted" will be the SMI value) // - a cleared weak reference (jump to "if_cleared", "extracted" will be // untouched) // - a weak reference (jump to "if_weak", "extracted" will be the object // pointed to) // - a strong reference (jump to "if_strong", "extracted" will be the object // pointed to) void DispatchMaybeObject(TNode<MaybeObject> maybe_object, Label* if_smi, Label* if_cleared, Label* if_weak, Label* if_strong, TVariable<Object>* extracted); // See MaybeObject for semantics of these functions. TNode<BoolT> IsStrong(TNode<MaybeObject> value); TNode<BoolT> IsStrong(TNode<HeapObjectReference> value); TNode<HeapObject> GetHeapObjectIfStrong(TNode<MaybeObject> value, Label* if_not_strong); TNode<HeapObject> GetHeapObjectIfStrong(TNode<HeapObjectReference> value, Label* if_not_strong); TNode<BoolT> IsWeakOrCleared(TNode<MaybeObject> value); TNode<BoolT> IsWeakOrCleared(TNode<HeapObjectReference> value); TNode<BoolT> IsCleared(TNode<MaybeObject> value); TNode<BoolT> IsNotCleared(TNode<MaybeObject> value) { return Word32BinaryNot(IsCleared(value)); } // Removes the weak bit + asserts it was set. TNode<HeapObject> GetHeapObjectAssumeWeak(TNode<MaybeObject> value); TNode<HeapObject> GetHeapObjectAssumeWeak(TNode<MaybeObject> value, Label* if_cleared); // Checks if |maybe_object| is a weak reference to given |heap_object|. // Works for both any tagged |maybe_object| values. TNode<BoolT> IsWeakReferenceTo(TNode<MaybeObject> maybe_object, TNode<HeapObject> heap_object); // Returns true if the |object| is a HeapObject and |maybe_object| is a weak // reference to |object|. // The |maybe_object| must not be a Smi. TNode<BoolT> IsWeakReferenceToObject(TNode<MaybeObject> maybe_object, TNode<Object> object); TNode<HeapObjectReference> MakeWeak(TNode<HeapObject> value); TNode<MaybeObject> ClearedValue(); void FixedArrayBoundsCheck(TNode<FixedArrayBase> array, TNode<Smi> index, int additional_offset); void FixedArrayBoundsCheck(TNode<FixedArrayBase> array, TNode<IntPtrT> index, int additional_offset); void FixedArrayBoundsCheck(TNode<FixedArrayBase> array, TNode<UintPtrT> index, int additional_offset) { FixedArrayBoundsCheck(array, Signed(index), additional_offset); } // Array is any array-like type that has a fixed header followed by // tagged elements. template <typename Array> TNode<IntPtrT> LoadArrayLength(TNode<Array> array); // Array is any array-like type that has a fixed header followed by // tagged elements. template <typename Array, typename TIndex, typename TValue = MaybeObject> TNode<TValue> LoadArrayElement(TNode<Array> array, int array_header_size, TNode<TIndex> index, int additional_offset = 0); template <typename TIndex> TNode<Object> LoadFixedArrayElement( TNode<FixedArray> object, TNode<TIndex> index, int additional_offset = 0, CheckBounds check_bounds = CheckBounds::kAlways); // This doesn't emit a bounds-check. As part of the security-performance // tradeoff, only use it if it is performance critical. TNode<Object> UnsafeLoadFixedArrayElement(TNode<FixedArray> object, TNode<IntPtrT> index, int additional_offset = 0) { return LoadFixedArrayElement(object, index, additional_offset, CheckBounds::kDebugOnly); } TNode<Object> LoadFixedArrayElement(TNode<FixedArray> object, int index, int additional_offset = 0) { return LoadFixedArrayElement(object, IntPtrConstant(index), additional_offset); } // This doesn't emit a bounds-check. As part of the security-performance // tradeoff, only use it if it is performance critical. TNode<Object> UnsafeLoadFixedArrayElement(TNode<FixedArray> object, int index, int additional_offset = 0) { return LoadFixedArrayElement(object, IntPtrConstant(index), additional_offset, CheckBounds::kDebugOnly); } TNode<Object> LoadPropertyArrayElement(TNode<PropertyArray> object, TNode<IntPtrT> index); TNode<IntPtrT> LoadPropertyArrayLength(TNode<PropertyArray> object); // Load an element from an array and untag it and return it as Word32. // Array is any array-like type that has a fixed header followed by // tagged elements. template <typename Array> TNode<Int32T> LoadAndUntagToWord32ArrayElement(TNode<Array> array, int array_header_size, TNode<IntPtrT> index, int additional_offset = 0); // Load an array element from a FixedArray, untag it and return it as Word32. TNode<Int32T> LoadAndUntagToWord32FixedArrayElement( TNode<FixedArray> object, TNode<IntPtrT> index, int additional_offset = 0); // Load an array element from a WeakFixedArray. TNode<MaybeObject> LoadWeakFixedArrayElement(TNode<WeakFixedArray> object, TNode<IntPtrT> index, int additional_offset = 0); // Load an array element from a FixedDoubleArray. TNode<Float64T> LoadFixedDoubleArrayElement( TNode<FixedDoubleArray> object, TNode<IntPtrT> index, Label* if_hole = nullptr, MachineType machine_type = MachineType::Float64()); // Load an array element from a FixedArray, FixedDoubleArray or a // NumberDictionary (depending on the |elements_kind|) and return // it as a tagged value. Assumes that the |index| passed a length // check before. Bails out to |if_accessor| if the element that // was found is an accessor, or to |if_hole| if the element at // the given |index| is not found in |elements|. TNode<Object> LoadFixedArrayBaseElementAsTagged( TNode<FixedArrayBase> elements, TNode<IntPtrT> index, TNode<Int32T> elements_kind, Label* if_accessor, Label* if_hole); // Load a feedback slot from a FeedbackVector. template <typename TIndex> TNode<MaybeObject> LoadFeedbackVectorSlot( TNode<FeedbackVector> feedback_vector, TNode<TIndex> slot, int additional_offset = 0); TNode<IntPtrT> LoadFeedbackVectorLength(TNode<FeedbackVector>); TNode<Float64T> LoadDoubleWithHoleCheck(TNode<FixedDoubleArray> array, TNode<IntPtrT> index, Label* if_hole = nullptr); TNode<BoolT> IsDoubleHole(TNode<Object> base, TNode<IntPtrT> offset); // Load Float64 value by |base| + |offset| address. If the value is a double // hole then jump to |if_hole|. If |machine_type| is None then only the hole // check is generated. TNode<Float64T> LoadDoubleWithHoleCheck( TNode<Object> base, TNode<IntPtrT> offset, Label* if_hole, MachineType machine_type = MachineType::Float64()); TNode<Numeric> LoadFixedTypedArrayElementAsTagged(TNode<RawPtrT> data_pointer, TNode<UintPtrT> index, ElementsKind elements_kind); TNode<Numeric> LoadFixedTypedArrayElementAsTagged( TNode<RawPtrT> data_pointer, TNode<UintPtrT> index, TNode<Int32T> elements_kind); // Parts of the above, factored out for readability: TNode<BigInt> LoadFixedBigInt64ArrayElementAsTagged( TNode<RawPtrT> data_pointer, TNode<IntPtrT> offset); TNode<BigInt> LoadFixedBigUint64ArrayElementAsTagged( TNode<RawPtrT> data_pointer, TNode<IntPtrT> offset); // 64-bit platforms only: TNode<BigInt> BigIntFromInt64(TNode<IntPtrT> value); TNode<BigInt> BigIntFromUint64(TNode<UintPtrT> value); // 32-bit platforms only: TNode<BigInt> BigIntFromInt32Pair(TNode<IntPtrT> low, TNode<IntPtrT> high); TNode<BigInt> BigIntFromUint32Pair(TNode<UintPtrT> low, TNode<UintPtrT> high); // ScopeInfo: TNode<ScopeInfo> LoadScopeInfo(TNode<Context> context); TNode<BoolT> LoadScopeInfoHasExtensionField(TNode<ScopeInfo> scope_info); TNode<BoolT> LoadScopeInfoClassScopeHasPrivateBrand( TNode<ScopeInfo> scope_info); // Context manipulation: void StoreContextElementNoWriteBarrier(TNode<Context> context, int slot_index, TNode<Object> value); TNode<NativeContext> LoadNativeContext(TNode<Context> context); // Calling this is only valid if there's a module context in the chain. TNode<Context> LoadModuleContext(TNode<Context> context); TNode<Object> GetImportMetaObject(TNode<Context> context); void GotoIfContextElementEqual(TNode<Object> value, TNode<NativeContext> native_context, int slot_index, Label* if_equal) { GotoIf(TaggedEqual(value, LoadContextElement(native_context, slot_index)), if_equal); } // Loads the initial map of the the Object constructor. TNode<Map> LoadObjectFunctionInitialMap(TNode<NativeContext> native_context); TNode<Map> LoadSlowObjectWithNullPrototypeMap( TNode<NativeContext> native_context); TNode<Map> LoadCachedMap(TNode<NativeContext> native_context, TNode<IntPtrT> number_of_properties, Label* runtime); TNode<Map> LoadJSArrayElementsMap(ElementsKind kind, TNode<NativeContext> native_context); TNode<Map> LoadJSArrayElementsMap(TNode<Int32T> kind, TNode<NativeContext> native_context); TNode<BoolT> IsJSFunctionWithPrototypeSlot(TNode<HeapObject> object); TNode<Uint32T> LoadFunctionKind(TNode<JSFunction> function); TNode<BoolT> IsGeneratorFunction(TNode<JSFunction> function); void BranchIfHasPrototypeProperty(TNode<JSFunction> function, TNode<Int32T> function_map_bit_field, Label* if_true, Label* if_false); void GotoIfPrototypeRequiresRuntimeLookup(TNode<JSFunction> function, TNode<Map> map, Label* runtime); // Load the "prototype" property of a JSFunction. TNode<HeapObject> LoadJSFunctionPrototype(TNode<JSFunction> function, Label* if_bailout); // Load the "code" property of a JSFunction. TNode<Code> LoadJSFunctionCode(TNode<JSFunction> function); TNode<BytecodeArray> LoadSharedFunctionInfoBytecodeArray( TNode<SharedFunctionInfo> shared); void StoreObjectByteNoWriteBarrier(TNode<HeapObject> object, int offset, TNode<Word32T> value); // Store the floating point value of a HeapNumber. void StoreHeapNumberValue(TNode<HeapNumber> object, TNode<Float64T> value); // Store a field to an object on the heap. void StoreObjectField(TNode<HeapObject> object, int offset, TNode<Smi> value); void StoreObjectField(TNode<HeapObject> object, TNode<IntPtrT> offset, TNode<Smi> value); void StoreObjectField(TNode<HeapObject> object, int offset, TNode<Object> value); void StoreObjectField(TNode<HeapObject> object, TNode<IntPtrT> offset, TNode<Object> value); // Store to an indirect pointer field. This involves loading the index for // the pointer table entry owned by the pointed-to object (which points back // to it) and storing that into the specified field. // Stores that may require a write barrier also need to know the indirect // pointer tag for the field. Otherwise, it is not needed void StoreIndirectPointerField(TNode<HeapObject> object, int offset, IndirectPointerTag tag, TNode<ExposedTrustedObject> value); void StoreIndirectPointerFieldNoWriteBarrier( TNode<HeapObject> object, int offset, IndirectPointerTag tag, TNode<ExposedTrustedObject> value); // Store to a field that either contains an indirect pointer (when the // sandbox is enabled) or a regular (tagged) pointer otherwise. void StoreMaybeIndirectPointerField(TNode<HeapObject> object, int offset, IndirectPointerTag tag, TNode<ExposedTrustedObject> value); void StoreMaybeIndirectPointerFieldNoWriteBarrier( TNode<HeapObject> object, int offset, IndirectPointerTag tag, TNode<ExposedTrustedObject> value); template <class T> void StoreObjectFieldNoWriteBarrier(TNode<HeapObject> object, TNode<IntPtrT> offset, TNode<T> value) { int const_offset; if (TryToInt32Constant(offset, &const_offset)) { return StoreObjectFieldNoWriteBarrier<T>(object, const_offset, value); } StoreNoWriteBarrier(MachineRepresentationOf<T>::value, object, IntPtrSub(offset, IntPtrConstant(kHeapObjectTag)), value); } template <class T> void StoreObjectFieldNoWriteBarrier(TNode<HeapObject> object, int offset, TNode<T> value) { if (CanBeTaggedPointer(MachineRepresentationOf<T>::value)) { OptimizedStoreFieldAssertNoWriteBarrier(MachineRepresentationOf<T>::value, object, offset, value); } else { OptimizedStoreFieldUnsafeNoWriteBarrier(MachineRepresentationOf<T>::value, object, offset, value); } } void UnsafeStoreObjectFieldNoWriteBarrier(TNode<HeapObject> object, int offset, TNode<Object> value); // Store the Map of an HeapObject. void StoreMap(TNode<HeapObject> object, TNode<Map> map); void StoreMapNoWriteBarrier(TNode<HeapObject> object, RootIndex map_root_index); void StoreMapNoWriteBarrier(TNode<HeapObject> object, TNode<Map> map); void StoreObjectFieldRoot(TNode<HeapObject> object, int offset, RootIndex root); // Store an array element to a FixedArray. void StoreFixedArrayElement( TNode<FixedArray> object, int index, TNode<Object> value, WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER, CheckBounds check_bounds = CheckBounds::kAlways) { return StoreFixedArrayElement(object, IntPtrConstant(index), value, barrier_mode, 0, check_bounds); } void StoreFixedArrayElement(TNode<FixedArray> object, int index, TNode<Smi> value, CheckBounds check_bounds = CheckBounds::kAlways) { return StoreFixedArrayElement(object, IntPtrConstant(index), TNode<Object>{value}, UNSAFE_SKIP_WRITE_BARRIER, 0, check_bounds); } template <typename TIndex> void StoreFixedArrayElement( TNode<FixedArray> array, TNode<TIndex> index, TNode<Object> value, WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER, int additional_offset = 0, CheckBounds check_bounds = CheckBounds::kAlways) { // TODO(v8:9708): Do we want to keep both IntPtrT and UintPtrT variants? static_assert(std::is_same<TIndex, Smi>::value || std::is_same<TIndex, UintPtrT>::value || std::is_same<TIndex, IntPtrT>::value, "Only Smi, UintPtrT or IntPtrT index is allowed"); if (NeedsBoundsCheck(check_bounds)) { FixedArrayBoundsCheck(array, index, additional_offset); } StoreFixedArrayOrPropertyArrayElement(array, index, value, barrier_mode, additional_offset); } template <typename TIndex> void StoreFixedArrayElement(TNode<FixedArray> array, TNode<TIndex> index, TNode<Smi> value, int additional_offset = 0) { static_assert(std::is_same<TIndex, Smi>::value || std::is_same<TIndex, IntPtrT>::value, "Only Smi or IntPtrT indeces is allowed"); StoreFixedArrayElement(array, index, TNode<Object>{value}, UNSAFE_SKIP_WRITE_BARRIER, additional_offset); } // These don't emit a bounds-check. As part of the security-performance // tradeoff, only use it if it is performance critical. void UnsafeStoreFixedArrayElement( TNode<FixedArray> object, int index, TNode<Object> value, WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER) { return StoreFixedArrayElement(object, IntPtrConstant(index), value, barrier_mode, 0, CheckBounds::kDebugOnly); } void UnsafeStoreFixedArrayElement(TNode<FixedArray> object, int index, TNode<Smi> value) { return StoreFixedArrayElement(object, IntPtrConstant(index), value, UNSAFE_SKIP_WRITE_BARRIER, 0, CheckBounds::kDebugOnly); } void UnsafeStoreFixedArrayElement( TNode<FixedArray> array, TNode<IntPtrT> index, TNode<Object> value, WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER, int additional_offset = 0) { return StoreFixedArrayElement(array, index, value, barrier_mode, additional_offset, CheckBounds::kDebugOnly); } void UnsafeStoreFixedArrayElement(TNode<FixedArray> array, TNode<IntPtrT> index, TNode<Smi> value, int additional_offset) { return StoreFixedArrayElement(array, index, value, UNSAFE_SKIP_WRITE_BARRIER, additional_offset, CheckBounds::kDebugOnly); } void StorePropertyArrayElement(TNode<PropertyArray> array, TNode<IntPtrT> index, TNode<Object> value) { StoreFixedArrayOrPropertyArrayElement(array, index, value, UPDATE_WRITE_BARRIER); } template <typename TIndex> void StoreFixedDoubleArrayElement( TNode<FixedDoubleArray> object, TNode<TIndex> index, TNode<Float64T> value, CheckBounds check_bounds = CheckBounds::kAlways); void StoreDoubleHole(TNode<HeapObject> object, TNode<IntPtrT> offset); void StoreFixedDoubleArrayHole(TNode<FixedDoubleArray> array, TNode<IntPtrT> index); void StoreFeedbackVectorSlot( TNode<FeedbackVector> feedback_vector, TNode<UintPtrT> slot, TNode<AnyTaggedT> value, WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER, int additional_offset = 0); void StoreSharedObjectField(TNode<HeapObject> object, TNode<IntPtrT> offset, TNode<Object> value); void StoreJSSharedStructPropertyArrayElement(TNode<PropertyArray> array, TNode<IntPtrT> index, TNode<Object> value) { StoreFixedArrayOrPropertyArrayElement(array, index, value); } // EnsureArrayPushable verifies that receiver with this map is: // 1. Is not a prototype. // 2. Is not a dictionary. // 3. Has a writeable length property. // It returns ElementsKind as a node for further division into cases. TNode<Int32T> EnsureArrayPushable(TNode<Context> context, TNode<Map> map, Label* bailout); void TryStoreArrayElement(ElementsKind kind, Label* bailout, TNode<FixedArrayBase> elements, TNode<BInt> index, TNode<Object> value); // Consumes args into the array, and returns tagged new length. TNode<Smi> BuildAppendJSArray(ElementsKind kind, TNode<JSArray> array, CodeStubArguments* args, TVariable<IntPtrT>* arg_index, Label* bailout); // Pushes value onto the end of array. void BuildAppendJSArray(ElementsKind kind, TNode<JSArray> array, TNode<Object> value, Label* bailout); void StoreFieldsNoWriteBarrier(TNode<IntPtrT> start_address, TNode<IntPtrT> end_address, TNode<Object> value); // Marks the FixedArray copy-on-write without moving it. void MakeFixedArrayCOW(TNode<FixedArray> array); TNode<Cell> AllocateCellWithValue( TNode<Object> value, WriteBarrierMode mode = UPDATE_WRITE_BARRIER); TNode<Cell> AllocateSmiCell(int value = 0) { return AllocateCellWithValue(SmiConstant(value), SKIP_WRITE_BARRIER); } TNode<Object> LoadCellValue(TNode<Cell> cell); void StoreCellValue(TNode<Cell> cell, TNode<Object> value, WriteBarrierMode mode = UPDATE_WRITE_BARRIER); // Allocate a HeapNumber without initializing its value. TNode<HeapNumber> AllocateHeapNumber(); // Allocate a HeapNumber with a specific value. TNode<HeapNumber> AllocateHeapNumberWithValue(TNode<Float64T> value); TNode<HeapNumber> AllocateHeapNumberWithValue(double value) { return AllocateHeapNumberWithValue(Float64Constant(value)); } // Allocate a BigInt with {length} digits. Sets the sign bit to {false}. // Does not initialize the digits. TNode<BigInt> AllocateBigInt(TNode<IntPtrT> length); // Like above, but allowing custom bitfield initialization. TNode<BigInt> AllocateRawBigInt(TNode<IntPtrT> length); void StoreBigIntBitfield(TNode<BigInt> bigint, TNode<Word32T> bitfield); void StoreBigIntDigit(TNode<BigInt> bigint, intptr_t digit_index, TNode<UintPtrT> digit); void StoreBigIntDigit(TNode<BigInt> bigint, TNode<IntPtrT> digit_index, TNode<UintPtrT> digit); TNode<Word32T> LoadBigIntBitfield(TNode<BigInt> bigint); TNode<UintPtrT> LoadBigIntDigit(TNode<BigInt> bigint, intptr_t digit_index); TNode<UintPtrT> LoadBigIntDigit(TNode<BigInt> bigint, TNode<IntPtrT> digit_index); // Allocate a ByteArray with the given non-zero length. TNode<ByteArray> AllocateNonEmptyByteArray( TNode<UintPtrT> length, AllocationFlags flags = AllocationFlag::kNone); // Allocate a ByteArray with the given length. TNode<ByteArray> AllocateByteArray( TNode<UintPtrT> length, AllocationFlags flags = AllocationFlag::kNone); // Allocate a SeqOneByteString with the given length. TNode<String> AllocateSeqOneByteString( uint32_t length, AllocationFlags flags = AllocationFlag::kNone); using TorqueGeneratedExportedMacrosAssembler::AllocateSeqOneByteString; // Allocate a SeqTwoByteString with the given length. TNode<String> AllocateSeqTwoByteString( uint32_t length, AllocationFlags flags = AllocationFlag::kNone); using TorqueGeneratedExportedMacrosAssembler::AllocateSeqTwoByteString; // Allocate a SlicedOneByteString with the given length, parent and offset. // |length| and |offset| are expected to be tagged. TNode<String> AllocateSlicedOneByteString(TNode<Uint32T> length, TNode<String> parent, TNode<Smi> offset); // Allocate a SlicedTwoByteString with the given length, parent and offset. // |length| and |offset| are expected to be tagged. TNode<String> AllocateSlicedTwoByteString(TNode<Uint32T> length, TNode<String> parent, TNode<Smi> offset); TNode<NameDictionary> AllocateNameDictionary(int at_least_space_for); TNode<NameDictionary> AllocateNameDictionary( TNode<IntPtrT> at_least_space_for, AllocationFlags = AllocationFlag::kNone); TNode<NameDictionary> AllocateNameDictionaryWithCapacity( TNode<IntPtrT> capacity, AllocationFlags = AllocationFlag::kNone); TNode<NameDictionary> CopyNameDictionary(TNode<NameDictionary> dictionary, Label* large_object_fallback); TNode<OrderedHashSet> AllocateOrderedHashSet(); TNode<OrderedHashMap> AllocateOrderedHashMap(); // Allocates an OrderedNameDictionary of the given capacity. This guarantees // that |capacity| entries can be added without reallocating. TNode<OrderedNameDictionary> AllocateOrderedNameDictionary( TNode<IntPtrT> capacity); TNode<OrderedNameDictionary> AllocateOrderedNameDictionary(int capacity); TNode<JSObject> AllocateJSObjectFromMap( TNode<Map> map, base::Optional<TNode<HeapObject>> properties = base::nullopt, base::Optional<TNode<FixedArray>> elements = base::nullopt, AllocationFlags flags = AllocationFlag::kNone, SlackTrackingMode slack_tracking_mode = kNoSlackTracking); void InitializeJSObjectFromMap( TNode<HeapObject> object, TNode<Map> map, TNode<IntPtrT> instance_size, base::Optional<TNode<HeapObject>> properties = base::nullopt, base::Optional<TNode<FixedArray>> elements = base::nullopt, SlackTrackingMode slack_tracking_mode = kNoSlackTracking); void InitializeJSObjectBodyWithSlackTracking(TNode<HeapObject> object, TNode<Map> map, TNode<IntPtrT> instance_size); void InitializeJSObjectBodyNoSlackTracking( TNode<HeapObject> object, TNode<Map> map, TNode<IntPtrT> instance_size, int start_offset = JSObject::kHeaderSize); TNode<BoolT> IsValidFastJSArrayCapacity(TNode<IntPtrT> capacity); // // Allocate and return a JSArray with initialized header fields and its // uninitialized elements. std::pair<TNode<JSArray>, TNode<FixedArrayBase>> AllocateUninitializedJSArrayWithElements( ElementsKind kind, TNode<Map> array_map, TNode<Smi> length, base::Optional<TNode<AllocationSite>> allocation_site, TNode<IntPtrT> capacity, AllocationFlags allocation_flags = AllocationFlag::kNone, int array_header_size = JSArray::kHeaderSize); // Allocate a JSArray and fill elements with the hole. TNode<JSArray> AllocateJSArray( ElementsKind kind, TNode<Map> array_map, TNode<IntPtrT> capacity, TNode<Smi> length, base::Optional<TNode<AllocationSite>> allocation_site, AllocationFlags allocation_flags = AllocationFlag::kNone); TNode<JSArray> AllocateJSArray( ElementsKind kind, TNode<Map> array_map, TNode<Smi> capacity, TNode<Smi> length, base::Optional<TNode<AllocationSite>> allocation_site, AllocationFlags allocation_flags = AllocationFlag::kNone) { return AllocateJSArray(kind, array_map, PositiveSmiUntag(capacity), length, allocation_site, allocation_flags); } TNode<JSArray> AllocateJSArray( ElementsKind kind, TNode<Map> array_map, TNode<Smi> capacity, TNode<Smi> length, AllocationFlags allocation_flags = AllocationFlag::kNone) { return AllocateJSArray(kind, array_map, PositiveSmiUntag(capacity), length, base::nullopt, allocation_flags); } TNode<JSArray> AllocateJSArray( ElementsKind kind, TNode<Map> array_map, TNode<IntPtrT> capacity, TNode<Smi> length, AllocationFlags allocation_flags = AllocationFlag::kNone) { return AllocateJSArray(kind, array_map, capacity, length, base::nullopt, allocation_flags); } // Allocate a JSArray and initialize the header fields. TNode<JSArray> AllocateJSArray( TNode<Map> array_map, TNode<FixedArrayBase> elements, TNode<Smi> length, base::Optional<TNode<AllocationSite>> allocation_site = base::nullopt, int array_header_size = JSArray::kHeaderSize); enum class HoleConversionMode { kDontConvert, kConvertToUndefined }; // Clone a fast JSArray |array| into a new fast JSArray. // |convert_holes| tells the function to convert holes into undefined or not. // If |convert_holes| is set to kConvertToUndefined, but the function did not // find any hole in |array|, the resulting array will have the same elements // kind as |array|. If the function did find a hole, it will convert holes in // |array| to undefined in the resulting array, who will now have // PACKED_ELEMENTS kind. // If |convert_holes| is set kDontConvert, holes are also copied to the // resulting array, who will have the same elements kind as |array|. The // function generates significantly less code in this case. TNode<JSArray> CloneFastJSArray( TNode<Context> context, TNode<JSArray> array, base::Optional<TNode<AllocationSite>> allocation_site = base::nullopt, HoleConversionMode convert_holes = HoleConversionMode::kDontConvert); TNode<JSArray> ExtractFastJSArray(TNode<Context> context, TNode<JSArray> array, TNode<BInt> begin, TNode<BInt> count); template <typename TIndex> TNode<FixedArrayBase> AllocateFixedArray( ElementsKind kind, TNode<TIndex> capacity, AllocationFlags flags = AllocationFlag::kNone, base::Optional<TNode<Map>> fixed_array_map = base::nullopt); TNode<NativeContext> GetCreationContext(TNode<JSReceiver> receiver, Label* if_bailout); TNode<NativeContext> GetFunctionRealm(TNode<Context> context, TNode<JSReceiver> receiver, Label* if_bailout); TNode<Object> GetConstructor(TNode<Map> map); void FindNonDefaultConstructor(TNode<JSFunction> this_function, TVariable<Object>& constructor, Label* found_default_base_ctor, Label* found_something_else); TNode<Map> GetInstanceTypeMap(InstanceType instance_type); TNode<FixedArray> AllocateUninitializedFixedArray(intptr_t capacity) { return UncheckedCast<FixedArray>(AllocateFixedArray( PACKED_ELEMENTS, IntPtrConstant(capacity), AllocationFlag::kNone)); } TNode<FixedArray> AllocateZeroedFixedArray(TNode<IntPtrT> capacity) { TNode<FixedArray> result = UncheckedCast<FixedArray>( AllocateFixedArray(PACKED_ELEMENTS, capacity)); FillEntireFixedArrayWithSmiZero(PACKED_ELEMENTS, result, capacity); return result; } TNode<FixedDoubleArray> AllocateZeroedFixedDoubleArray( TNode<IntPtrT> capacity) { TNode<FixedDoubleArray> result = UncheckedCast<FixedDoubleArray>( AllocateFixedArray(PACKED_DOUBLE_ELEMENTS, capacity)); FillEntireFixedDoubleArrayWithZero(result, capacity); return result; } TNode<FixedArray> AllocateFixedArrayWithHoles( TNode<IntPtrT> capacity, AllocationFlags flags = AllocationFlag::kNone) { TNode<FixedArray> result = UncheckedCast<FixedArray>( AllocateFixedArray(PACKED_ELEMENTS, capacity, flags)); FillFixedArrayWithValue(PACKED_ELEMENTS, result, IntPtrConstant(0), capacity, RootIndex::kTheHoleValue); return result; } TNode<FixedDoubleArray> AllocateFixedDoubleArrayWithHoles( TNode<IntPtrT> capacity, AllocationFlags flags = AllocationFlag::kNone) { TNode<FixedDoubleArray> result = UncheckedCast<FixedDoubleArray>( AllocateFixedArray(PACKED_DOUBLE_ELEMENTS, capacity, flags)); FillFixedArrayWithValue(PACKED_DOUBLE_ELEMENTS, result, IntPtrConstant(0), capacity, RootIndex::kTheHoleValue); return result; } TNode<PropertyArray> AllocatePropertyArray(TNode<IntPtrT> capacity); // TODO(v8:9722): Return type should be JSIteratorResult TNode<JSObject> AllocateJSIteratorResult(TNode<Context> context, TNode<Object> value, TNode<Boolean> done); // TODO(v8:9722): Return type should be JSIteratorResult TNode<JSObject> AllocateJSIteratorResultForEntry(TNode<Context> context, TNode<Object> key, TNode<Object> value); TNode<JSObject> AllocatePromiseWithResolversResult(TNode<Context> context, TNode<Object> promise, TNode<Object> resolve, TNode<Object> reject); TNode<JSReceiver> ArraySpeciesCreate(TNode<Context> context, TNode<Object> originalArray, TNode<Number> len); template <typename TIndex> void FillFixedArrayWithValue(ElementsKind kind, TNode<FixedArrayBase> array, TNode<TIndex> from_index, TNode<TIndex> to_index, RootIndex value_root_index); // Uses memset to effectively initialize the given FixedArray with zeroes. void FillFixedArrayWithSmiZero(ElementsKind kind, TNode<FixedArray> array, TNode<IntPtrT> start, TNode<IntPtrT> length); void FillEntireFixedArrayWithSmiZero(ElementsKind kind, TNode<FixedArray> array, TNode<IntPtrT> length) { CSA_DCHECK(this, WordEqual(length, LoadAndUntagFixedArrayBaseLength(array))); FillFixedArrayWithSmiZero(kind, array, IntPtrConstant(0), length); } void FillFixedDoubleArrayWithZero(TNode<FixedDoubleArray> array, TNode<IntPtrT> start, TNode<IntPtrT> length); void FillEntireFixedDoubleArrayWithZero(TNode<FixedDoubleArray> array, TNode<IntPtrT> length) { CSA_DCHECK(this, WordEqual(length, LoadAndUntagFixedArrayBaseLength(array))); FillFixedDoubleArrayWithZero(array, IntPtrConstant(0), length); } void FillPropertyArrayWithUndefined(TNode<PropertyArray> array, TNode<IntPtrT> from_index, TNode<IntPtrT> to_index); enum class DestroySource { kNo, kYes }; // Increment the call count for a CALL_IC or construct call. // The call count is located at feedback_vector[slot_id + 1]. void IncrementCallCount(TNode<FeedbackVector> feedback_vector, TNode<UintPtrT> slot_id); // Specify DestroySource::kYes if {from_array} is being supplanted by // {to_array}. This offers a slight performance benefit by simply copying the // array word by word. The source may be destroyed at the end of this macro. // // Otherwise, specify DestroySource::kNo for operations where an Object is // being cloned, to ensure that mutable HeapNumbers are unique between the // source and cloned object. void CopyPropertyArrayValues(TNode<HeapObject> from_array, TNode<PropertyArray> to_array, TNode<IntPtrT> length, WriteBarrierMode barrier_mode, DestroySource destroy_source); // Copies all elements from |from_array| of |length| size to // |to_array| of the same size respecting the elements kind. template <typename TIndex> void CopyFixedArrayElements( ElementsKind kind, TNode<FixedArrayBase> from_array, TNode<FixedArrayBase> to_array, TNode<TIndex> length, WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER) { CopyFixedArrayElements(kind, from_array, kind, to_array, IntPtrOrSmiConstant<TIndex>(0), length, length, barrier_mode); } // Copies |element_count| elements from |from_array| starting from element // zero to |to_array| of |capacity| size respecting both array's elements // kinds. template <typename TIndex> void CopyFixedArrayElements( ElementsKind from_kind, TNode<FixedArrayBase> from_array, ElementsKind to_kind, TNode<FixedArrayBase> to_array, TNode<TIndex> element_count, TNode<TIndex> capacity, WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER) { CopyFixedArrayElements(from_kind, from_array, to_kind, to_array, IntPtrOrSmiConstant<TIndex>(0), element_count, capacity, barrier_mode); } // Copies |element_count| elements from |from_array| starting from element // |first_element| to |to_array| of |capacity| size respecting both array's // elements kinds. // |convert_holes| tells the function whether to convert holes to undefined. // |var_holes_converted| can be used to signify that the conversion happened // (i.e. that there were holes). If |convert_holes_to_undefined| is // HoleConversionMode::kConvertToUndefined, then it must not be the case that // IsDoubleElementsKind(to_kind). template <typename TIndex> void CopyFixedArrayElements( ElementsKind from_kind, TNode<FixedArrayBase> from_array, ElementsKind to_kind, TNode<FixedArrayBase> to_array, TNode<TIndex> first_element, TNode<TIndex> element_count, TNode<TIndex> capacity, WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER, HoleConversionMode convert_holes = HoleConversionMode::kDontConvert, TVariable<BoolT>* var_holes_converted = nullptr); void JumpIfPointersFromHereAreInteresting(TNode<Object> object, Label* interesting); // Efficiently copy elements within a single array. The regions // [src_index, src_index + length) and [dst_index, dst_index + length) // can be overlapping. void MoveElements(ElementsKind kind, TNode<FixedArrayBase> elements, TNode<IntPtrT> dst_index, TNode<IntPtrT> src_index, TNode<IntPtrT> length); // Efficiently copy elements from one array to another. The ElementsKind // needs to be the same. Copy from src_elements at // [src_index, src_index + length) to dst_elements at // [dst_index, dst_index + length). // The function decides whether it can use memcpy. In case it cannot, // |write_barrier| can help it to skip write barrier. SKIP_WRITE_BARRIER is // only safe when copying to new space, or when copying to old space and the // array does not contain object pointers. void CopyElements(ElementsKind kind, TNode<FixedArrayBase> dst_elements, TNode<IntPtrT> dst_index, TNode<FixedArrayBase> src_elements, TNode<IntPtrT> src_index, TNode<IntPtrT> length, WriteBarrierMode write_barrier = UPDATE_WRITE_BARRIER); TNode<FixedArray> HeapObjectToFixedArray(TNode<HeapObject> base, Label* cast_fail); TNode<FixedDoubleArray> HeapObjectToFixedDoubleArray(TNode<HeapObject> base, Label* cast_fail) { GotoIf(TaggedNotEqual(LoadMap(base), FixedDoubleArrayMapConstant()), cast_fail); return UncheckedCast<FixedDoubleArray>(base); } TNode<ArrayList> AllocateArrayList(TNode<Smi> size); TNode<ArrayList> ArrayListEnsureSpace(TNode<ArrayList> array, TNode<Smi> size); TNode<ArrayList> ArrayListAdd(TNode<ArrayList> array, TNode<Object> object); void ArrayListSet(TNode<ArrayList> array, TNode<Smi> index, TNode<Object> object); TNode<Smi> ArrayListGetLength(TNode<ArrayList> array); void ArrayListSetLength(TNode<ArrayList> array, TNode<Smi> length); TNode<FixedArray> ArrayListElements(TNode<ArrayList> array); template <typename T> bool ClassHasMapConstant() { return false; } template <typename T> TNode<Map> GetClassMapConstant() { UNREACHABLE(); return TNode<Map>(); } enum class ExtractFixedArrayFlag { kFixedArrays = 1, kFixedDoubleArrays = 2, kDontCopyCOW = 4, kAllFixedArrays = kFixedArrays | kFixedDoubleArrays, kAllFixedArraysDontCopyCOW = kAllFixedArrays | kDontCopyCOW }; using ExtractFixedArrayFlags = base::Flags<ExtractFixedArrayFlag>; // Copy a portion of an existing FixedArray or FixedDoubleArray into a new // array, including special appropriate handling for empty arrays and COW // arrays. The result array will be of the same type as the original array. // // * |source| is either a FixedArray or FixedDoubleArray from which to copy // elements. // * |first| is the starting element index to copy from, if nullptr is passed // then index zero is used by default. // * |count| is the number of elements to copy out of the source array // starting from and including the element indexed by |start|. If |count| is // nullptr, then all of the elements from |start| to the end of |source| are // copied. // * |capacity| determines the size of the allocated result array, with // |capacity| >= |count|. If |capacity| is nullptr, then |count| is used as // the destination array's capacity. // * |extract_flags| determines whether FixedArrays, FixedDoubleArrays or both // are detected and copied. Although it's always correct to pass // kAllFixedArrays, the generated code is more compact and efficient if the // caller can specify whether only FixedArrays or FixedDoubleArrays will be // passed as the |source| parameter. // * |parameter_mode| determines the parameter mode of |first|, |count| and // |capacity|. // * If |var_holes_converted| is given, any holes will be converted to // undefined and the variable will be set according to whether or not there // were any hole. // * If |source_elements_kind| is given, the function will try to use the // runtime elements kind of source to make copy faster. More specifically, it // can skip write barriers. template <typename TIndex> TNode<FixedArrayBase> ExtractFixedArray( TNode<FixedArrayBase> source, base::Optional<TNode<TIndex>> first, base::Optional<TNode<TIndex>> count = base::nullopt, base::Optional<TNode<TIndex>> capacity = base::nullopt, ExtractFixedArrayFlags extract_flags = ExtractFixedArrayFlag::kAllFixedArrays, TVariable<BoolT>* var_holes_converted = nullptr, base::Optional<TNode<Int32T>> source_elements_kind = base::nullopt); // Copy a portion of an existing FixedArray or FixedDoubleArray into a new // FixedArray, including special appropriate handling for COW arrays. // * |source| is either a FixedArray or FixedDoubleArray from which to copy // elements. |source| is assumed to be non-empty. // * |first| is the starting element index to copy from. // * |count| is the number of elements to copy out of the source array // starting from and including the element indexed by |start|. // * |capacity| determines the size of the allocated result array, with // |capacity| >= |count|. // * |source_map| is the map of the |source|. // * |from_kind| is the elements kind that is consistent with |source| being // a FixedArray or FixedDoubleArray. This function only cares about double vs. // non-double, so as to distinguish FixedDoubleArray vs. FixedArray. It does // not care about holeyness. For example, when |source| is a FixedArray, // PACKED/HOLEY_ELEMENTS can be used, but not PACKED_DOUBLE_ELEMENTS. // * |allocation_flags| and |extract_flags| influence how the target // FixedArray is allocated. // * |convert_holes| is used to signify that the target array should use // undefined in places of holes. // * If |convert_holes| is true and |var_holes_converted| not nullptr, then // |var_holes_converted| is used to signal whether any holes were found and // converted. The caller should use this information to decide which map is // compatible with the result array. For example, if the input was of // HOLEY_SMI_ELEMENTS kind, and a conversion took place, the result will be // compatible only with HOLEY_ELEMENTS and PACKED_ELEMENTS. template <typename TIndex> TNode<FixedArray> ExtractToFixedArray( TNode<FixedArrayBase> source, TNode<TIndex> first, TNode<TIndex> count, TNode<TIndex> capacity, TNode<Map> source_map, ElementsKind from_kind, AllocationFlags allocation_flags, ExtractFixedArrayFlags extract_flags, HoleConversionMode convert_holes, TVariable<BoolT>* var_holes_converted = nullptr, base::Optional<TNode<Int32T>> source_runtime_kind = base::nullopt); // Attempt to copy a FixedDoubleArray to another FixedDoubleArray. In the case // where the source array has a hole, produce a FixedArray instead where holes // are replaced with undefined. // * |source| is a FixedDoubleArray from which to copy elements. // * |first| is the starting element index to copy from. // * |count| is the number of elements to copy out of the source array // starting from and including the element indexed by |start|. // * |capacity| determines the size of the allocated result array, with // |capacity| >= |count|. // * |source_map| is the map of |source|. It will be used as the map of the // target array if the target can stay a FixedDoubleArray. Otherwise if the // target array needs to be a FixedArray, the FixedArrayMap will be used. // * |var_holes_converted| is used to signal whether a FixedAray // is produced or not. // * |allocation_flags| and |extract_flags| influence how the target array is // allocated. template <typename TIndex> TNode<FixedArrayBase> ExtractFixedDoubleArrayFillingHoles( TNode<FixedArrayBase> source, TNode<TIndex> first, TNode<TIndex> count, TNode<TIndex> capacity, TNode<Map> source_map, TVariable<BoolT>* var_holes_converted, AllocationFlags allocation_flags, ExtractFixedArrayFlags extract_flags); // Copy the entire contents of a FixedArray or FixedDoubleArray to a new // array, including special appropriate handling for empty arrays and COW // arrays. // // * |source| is either a FixedArray or FixedDoubleArray from which to copy // elements. // * |extract_flags| determines whether FixedArrays, FixedDoubleArrays or both // are detected and copied. Although it's always correct to pass // kAllFixedArrays, the generated code is more compact and efficient if the // caller can specify whether only FixedArrays or FixedDoubleArrays will be // passed as the |source| parameter. TNode<FixedArrayBase> CloneFixedArray( TNode<FixedArrayBase> source, ExtractFixedArrayFlags flags = ExtractFixedArrayFlag::kAllFixedArraysDontCopyCOW); // Loads an element from |array| of |from_kind| elements by given |offset| // (NOTE: not index!), does a hole check if |if_hole| is provided and // converts the value so that it becomes ready for storing to array of // |to_kind| elements. template <typename TResult> TNode<TResult> LoadElementAndPrepareForStore(TNode<FixedArrayBase> array, TNode<IntPtrT> offset, ElementsKind from_kind, ElementsKind to_kind, Label* if_hole); template <typename TIndex> TNode<TIndex> CalculateNewElementsCapacity(TNode<TIndex> old_capacity); // Tries to grow the |elements| array of given |object| to store the |key| // or bails out if the growing gap is too big. Returns new elements. TNode<FixedArrayBase> TryGrowElementsCapacity(TNode<HeapObject> object, TNode<FixedArrayBase> elements, ElementsKind kind, TNode<Smi> key, Label* bailout); // Tries to grow the |capacity|-length |elements| array of given |object| // to store the |key| or bails out if the growing gap is too big. Returns // new elements. template <typename TIndex> TNode<FixedArrayBase> TryGrowElementsCapacity(TNode<HeapObject> object, TNode<FixedArrayBase> elements, ElementsKind kind, TNode<TIndex> key, TNode<TIndex> capacity, Label* bailout); // Grows elements capacity of given object. Returns new elements. template <typename TIndex> TNode<FixedArrayBase> GrowElementsCapacity( TNode<HeapObject> object, TNode<FixedArrayBase> elements, ElementsKind from_kind, ElementsKind to_kind, TNode<TIndex> capacity, TNode<TIndex> new_capacity, Label* bailout); // Given a need to grow by |growth|, allocate an appropriate new capacity // if necessary, and return a new elements FixedArray object. Label |bailout| // is followed for allocation failure. void PossiblyGrowElementsCapacity(ElementsKind kind, TNode<HeapObject> array, TNode<BInt> length, TVariable<FixedArrayBase>* var_elements, TNode<BInt> growth, Label* bailout); // Allocation site manipulation void InitializeAllocationMemento(TNode<HeapObject> base, TNode<IntPtrT> base_allocation_size, TNode<AllocationSite> allocation_site); TNode<IntPtrT> TryTaggedToInt32AsIntPtr(TNode<Object> value, Label* if_not_possible); TNode<Float64T> TryTaggedToFloat64(TNode<Object> value, Label* if_valueisnotnumber); TNode<Float64T> TruncateTaggedToFloat64(TNode<Context> context, TNode<Object> value); TNode<Word32T> TruncateTaggedToWord32(TNode<Context> context, TNode<Object> value); void TaggedToWord32OrBigInt(TNode<Context> context, TNode<Object> value, Label* if_number, TVariable<Word32T>* var_word32, Label* if_bigint, Label* if_bigint64, TVariable<BigInt>* var_maybe_bigint); struct FeedbackValues { TVariable<Smi>* var_feedback = nullptr; const LazyNode<HeapObject>* maybe_feedback_vector = nullptr; TNode<UintPtrT>* slot = nullptr; UpdateFeedbackMode update_mode = UpdateFeedbackMode::kNoFeedback; }; void TaggedToWord32OrBigIntWithFeedback(TNode<Context> context, TNode<Object> value, Label* if_number, TVariable<Word32T>* var_word32, Label* if_bigint, Label* if_bigint64, TVariable<BigInt>* var_maybe_bigint, const FeedbackValues& feedback); void TaggedPointerToWord32OrBigIntWithFeedback( TNode<Context> context, TNode<HeapObject> pointer, Label* if_number, TVariable<Word32T>* var_word32, Label* if_bigint, Label* if_bigint64, TVariable<BigInt>* var_maybe_bigint, const FeedbackValues& feedback); TNode<Int32T> TruncateNumberToWord32(TNode<Number> value); // Truncate the floating point value of a HeapNumber to an Int32. TNode<Int32T> TruncateHeapNumberValueToWord32(TNode<HeapNumber> object); // Conversions. TNode<Smi> TryHeapNumberToSmi(TNode<HeapNumber> number, Label* not_smi); TNode<Smi> TryFloat32ToSmi(TNode<Float32T> number, Label* not_smi); TNode<Smi> TryFloat64ToSmi(TNode<Float64T> number, Label* not_smi); TNode<Number> ChangeFloat32ToTagged(TNode<Float32T> value); TNode<Number> ChangeFloat64ToTagged(TNode<Float64T> value); TNode<Number> ChangeInt32ToTagged(TNode<Int32T> value); TNode<Number> ChangeInt32ToTaggedNoOverflow(TNode<Int32T> value); TNode<Number> ChangeUint32ToTagged(TNode<Uint32T> value); TNode<Number> ChangeUintPtrToTagged(TNode<UintPtrT> value); TNode<Uint32T> ChangeNumberToUint32(TNode<Number> value); TNode<Float64T> ChangeNumberToFloat64(TNode<Number> value); TNode<Int32T> ChangeTaggedNonSmiToInt32(TNode<Context> context, TNode<HeapObject> input); TNode<Float64T> ChangeTaggedToFloat64(TNode<Context> context, TNode<Object> input); TNode<Int32T> ChangeBoolToInt32(TNode<BoolT> b); void TaggedToBigInt(TNode<Context> context, TNode<Object> value, Label* if_not_bigint, Label* if_bigint, Label* if_bigint64, TVariable<BigInt>* var_bigint, TVariable<Smi>* var_feedback); // Ensures that {var_shared_value} is shareable across Isolates, and throws if // not. void SharedValueBarrier(TNode<Context> context, TVariable<Object>* var_shared_value); TNode<WordT> TimesSystemPointerSize(TNode<WordT> value); TNode<IntPtrT> TimesSystemPointerSize(TNode<IntPtrT> value) { return Signed(TimesSystemPointerSize(implicit_cast<TNode<WordT>>(value))); } TNode<UintPtrT> TimesSystemPointerSize(TNode<UintPtrT> value) { return Unsigned(TimesSystemPointerSize(implicit_cast<TNode<WordT>>(value))); } TNode<WordT> TimesTaggedSize(TNode<WordT> value); TNode<IntPtrT> TimesTaggedSize(TNode<IntPtrT> value) { return Signed(TimesTaggedSize(implicit_cast<TNode<WordT>>(value))); } TNode<UintPtrT> TimesTaggedSize(TNode<UintPtrT> value) { return Unsigned(TimesTaggedSize(implicit_cast<TNode<WordT>>(value))); } TNode<WordT> TimesDoubleSize(TNode<WordT> value); TNode<UintPtrT> TimesDoubleSize(TNode<UintPtrT> value) { return Unsigned(TimesDoubleSize(implicit_cast<TNode<WordT>>(value))); } TNode<IntPtrT> TimesDoubleSize(TNode<IntPtrT> value) { return Signed(TimesDoubleSize(implicit_cast<TNode<WordT>>(value))); } // Type conversions. // Throws a TypeError for {method_name} if {value} is not coercible to Object, // or returns the {value} converted to a String otherwise. TNode<String> ToThisString(TNode<Context> context, TNode<Object> value, TNode<String> method_name); TNode<String> ToThisString(TNode<Context> context, TNode<Object> value, char const* method_name) { return ToThisString(context, value, StringConstant(method_name)); } // Throws a TypeError for {method_name} if {value} is neither of the given // {primitive_type} nor a JSPrimitiveWrapper wrapping a value of // {primitive_type}, or returns the {value} (or wrapped value) otherwise. TNode<Object> ToThisValue(TNode<Context> context, TNode<Object> value, PrimitiveType primitive_type, char const* method_name); // Throws a TypeError for {method_name} if {value} is not of the given // instance type. void ThrowIfNotInstanceType(TNode<Context> context, TNode<Object> value, InstanceType instance_type, char const* method_name); // Throws a TypeError for {method_name} if {value} is not a JSReceiver. void ThrowIfNotJSReceiver(TNode<Context> context, TNode<Object> value, MessageTemplate msg_template, const char* method_name); void ThrowIfNotCallable(TNode<Context> context, TNode<Object> value, const char* method_name); void ThrowRangeError(TNode<Context> context, MessageTemplate message, base::Optional<TNode<Object>> arg0 = base::nullopt, base::Optional<TNode<Object>> arg1 = base::nullopt, base::Optional<TNode<Object>> arg2 = base::nullopt); void ThrowTypeError(TNode<Context> context, MessageTemplate message, char const* arg0 = nullptr, char const* arg1 = nullptr); void ThrowTypeError(TNode<Context> context, MessageTemplate message, base::Optional<TNode<Object>> arg0, base::Optional<TNode<Object>> arg1 = base::nullopt, base::Optional<TNode<Object>> arg2 = base::nullopt); void TerminateExecution(TNode<Context> context); TNode<HeapObject> GetPendingMessage(); void SetPendingMessage(TNode<HeapObject> message); TNode<BoolT> IsExecutionTerminating(); // Type checks. // Check whether the map is for an object with special properties, such as a // JSProxy or an object with interceptors. TNode<BoolT> InstanceTypeEqual(TNode<Int32T> instance_type, int type); TNode<BoolT> IsNoElementsProtectorCellInvalid(); TNode<BoolT> IsMegaDOMProtectorCellInvalid(); TNode<BoolT> IsAlwaysSharedSpaceJSObjectInstanceType( TNode<Int32T> instance_type); TNode<BoolT> IsArrayIteratorProtectorCellInvalid(); TNode<BoolT> IsBigIntInstanceType(TNode<Int32T> instance_type); TNode<BoolT> IsBigInt(TNode<HeapObject> object); TNode<BoolT> IsBoolean(TNode<HeapObject> object); TNode<BoolT> IsCallableMap(TNode<Map> map); TNode<BoolT> IsCallable(TNode<HeapObject> object); TNode<BoolT> TaggedIsCallable(TNode<Object> object); TNode<BoolT> IsConsStringInstanceType(TNode<Int32T> instance_type); TNode<BoolT> IsConstructorMap(TNode<Map> map); TNode<BoolT> IsConstructor(TNode<HeapObject> object); TNode<BoolT> IsDeprecatedMap(TNode<Map> map); TNode<BoolT> IsNameDictionary(TNode<HeapObject> object); TNode<BoolT> IsOrderedNameDictionary(TNode<HeapObject> object); TNode<BoolT> IsGlobalDictionary(TNode<HeapObject> object); TNode<BoolT> IsExtensibleMap(TNode<Map> map); TNode<BoolT> IsExtensibleNonPrototypeMap(TNode<Map> map); TNode<BoolT> IsExternalStringInstanceType(TNode<Int32T> instance_type); TNode<BoolT> IsFixedArray(TNode<HeapObject> object); TNode<BoolT> IsFixedArraySubclass(TNode<HeapObject> object); TNode<BoolT> IsFixedArrayWithKind(TNode<HeapObject> object, ElementsKind kind); TNode<BoolT> IsFixedArrayWithKindOrEmpty(TNode<FixedArrayBase> object, ElementsKind kind); TNode<BoolT> IsFunctionWithPrototypeSlotMap(TNode<Map> map); TNode<BoolT> IsHashTable(TNode<HeapObject> object); TNode<BoolT> IsEphemeronHashTable(TNode<HeapObject> object); TNode<BoolT> IsHeapNumberInstanceType(TNode<Int32T> instance_type); // We only want to check for any hole in a negated way. For regular hole // checks, we should check for a specific hole kind instead. TNode<BoolT> IsNotAnyHole(TNode<Object> object); TNode<BoolT> IsHoleInstanceType(TNode<Int32T> instance_type); TNode<BoolT> IsOddball(TNode<HeapObject> object); TNode<BoolT> IsOddballInstanceType(TNode<Int32T> instance_type); TNode<BoolT> IsIndirectStringInstanceType(TNode<Int32T> instance_type); TNode<BoolT> IsJSArrayBuffer(TNode<HeapObject> object); TNode<BoolT> IsJSDataView(TNode<HeapObject> object); TNode<BoolT> IsJSRabGsabDataView(TNode<HeapObject> object); TNode<BoolT> IsJSArrayInstanceType(TNode<Int32T> instance_type); TNode<BoolT> IsJSArrayMap(TNode<Map> map); TNode<BoolT> IsJSArray(TNode<HeapObject> object); TNode<BoolT> IsJSArrayIterator(TNode<HeapObject> object); TNode<BoolT> IsJSAsyncGeneratorObject(TNode<HeapObject> object); TNode<BoolT> IsFunctionInstanceType(TNode<Int32T> instance_type); TNode<BoolT> IsJSFunctionInstanceType(TNode<Int32T> instance_type); TNode<BoolT> IsJSFunctionMap(TNode<Map> map); TNode<BoolT> IsJSFunction(TNode<HeapObject> object); TNode<BoolT> IsJSBoundFunction(TNode<HeapObject> object); TNode<BoolT> IsJSGeneratorObject(TNode<HeapObject> object); TNode<BoolT> IsJSGlobalProxyInstanceType(TNode<Int32T> instance_type); TNode<BoolT> IsJSGlobalProxyMap(TNode<Map> map); TNode<BoolT> IsJSGlobalProxy(TNode<HeapObject> object); TNode<BoolT> IsJSObjectInstanceType(TNode<Int32T> instance_type); TNode<BoolT> IsJSObjectMap(TNode<Map> map); TNode<BoolT> IsJSObject(TNode<HeapObject> object); TNode<BoolT> IsJSApiObjectInstanceType(TNode<Int32T> instance_type); TNode<BoolT> IsJSApiObjectMap(TNode<Map> map); TNode<BoolT> IsJSApiObject(TNode<HeapObject> object); TNode<BoolT> IsJSFinalizationRegistryMap(TNode<Map> map); TNode<BoolT> IsJSFinalizationRegistry(TNode<HeapObject> object); TNode<BoolT> IsJSPromiseMap(TNode<Map> map); TNode<BoolT> IsJSPromise(TNode<HeapObject> object); TNode<BoolT> IsJSProxy(TNode<HeapObject> object); TNode<BoolT> IsJSStringIterator(TNode<HeapObject> object); TNode<BoolT> IsJSShadowRealm(TNode<HeapObject> object); TNode<BoolT> IsJSRegExpStringIterator(TNode<HeapObject> object); TNode<BoolT> IsJSReceiverInstanceType(TNode<Int32T> instance_type); TNode<BoolT> IsJSReceiverMap(TNode<Map> map); TNode<BoolT> IsJSReceiver(TNode<HeapObject> object); // The following two methods assume that we deal either with a primitive // object or a JS receiver. TNode<BoolT> JSAnyIsNotPrimitiveMap(TNode<Map> map); TNode<BoolT> JSAnyIsNotPrimitive(TNode<HeapObject> object); TNode<BoolT> IsJSRegExp(TNode<HeapObject> object); TNode<BoolT> IsJSTypedArrayInstanceType(TNode<Int32T> instance_type); TNode<BoolT> IsJSTypedArrayMap(TNode<Map> map); TNode<BoolT> IsJSTypedArray(TNode<HeapObject> object); TNode<BoolT> IsJSGeneratorMap(TNode<Map> map); TNode<BoolT> IsJSPrimitiveWrapperInstanceType(TNode<Int32T> instance_type); TNode<BoolT> IsJSPrimitiveWrapperMap(TNode<Map> map); TNode<BoolT> IsJSPrimitiveWrapper(TNode<HeapObject> object); TNode<BoolT> IsJSSharedArrayInstanceType(TNode<Int32T> instance_type); TNode<BoolT> IsJSSharedArrayMap(TNode<Map> map); TNode<BoolT> IsJSSharedArray(TNode<HeapObject> object); TNode<BoolT> IsJSSharedArray(TNode<Object> object); TNode<BoolT> IsJSSharedStructInstanceType(TNode<Int32T> instance_type); TNode<BoolT> IsJSSharedStructMap(TNode<Map> map); TNode<BoolT> IsJSSharedStruct(TNode<HeapObject> object); TNode<BoolT> IsJSSharedStruct(TNode<Object> object); TNode<BoolT> IsJSWrappedFunction(TNode<HeapObject> object); TNode<BoolT> IsMap(TNode<HeapObject> object); TNode<BoolT> IsName(TNode<HeapObject> object); TNode<BoolT> IsNameInstanceType(TNode<Int32T> instance_type); TNode<BoolT> IsNullOrJSReceiver(TNode<HeapObject> object); TNode<BoolT> IsNullOrUndefined(TNode<Object> object); TNode<BoolT> IsNumberDictionary(TNode<HeapObject> object); TNode<BoolT> IsOneByteStringInstanceType(TNode<Int32T> instance_type); TNode<BoolT> IsSeqOneByteStringInstanceType(TNode<Int32T> instance_type); TNode<BoolT> IsPrimitiveInstanceType(TNode<Int32T> instance_type); TNode<BoolT> IsPrivateName(TNode<Symbol> symbol); TNode<BoolT> IsPropertyArray(TNode<HeapObject> object); TNode<BoolT> IsPropertyCell(TNode<HeapObject> object); TNode<BoolT> IsPromiseReactionJobTask(TNode<HeapObject> object); TNode<BoolT> IsPrototypeInitialArrayPrototype(TNode<Context> context, TNode<Map> map); TNode<BoolT> IsPrototypeTypedArrayPrototype(TNode<Context> context, TNode<Map> map); TNode<BoolT> IsFastAliasedArgumentsMap(TNode<Context> context, TNode<Map> map); TNode<BoolT> IsSlowAliasedArgumentsMap(TNode<Context> context, TNode<Map> map); TNode<BoolT> IsSloppyArgumentsMap(TNode<Context> context, TNode<Map> map); TNode<BoolT> IsStrictArgumentsMap(TNode<Context> context, TNode<Map> map); TNode<BoolT> IsSequentialStringInstanceType(TNode<Int32T> instance_type); TNode<BoolT> IsUncachedExternalStringInstanceType( TNode<Int32T> instance_type); TNode<BoolT> IsSpecialReceiverInstanceType(TNode<Int32T> instance_type); TNode<BoolT> IsCustomElementsReceiverInstanceType( TNode<Int32T> instance_type); TNode<BoolT> IsSpecialReceiverMap(TNode<Map> map); TNode<BoolT> IsStringInstanceType(TNode<Int32T> instance_type); TNode<BoolT> IsString(TNode<HeapObject> object); TNode<BoolT> IsSeqOneByteString(TNode<HeapObject> object); TNode<BoolT> IsSwissNameDictionary(TNode<HeapObject> object); TNode<BoolT> IsSymbolInstanceType(TNode<Int32T> instance_type); TNode<BoolT> IsInternalizedStringInstanceType(TNode<Int32T> instance_type); TNode<BoolT> IsSharedStringInstanceType(TNode<Int32T> instance_type); TNode<BoolT> IsTemporalInstantInstanceType(TNode<Int32T> instance_type); TNode<BoolT> IsUniqueName(TNode<HeapObject> object); TNode<BoolT> IsUniqueNameNoIndex(TNode<HeapObject> object); TNode<BoolT> IsUniqueNameNoCachedIndex(TNode<HeapObject> object); TNode<BoolT> IsUndetectableMap(TNode<Map> map); TNode<BoolT> IsNotWeakFixedArraySubclass(TNode<HeapObject> object); TNode<BoolT> IsZeroOrContext(TNode<Object> object); TNode<BoolT> IsPromiseResolveProtectorCellInvalid(); TNode<BoolT> IsPromiseThenProtectorCellInvalid(); TNode<BoolT> IsArraySpeciesProtectorCellInvalid(); TNode<BoolT> IsIsConcatSpreadableProtectorCellInvalid(); TNode<BoolT> IsTypedArraySpeciesProtectorCellInvalid(); TNode<BoolT> IsRegExpSpeciesProtectorCellInvalid(); TNode<BoolT> IsPromiseSpeciesProtectorCellInvalid(); TNode<BoolT> IsNumberStringNotRegexpLikeProtectorCellInvalid(); TNode<BoolT> IsSetIteratorProtectorCellInvalid(); TNode<BoolT> IsMapIteratorProtectorCellInvalid(); TNode<IntPtrT> LoadBasicMemoryChunkFlags(TNode<HeapObject> object); TNode<BoolT> LoadRuntimeFlag(ExternalReference address_of_flag) { TNode<Word32T> flag_value = UncheckedCast<Word32T>( Load(MachineType::Uint8(), ExternalConstant(address_of_flag))); return Word32NotEqual(Word32And(flag_value, Int32Constant(0xFF)), Int32Constant(0)); } TNode<BoolT> IsMockArrayBufferAllocatorFlag() { return LoadRuntimeFlag( ExternalReference::address_of_mock_arraybuffer_allocator_flag()); } TNode<BoolT> HasBuiltinSubclassingFlag() { return LoadRuntimeFlag( ExternalReference::address_of_builtin_subclassing_flag()); } TNode<BoolT> HasSharedStringTableFlag() { return LoadRuntimeFlag( ExternalReference::address_of_shared_string_table_flag()); } // True iff |object| is a Smi or a HeapNumber or a BigInt. TNode<BoolT> IsNumeric(TNode<Object> object); // True iff |number| is either a Smi, or a HeapNumber whose value is not // within Smi range. TNode<BoolT> IsNumberNormalized(TNode<Number> number); TNode<BoolT> IsNumberPositive(TNode<Number> number); TNode<BoolT> IsHeapNumberPositive(TNode<HeapNumber> number); // True iff {number} is non-negative and less or equal than 2**53-1. TNode<BoolT> IsNumberNonNegativeSafeInteger(TNode<Number> number); // True iff {number} represents an integer value. TNode<BoolT> IsInteger(TNode<Object> number); TNode<BoolT> IsInteger(TNode<HeapNumber> number); // True iff abs({number}) <= 2**53 -1 TNode<BoolT> IsSafeInteger(TNode<Object> number); TNode<BoolT> IsSafeInteger(TNode<HeapNumber> number); // True iff {number} represents a valid uint32t value. TNode<BoolT> IsHeapNumberUint32(TNode<HeapNumber> number); // True iff {number} is a positive number and a valid array index in the range // [0, 2^32-1). TNode<BoolT> IsNumberArrayIndex(TNode<Number> number); template <typename TIndex> TNode<BoolT> FixedArraySizeDoesntFitInNewSpace(TNode<TIndex> element_count, int base_size); TNode<BoolT> IsMetaMap(TNode<HeapObject> o) { return IsMapMap(o); } // ElementsKind helpers: TNode<BoolT> ElementsKindEqual(TNode<Int32T> a, TNode<Int32T> b) { return Word32Equal(a, b); } bool ElementsKindEqual(ElementsKind a, ElementsKind b) { return a == b; } TNode<BoolT> IsFastElementsKind(TNode<Int32T> elements_kind); bool IsFastElementsKind(ElementsKind kind) { return v8::internal::IsFastElementsKind(kind); } TNode<BoolT> IsFastPackedElementsKind(TNode<Int32T> elements_kind); bool IsFastPackedElementsKind(ElementsKind kind) { return v8::internal::IsFastPackedElementsKind(kind); } TNode<BoolT> IsFastOrNonExtensibleOrSealedElementsKind( TNode<Int32T> elements_kind); TNode<BoolT> IsDictionaryElementsKind(TNode<Int32T> elements_kind) { return ElementsKindEqual(elements_kind, Int32Constant(DICTIONARY_ELEMENTS)); } TNode<BoolT> IsDoubleElementsKind(TNode<Int32T> elements_kind); bool IsDoubleElementsKind(ElementsKind kind) { return v8::internal::IsDoubleElementsKind(kind); } TNode<BoolT> IsFastSmiOrTaggedElementsKind(TNode<Int32T> elements_kind); TNode<BoolT> IsFastSmiElementsKind(TNode<Int32T> elements_kind); TNode<BoolT> IsHoleyFastElementsKind(TNode<Int32T> elements_kind); TNode<BoolT> IsHoleyFastElementsKindForRead(TNode<Int32T> elements_kind); TNode<BoolT> IsElementsKindGreaterThan(TNode<Int32T> target_kind, ElementsKind reference_kind); TNode<BoolT> IsElementsKindGreaterThanOrEqual(TNode<Int32T> target_kind, ElementsKind reference_kind); TNode<BoolT> IsElementsKindLessThanOrEqual(TNode<Int32T> target_kind, ElementsKind reference_kind); // Check if lower_reference_kind <= target_kind <= higher_reference_kind. TNode<BoolT> IsElementsKindInRange(TNode<Int32T> target_kind, ElementsKind lower_reference_kind, ElementsKind higher_reference_kind) { return IsInRange(target_kind, lower_reference_kind, higher_reference_kind); } TNode<Int32T> GetNonRabGsabElementsKind(TNode<Int32T> elements_kind); // String helpers. // Load a character from a String (might flatten a ConsString). TNode<Uint16T> StringCharCodeAt(TNode<String> string, TNode<UintPtrT> index); // Return the single character string with only {code}. TNode<String> StringFromSingleCharCode(TNode<Int32T> code); // Type conversion helpers. enum class BigIntHandling { kConvertToNumber, kThrow }; // Convert a String to a Number. TNode<Number> StringToNumber(TNode<String> input); // Convert a Number to a String. TNode<String> NumberToString(TNode<Number> input); TNode<String> NumberToString(TNode<Number> input, Label* bailout); // Convert a Non-Number object to a Number. TNode<Number> NonNumberToNumber( TNode<Context> context, TNode<HeapObject> input, BigIntHandling bigint_handling = BigIntHandling::kThrow); // Convert a Non-Number object to a Numeric. TNode<Numeric> NonNumberToNumeric(TNode<Context> context, TNode<HeapObject> input); // Convert any object to a Number. // Conforms to ES#sec-tonumber if {bigint_handling} == kThrow. // With {bigint_handling} == kConvertToNumber, matches behavior of // tc39.github.io/proposal-bigint/#sec-number-constructor-number-value. TNode<Number> ToNumber( TNode<Context> context, TNode<Object> input, BigIntHandling bigint_handling = BigIntHandling::kThrow); TNode<Number> ToNumber_Inline(TNode<Context> context, TNode<Object> input); TNode<Numeric> ToNumberOrNumeric( LazyNode<Context> context, TNode<Object> input, TVariable<Smi>* var_type_feedback, Object::Conversion mode, BigIntHandling bigint_handling = BigIntHandling::kThrow); // Convert any plain primitive to a Number. No need to handle BigInts since // they are not plain primitives. TNode<Number> PlainPrimitiveToNumber(TNode<Object> input); // Try to convert an object to a BigInt. Throws on failure (e.g. for Numbers). // https://tc39.github.io/proposal-bigint/#sec-to-bigint TNode<BigInt> ToBigInt(TNode<Context> context, TNode<Object> input); // Try to convert any object to a BigInt, including Numbers. TNode<BigInt> ToBigIntConvertNumber(TNode<Context> context, TNode<Object> input); // Converts |input| to one of 2^32 integer values in the range 0 through // 2^32-1, inclusive. // ES#sec-touint32 TNode<Number> ToUint32(TNode<Context> context, TNode<Object> input); // No-op on 32-bit, otherwise zero extend. TNode<IntPtrT> ChangePositiveInt32ToIntPtr(TNode<Int32T> input) { CSA_DCHECK(this, Int32GreaterThanOrEqual(input, Int32Constant(0))); return Signed(ChangeUint32ToWord(input)); } // Convert any object to a String. TNode<String> ToString_Inline(TNode<Context> context, TNode<Object> input); TNode<JSReceiver> ToObject(TNode<Context> context, TNode<Object> input); // Same as ToObject but avoids the Builtin call if |input| is already a // JSReceiver. TNode<JSReceiver> ToObject_Inline(TNode<Context> context, TNode<Object> input); // ES6 7.1.15 ToLength, but with inlined fast path. TNode<Number> ToLength_Inline(TNode<Context> context, TNode<Object> input); TNode<Object> OrdinaryToPrimitive(TNode<Context> context, TNode<Object> input, OrdinaryToPrimitiveHint hint); // Returns a node that contains a decoded (unsigned!) value of a bit // field |BitField| in |word32|. Returns result as an uint32 node. template <typename BitField> TNode<Uint32T> DecodeWord32(TNode<Word32T> word32) { return DecodeWord32(word32, BitField::kShift, BitField::kMask); } // Returns a node that contains a decoded (unsigned!) value of a bit // field |BitField| in |word|. Returns result as a word-size node. template <typename BitField> TNode<UintPtrT> DecodeWord(TNode<WordT> word) { return DecodeWord(word, BitField::kShift, BitField::kMask); } // Returns a node that contains a decoded (unsigned!) value of a bit // field |BitField| in |word32|. Returns result as a word-size node. template <typename BitField> TNode<UintPtrT> DecodeWordFromWord32(TNode<Word32T> word32) { return DecodeWord<BitField>(ChangeUint32ToWord(word32)); } // Returns a node that contains a decoded (unsigned!) value of a bit // field |BitField| in |word|. Returns result as an uint32 node. template <typename BitField> TNode<Uint32T> DecodeWord32FromWord(TNode<WordT> word) { return UncheckedCast<Uint32T>( TruncateIntPtrToInt32(Signed(DecodeWord<BitField>(word)))); } // Decodes an unsigned (!) value from |word32| to an uint32 node. TNode<Uint32T> DecodeWord32(TNode<Word32T> word32, uint32_t shift, uint32_t mask); // Decodes an unsigned (!) value from |word| to a word-size node. TNode<UintPtrT> DecodeWord(TNode<WordT> word, uint32_t shift, uintptr_t mask); // Returns a node that contains the updated values of a |BitField|. template <typename BitField> TNode<Word32T> UpdateWord32(TNode<Word32T> word, TNode<Uint32T> value, bool starts_as_zero = false) { return UpdateWord32(word, value, BitField::kShift, BitField::kMask, starts_as_zero); } // Returns a node that contains the updated values of a |BitField|. template <typename BitField> TNode<WordT> UpdateWord(TNode<WordT> word, TNode<UintPtrT> value, bool starts_as_zero = false) { return UpdateWord(word, value, BitField::kShift, BitField::kMask, starts_as_zero); } // Returns a node that contains the updated values of a |BitField|. template <typename BitField> TNode<Word32T> UpdateWordInWord32(TNode<Word32T> word, TNode<UintPtrT> value, bool starts_as_zero = false) { return UncheckedCast<Uint32T>( TruncateIntPtrToInt32(Signed(UpdateWord<BitField>( ChangeUint32ToWord(word), value, starts_as_zero)))); } // Returns a node that contains the updated values of a |BitField|. template <typename BitField> TNode<WordT> UpdateWord32InWord(TNode<WordT> word, TNode<Uint32T> value, bool starts_as_zero = false) { return UpdateWord<BitField>(word, ChangeUint32ToWord(value), starts_as_zero); } // Returns a node that contains the updated {value} inside {word} starting // at {shift} and fitting in {mask}. TNode<Word32T> UpdateWord32(TNode<Word32T> word, TNode<Uint32T> value, uint32_t shift, uint32_t mask, bool starts_as_zero = false); // Returns a node that contains the updated {value} inside {word} starting // at {shift} and fitting in {mask}. TNode<WordT> UpdateWord(TNode<WordT> word, TNode<UintPtrT> value, uint32_t shift, uintptr_t mask, bool starts_as_zero = false); // Returns true if any of the |T|'s bits in given |word32| are set. template <typename T> TNode<BoolT> IsSetWord32(TNode<Word32T> word32) { return IsSetWord32(word32, T::kMask); } // Returns true if any of the mask's bits in given |word32| are set. TNode<BoolT> IsSetWord32(TNode<Word32T> word32, uint32_t mask) { return Word32NotEqual(Word32And(word32, Int32Constant(mask)), Int32Constant(0)); } // Returns true if none of the mask's bits in given |word32| are set. TNode<BoolT> IsNotSetWord32(TNode<Word32T> word32, uint32_t mask) { return Word32Equal(Word32And(word32, Int32Constant(mask)), Int32Constant(0)); } // Returns true if all of the mask's bits in a given |word32| are set. TNode<BoolT> IsAllSetWord32(TNode<Word32T> word32, uint32_t mask) { TNode<Int32T> const_mask = Int32Constant(mask); return Word32Equal(Word32And(word32, const_mask), const_mask); } // Returns true if the bit field |BitField| in |word32| is equal to a given // constant |value|. Avoids a shift compared to using DecodeWord32. template <typename BitField> TNode<BoolT> IsEqualInWord32(TNode<Word32T> word32, typename BitField::FieldType value) { TNode<Word32T> masked_word32 = Word32And(word32, Int32Constant(BitField::kMask)); return Word32Equal(masked_word32, Int32Constant(BitField::encode(value))); } // Checks if two values of non-overlapping bitfields are both set. template <typename BitField1, typename BitField2> TNode<BoolT> IsBothEqualInWord32(TNode<Word32T> word32, typename BitField1::FieldType value1, typename BitField2::FieldType value2) { static_assert((BitField1::kMask & BitField2::kMask) == 0); TNode<Word32T> combined_masked_word32 = Word32And(word32, Int32Constant(BitField1::kMask | BitField2::kMask)); TNode<Int32T> combined_value = Int32Constant(BitField1::encode(value1) | BitField2::encode(value2)); return Word32Equal(combined_masked_word32, combined_value); } // Returns true if the bit field |BitField| in |word32| is not equal to a // given constant |value|. Avoids a shift compared to using DecodeWord32. template <typename BitField> TNode<BoolT> IsNotEqualInWord32(TNode<Word32T> word32, typename BitField::FieldType value) { return Word32BinaryNot(IsEqualInWord32<BitField>(word32, value)); } // Returns true if any of the |T|'s bits in given |word| are set. template <typename T> TNode<BoolT> IsSetWord(TNode<WordT> word) { return IsSetWord(word, T::kMask); } // Returns true if any of the mask's bits in given |word| are set. TNode<BoolT> IsSetWord(TNode<WordT> word, uint32_t mask) { return WordNotEqual(WordAnd(word, IntPtrConstant(mask)), IntPtrConstant(0)); } // Returns true if any of the mask's bit are set in the given Smi. // Smi-encoding of the mask is performed implicitly! TNode<BoolT> IsSetSmi(TNode<Smi> smi, int untagged_mask) { intptr_t mask_word = base::bit_cast<intptr_t>(Smi::FromInt(untagged_mask)); return WordNotEqual(WordAnd(BitcastTaggedToWordForTagAndSmiBits(smi), IntPtrConstant(mask_word)), IntPtrConstant(0)); } // Returns true if all of the |T|'s bits in given |word32| are clear. template <typename T> TNode<BoolT> IsClearWord32(TNode<Word32T> word32) { return IsClearWord32(word32, T::kMask); } // Returns true if all of the mask's bits in given |word32| are clear. TNode<BoolT> IsClearWord32(TNode<Word32T> word32, uint32_t mask) { return Word32Equal(Word32And(word32, Int32Constant(mask)), Int32Constant(0)); } // Returns true if all of the |T|'s bits in given |word| are clear. template <typename T> TNode<BoolT> IsClearWord(TNode<WordT> word) { return IsClearWord(word, T::kMask); } // Returns true if all of the mask's bits in given |word| are clear. TNode<BoolT> IsClearWord(TNode<WordT> word, uint32_t mask) { return IntPtrEqual(WordAnd(word, IntPtrConstant(mask)), IntPtrConstant(0)); } void SetCounter(StatsCounter* counter, int value); void IncrementCounter(StatsCounter* counter, int delta); void DecrementCounter(StatsCounter* counter, int delta); template <typename TIndex> void Increment(TVariable<TIndex>* variable, int value = 1); template <typename TIndex> void Decrement(TVariable<TIndex>* variable, int value = 1) { Increment(variable, -value); } // Generates "if (false) goto label" code. Useful for marking a label as // "live" to avoid assertion failures during graph building. In the resulting // code this check will be eliminated. void Use(Label* label); // Various building blocks for stubs doing property lookups. // |if_notinternalized| is optional; |if_bailout| will be used by default. // Note: If |key| does not yet have a hash, |if_notinternalized| will be taken // even if |key| is an array index. |if_keyisunique| will never // be taken for array indices. void TryToName(TNode<Object> key, Label* if_keyisindex, TVariable<IntPtrT>* var_index, Label* if_keyisunique, TVariable<Name>* var_unique, Label* if_bailout, Label* if_notinternalized = nullptr); // Call non-allocating runtime String::WriteToFlat using fast C-calls. void StringWriteToFlatOneByte(TNode<String> source, TNode<RawPtrT> sink, TNode<Int32T> start, TNode<Int32T> length); void StringWriteToFlatTwoByte(TNode<String> source, TNode<RawPtrT> sink, TNode<Int32T> start, TNode<Int32T> length); // Calls External{One,Two}ByteString::GetChars with a fast C-call. TNode<RawPtr<Uint8T>> ExternalOneByteStringGetChars( TNode<ExternalOneByteString> string); TNode<RawPtr<Uint16T>> ExternalTwoByteStringGetChars( TNode<ExternalTwoByteString> string); TNode<RawPtr<Uint8T>> IntlAsciiCollationWeightsL1(); TNode<RawPtr<Uint8T>> IntlAsciiCollationWeightsL3(); // Performs a hash computation and string table lookup for the given string, // and jumps to: // - |if_index| if the string is an array index like "123"; |var_index| // will contain the intptr representation of that index. // - |if_internalized| if the string exists in the string table; the // internalized version will be in |var_internalized|. // - |if_not_internalized| if the string is not in the string table (but // does not add it). // - |if_bailout| for unsupported cases (e.g. uncachable array index). void TryInternalizeString(TNode<String> string, Label* if_index, TVariable<IntPtrT>* var_index, Label* if_internalized, TVariable<Name>* var_internalized, Label* if_not_internalized, Label* if_bailout); // Calculates array index for given dictionary entry and entry field. // See Dictionary::EntryToIndex(). template <typename Dictionary> TNode<IntPtrT> EntryToIndex(TNode<IntPtrT> entry, int field_index); template <typename Dictionary> TNode<IntPtrT> EntryToIndex(TNode<IntPtrT> entry) { return EntryToIndex<Dictionary>(entry, Dictionary::kEntryKeyIndex); } // Loads the details for the entry with the given key_index. // Returns an untagged int32. template <class ContainerType> TNode<Uint32T> LoadDetailsByKeyIndex(TNode<ContainerType> container, TNode<IntPtrT> key_index); // Loads the value for the entry with the given key_index. // Returns a tagged value. template <class ContainerType> TNode<Object> LoadValueByKeyIndex(TNode<ContainerType> container, TNode<IntPtrT> key_index); // Stores the details for the entry with the given key_index. // |details| must be a Smi. template <class ContainerType> void StoreDetailsByKeyIndex(TNode<ContainerType> container, TNode<IntPtrT> key_index, TNode<Smi> details); // Stores the value for the entry with the given key_index. template <class ContainerType> void StoreValueByKeyIndex( TNode<ContainerType> container, TNode<IntPtrT> key_index, TNode<Object> value, WriteBarrierMode write_barrier = UPDATE_WRITE_BARRIER); // Calculate a valid size for the a hash table. TNode<IntPtrT> HashTableComputeCapacity(TNode<IntPtrT> at_least_space_for); TNode<IntPtrT> NameToIndexHashTableLookup(TNode<NameToIndexHashTable> table, TNode<Name> name, Label* not_found); template <class Dictionary> TNode<Smi> GetNumberOfElements(TNode<Dictionary> dictionary); TNode<Smi> GetNumberDictionaryNumberOfElements( TNode<NumberDictionary> dictionary) { return GetNumberOfElements<NumberDictionary>(dictionary); } template <class Dictionary> void SetNumberOfElements(TNode<Dictionary> dictionary, TNode<Smi> num_elements_smi) { // Not supposed to be used for SwissNameDictionary. static_assert(!(std::is_same<Dictionary, SwissNameDictionary>::value)); StoreFixedArrayElement(dictionary, Dictionary::kNumberOfElementsIndex, num_elements_smi, SKIP_WRITE_BARRIER); } template <class Dictionary> TNode<Smi> GetNumberOfDeletedElements(TNode<Dictionary> dictionary) { // Not supposed to be used for SwissNameDictionary. static_assert(!(std::is_same<Dictionary, SwissNameDictionary>::value)); return CAST(LoadFixedArrayElement( dictionary, Dictionary::kNumberOfDeletedElementsIndex)); } template <class Dictionary> void SetNumberOfDeletedElements(TNode<Dictionary> dictionary, TNode<Smi> num_deleted_smi) { // Not supposed to be used for SwissNameDictionary. static_assert(!(std::is_same<Dictionary, SwissNameDictionary>::value)); StoreFixedArrayElement(dictionary, Dictionary::kNumberOfDeletedElementsIndex, num_deleted_smi, SKIP_WRITE_BARRIER); } template <class Dictionary> TNode<Smi> GetCapacity(TNode<Dictionary> dictionary) { // Not supposed to be used for SwissNameDictionary. static_assert(!(std::is_same<Dictionary, SwissNameDictionary>::value)); return CAST( UnsafeLoadFixedArrayElement(dictionary, Dictionary::kCapacityIndex)); } template <class Dictionary> TNode<Smi> GetNextEnumerationIndex(TNode<Dictionary> dictionary) { return CAST(LoadFixedArrayElement(dictionary, Dictionary::kNextEnumerationIndexIndex)); } template <class Dictionary> void SetNextEnumerationIndex(TNode<Dictionary> dictionary, TNode<Smi> next_enum_index_smi) { StoreFixedArrayElement(dictionary, Dictionary::kNextEnumerationIndexIndex, next_enum_index_smi, SKIP_WRITE_BARRIER); } template <class Dictionary> TNode<Smi> GetNameDictionaryFlags(TNode<Dictionary> dictionary); template <class Dictionary> void SetNameDictionaryFlags(TNode<Dictionary>, TNode<Smi> flags); // Looks up an entry in a NameDictionaryBase successor. If the entry is found // control goes to {if_found} and {var_name_index} contains an index of the // key field of the entry found. If the key is not found control goes to // {if_not_found}. enum LookupMode { kFindExisting, kFindInsertionIndex }; template <typename Dictionary> TNode<HeapObject> LoadName(TNode<HeapObject> key); template <typename Dictionary> void NameDictionaryLookup(TNode<Dictionary> dictionary, TNode<Name> unique_name, Label* if_found, TVariable<IntPtrT>* var_name_index, Label* if_not_found, LookupMode mode = kFindExisting); TNode<Word32T> ComputeSeededHash(TNode<IntPtrT> key); void NumberDictionaryLookup(TNode<NumberDictionary> dictionary, TNode<IntPtrT> intptr_index, Label* if_found, TVariable<IntPtrT>* var_entry, Label* if_not_found); TNode<Object> BasicLoadNumberDictionaryElement( TNode<NumberDictionary> dictionary, TNode<IntPtrT> intptr_index, Label* not_data, Label* if_hole); template <class Dictionary> void FindInsertionEntry(TNode<Dictionary> dictionary, TNode<Name> key, TVariable<IntPtrT>* var_key_index); template <class Dictionary> void InsertEntry(TNode<Dictionary> dictionary, TNode<Name> key, TNode<Object> value, TNode<IntPtrT> index, TNode<Smi> enum_index); template <class Dictionary> void AddToDictionary(TNode<Dictionary> dictionary, TNode<Name> key, TNode<Object> value, Label* bailout); // Tries to check if {object} has own {unique_name} property. void TryHasOwnProperty(TNode<HeapObject> object, TNode<Map> map, TNode<Int32T> instance_type, TNode<Name> unique_name, Label* if_found, Label* if_not_found, Label* if_bailout); // Operating mode for TryGetOwnProperty and CallGetterIfAccessor enum GetOwnPropertyMode { // kCallJSGetterDontUseCachedName is used when we want to get the result of // the getter call, and don't use cached_name_property when the getter is // the function template and it has cached_property_name, which would just // bailout for the IC system to create a named property handler kCallJSGetterDontUseCachedName, // kCallJSGetterUseCachedName is used when we want to get the result of // the getter call, and use cached_name_property when the getter is // the function template and it has cached_property_name, which would call // GetProperty rather than bailout for Generic/NoFeedback load kCallJSGetterUseCachedName, // kReturnAccessorPair is used when we're only getting the property // descriptor kReturnAccessorPair }; // Receiver handling mode for TryGetOwnProperty and CallGetterIfAccessor. enum ExpectedReceiverMode { // The receiver is guaranteed to be JSReceiver, no conversion is necessary // in case a function callback template has to be called. kExpectingJSReceiver, // The receiver can be anything, it has to be converted to JSReceiver // in case a function callback template has to be called. kExpectingAnyReceiver, }; // Tries to get {object}'s own {unique_name} property value. If the property // is an accessor then it also calls a getter. If the property is a double // field it re-wraps value in an immutable heap number. {unique_name} must be // a unique name (Symbol or InternalizedString) that is not an array index. void TryGetOwnProperty( TNode<Context> context, TNode<Object> receiver, TNode<JSReceiver> object, TNode<Map> map, TNode<Int32T> instance_type, TNode<Name> unique_name, Label* if_found_value, TVariable<Object>* var_value, Label* if_not_found, Label* if_bailout, ExpectedReceiverMode expected_receiver_mode = kExpectingAnyReceiver); void TryGetOwnProperty( TNode<Context> context, TNode<Object> receiver, TNode<JSReceiver> object, TNode<Map> map, TNode<Int32T> instance_type, TNode<Name> unique_name, Label* if_found_value, TVariable<Object>* var_value, TVariable<Uint32T>* var_details, TVariable<Object>* var_raw_value, Label* if_not_found, Label* if_bailout, GetOwnPropertyMode mode, ExpectedReceiverMode expected_receiver_mode = kExpectingAnyReceiver); TNode<PropertyDescriptorObject> AllocatePropertyDescriptorObject( TNode<Context> context); void InitializePropertyDescriptorObject( TNode<PropertyDescriptorObject> descriptor, TNode<Object> value, TNode<Uint32T> details, Label* if_bailout); TNode<Object> GetProperty(TNode<Context> context, TNode<Object> receiver, Handle<Name> name) { return GetProperty(context, receiver, HeapConstant(name)); } TNode<Object> GetProperty(TNode<Context> context, TNode<Object> receiver, TNode<Object> name) { return CallBuiltin(Builtin::kGetProperty, context, receiver, name); } TNode<BoolT> IsInterestingProperty(TNode<Name> name); TNode<Object> GetInterestingProperty(TNode<Context> context, TNode<JSReceiver> receiver, TNode<Name> name, Label* if_not_found); TNode<Object> GetInterestingProperty(TNode<Context> context, TNode<Object> receiver, TVariable<HeapObject>* var_holder, TVariable<Map>* var_holder_map, TNode<Name> name, Label* if_not_found); TNode<Object> SetPropertyStrict(TNode<Context> context, TNode<Object> receiver, TNode<Object> key, TNode<Object> value) { return CallBuiltin(Builtin::kSetProperty, context, receiver, key, value); } TNode<Object> CreateDataProperty(TNode<Context> context, TNode<JSObject> receiver, TNode<Object> key, TNode<Object> value) { return CallBuiltin(Builtin::kCreateDataProperty, context, receiver, key, value); } TNode<Object> GetMethod(TNode<Context> context, TNode<Object> object, Handle<Name> name, Label* if_null_or_undefined); TNode<Object> GetIteratorMethod(TNode<Context> context, TNode<HeapObject> heap_obj, Label* if_iteratorundefined); TNode<Object> CreateAsyncFromSyncIterator(TNode<Context> context, TNode<Object> sync_iterator); TNode<JSObject> CreateAsyncFromSyncIterator(TNode<Context> context, TNode<JSReceiver> sync_iterator, TNode<Object> next); template <class... TArgs> TNode<Object> CallBuiltin(Builtin id, TNode<Object> context, TArgs... args) { return CallStub<Object>(Builtins::CallableFor(isolate(), id), context, args...); } template <class... TArgs> void TailCallBuiltin(Builtin id, TNode<Object> context, TArgs... args) { return TailCallStub(Builtins::CallableFor(isolate(), id), context, args...); } void LoadPropertyFromFastObject(TNode<HeapObject> object, TNode<Map> map, TNode<DescriptorArray> descriptors, TNode<IntPtrT> name_index, TVariable<Uint32T>* var_details, TVariable<Object>* var_value); void LoadPropertyFromFastObject(TNode<HeapObject> object, TNode<Map> map, TNode<DescriptorArray> descriptors, TNode<IntPtrT> name_index, TNode<Uint32T>, TVariable<Object>* var_value); template <typename Dictionary> void LoadPropertyFromDictionary(TNode<Dictionary> dictionary, TNode<IntPtrT> name_index, TVariable<Uint32T>* var_details, TVariable<Object>* var_value); void LoadPropertyFromGlobalDictionary(TNode<GlobalDictionary> dictionary, TNode<IntPtrT> name_index, TVariable<Uint32T>* var_details, TVariable<Object>* var_value, Label* if_deleted); // Generic property lookup generator. If the {object} is fast and // {unique_name} property is found then the control goes to {if_found_fast} // label and {var_meta_storage} and {var_name_index} will contain // DescriptorArray and an index of the descriptor's name respectively. // If the {object} is slow or global then the control goes to {if_found_dict} // or {if_found_global} and the {var_meta_storage} and {var_name_index} will // contain a dictionary and an index of the key field of the found entry. // If property is not found or given lookup is not supported then // the control goes to {if_not_found} or {if_bailout} respectively. // // Note: this code does not check if the global dictionary points to deleted // entry! This has to be done by the caller. void TryLookupProperty(TNode<HeapObject> object, TNode<Map> map, TNode<Int32T> instance_type, TNode<Name> unique_name, Label* if_found_fast, Label* if_found_dict, Label* if_found_global, TVariable<HeapObject>* var_meta_storage, TVariable<IntPtrT>* var_name_index, Label* if_not_found, Label* if_bailout); // This is a building block for TryLookupProperty() above. Supports only // non-special fast and dictionary objects. // TODO(v8:11167, v8:11177) |bailout| only needed for SetDataProperties // workaround. void TryLookupPropertyInSimpleObject(TNode<JSObject> object, TNode<Map> map, TNode<Name> unique_name, Label* if_found_fast, Label* if_found_dict, TVariable<HeapObject>* var_meta_storage, TVariable<IntPtrT>* var_name_index, Label* if_not_found, Label* bailout); // This method jumps to if_found if the element is known to exist. To // if_absent if it's known to not exist. To if_not_found if the prototype // chain needs to be checked. And if_bailout if the lookup is unsupported. void TryLookupElement(TNode<HeapObject> object, TNode<Map> map, TNode<Int32T> instance_type, TNode<IntPtrT> intptr_index, Label* if_found, Label* if_absent, Label* if_not_found, Label* if_bailout); // For integer indexed exotic cases, check if the given string cannot be a // special index. If we are not sure that the given string is not a special // index with a simple check, return False. Note that "False" return value // does not mean that the name_string is a special index in the current // implementation. void BranchIfMaybeSpecialIndex(TNode<String> name_string, Label* if_maybe_special_index, Label* if_not_special_index); // This is a type of a lookup property in holder generator function. The {key} // is guaranteed to be an unique name. using LookupPropertyInHolder = std::function<void( TNode<HeapObject> receiver, TNode<HeapObject> holder, TNode<Map> map, TNode<Int32T> instance_type, TNode<Name> key, Label* next_holder, Label* if_bailout)>; // This is a type of a lookup element in holder generator function. The {key} // is an Int32 index. using LookupElementInHolder = std::function<void( TNode<HeapObject> receiver, TNode<HeapObject> holder, TNode<Map> map, TNode<Int32T> instance_type, TNode<IntPtrT> key, Label* next_holder, Label* if_bailout)>; // Generic property prototype chain lookup generator. // For properties it generates lookup using given {lookup_property_in_holder} // and for elements it uses {lookup_element_in_holder}. // Upon reaching the end of prototype chain the control goes to {if_end}. // If it can't handle the case {receiver}/{key} case then the control goes // to {if_bailout}. // If {if_proxy} is nullptr, proxies go to if_bailout. void TryPrototypeChainLookup( TNode<Object> receiver, TNode<Object> object, TNode<Object> key, const LookupPropertyInHolder& lookup_property_in_holder, const LookupElementInHolder& lookup_element_in_holder, Label* if_end, Label* if_bailout, Label* if_proxy, bool handle_private_names = false); // Instanceof helpers. // Returns true if {object} has {prototype} somewhere in it's prototype // chain, otherwise false is returned. Might cause arbitrary side effects // due to [[GetPrototypeOf]] invocations. TNode<Boolean> HasInPrototypeChain(TNode<Context> context, TNode<HeapObject> object, TNode<Object> prototype); // ES6 section 7.3.19 OrdinaryHasInstance (C, O) TNode<Boolean> OrdinaryHasInstance(TNode<Context> context, TNode<Object> callable, TNode<Object> object); // Load type feedback vector from the stub caller's frame. TNode<FeedbackVector> LoadFeedbackVectorForStub(); TNode<FeedbackVector> LoadFeedbackVectorFromBaseline(); TNode<Context> LoadContextFromBaseline(); // Load type feedback vector from the stub caller's frame, skipping an // intermediate trampoline frame. TNode<FeedbackVector> LoadFeedbackVectorForStubWithTrampoline(); // Load the value from closure's feedback cell. TNode<HeapObject> LoadFeedbackCellValue(TNode<JSFunction> closure); // Load the object from feedback vector cell for the given closure. // The returned object could be undefined if the closure does not have // a feedback vector associated with it. TNode<HeapObject> LoadFeedbackVector(TNode<JSFunction> closure); TNode<FeedbackVector> LoadFeedbackVector(TNode<JSFunction> closure, Label* if_no_feedback_vector); // Load the ClosureFeedbackCellArray that contains the feedback cells // used when creating closures from this function. This array could be // directly hanging off the FeedbackCell when there is no feedback vector // or available from the feedback vector's header. TNode<ClosureFeedbackCellArray> LoadClosureFeedbackArray( TNode<JSFunction> closure); // Update the type feedback vector. bool UpdateFeedbackModeEqual(UpdateFeedbackMode a, UpdateFeedbackMode b) { return a == b; } void UpdateFeedback(TNode<Smi> feedback, TNode<HeapObject> maybe_feedback_vector, TNode<UintPtrT> slot_id, UpdateFeedbackMode mode); void UpdateFeedback(TNode<Smi> feedback, TNode<FeedbackVector> feedback_vector, TNode<UintPtrT> slot_id); void MaybeUpdateFeedback(TNode<Smi> feedback, TNode<HeapObject> maybe_feedback_vector, TNode<UintPtrT> slot_id); // Report that there was a feedback update, performing any tasks that should // be done after a feedback update. void ReportFeedbackUpdate(TNode<FeedbackVector> feedback_vector, TNode<UintPtrT> slot_id, const char* reason); // Combine the new feedback with the existing_feedback. Do nothing if // existing_feedback is nullptr. void CombineFeedback(TVariable<Smi>* existing_feedback, int feedback); void CombineFeedback(TVariable<Smi>* existing_feedback, TNode<Smi> feedback); // Overwrite the existing feedback with new_feedback. Do nothing if // existing_feedback is nullptr. void OverwriteFeedback(TVariable<Smi>* existing_feedback, int new_feedback); // Check if a property name might require protector invalidation when it is // used for a property store or deletion. void CheckForAssociatedProtector(TNode<Name> name, Label* if_protector); TNode<Map> LoadReceiverMap(TNode<Object> receiver); // Loads script context from the script context table. TNode<Context> LoadScriptContext(TNode<Context> context, TNode<IntPtrT> context_index); TNode<Uint8T> Int32ToUint8Clamped(TNode<Int32T> int32_value); TNode<Uint8T> Float64ToUint8Clamped(TNode<Float64T> float64_value); template <typename T> TNode<T> PrepareValueForWriteToTypedArray(TNode<Object> input, ElementsKind elements_kind, TNode<Context> context); // Store value to an elements array with given elements kind. // TODO(turbofan): For BIGINT64_ELEMENTS and BIGUINT64_ELEMENTS // we pass {value} as BigInt object instead of int64_t. We should // teach TurboFan to handle int64_t on 32-bit platforms eventually. template <typename TIndex, typename TValue> void StoreElement(TNode<RawPtrT> elements, ElementsKind kind, TNode<TIndex> index, TNode<TValue> value); // Implements the BigInt part of // https://tc39.github.io/proposal-bigint/#sec-numbertorawbytes, // including truncation to 64 bits (i.e. modulo 2^64). // {var_high} is only used on 32-bit platforms. void BigIntToRawBytes(TNode<BigInt> bigint, TVariable<UintPtrT>* var_low, TVariable<UintPtrT>* var_high); #if V8_ENABLE_WEBASSEMBLY TorqueStructInt64AsInt32Pair BigIntToRawBytes(TNode<BigInt> value); #endif // V8_ENABLE_WEBASSEMBLY void EmitElementStore(TNode<JSObject> object, TNode<Object> key, TNode<Object> value, ElementsKind elements_kind, KeyedAccessStoreMode store_mode, Label* bailout, TNode<Context> context, TVariable<Object>* maybe_converted_value = nullptr); TNode<FixedArrayBase> CheckForCapacityGrow( TNode<JSObject> object, TNode<FixedArrayBase> elements, ElementsKind kind, TNode<UintPtrT> length, TNode<IntPtrT> key, Label* bailout); TNode<FixedArrayBase> CopyElementsOnWrite(TNode<HeapObject> object, TNode<FixedArrayBase> elements, ElementsKind kind, TNode<IntPtrT> length, Label* bailout); void TransitionElementsKind(TNode<JSObject> object, TNode<Map> map, ElementsKind from_kind, ElementsKind to_kind, Label* bailout); void TrapAllocationMemento(TNode<JSObject> object, Label* memento_found); TNode<IntPtrT> PageFromAddress(TNode<IntPtrT> address); // Store a weak in-place reference into the FeedbackVector. TNode<MaybeObject> StoreWeakReferenceInFeedbackVector( TNode<FeedbackVector> feedback_vector, TNode<UintPtrT> slot, TNode<HeapObject> value, int additional_offset = 0); // Create a new AllocationSite and install it into a feedback vector. TNode<AllocationSite> CreateAllocationSiteInFeedbackVector( TNode<FeedbackVector> feedback_vector, TNode<UintPtrT> slot); TNode<BoolT> HasBoilerplate(TNode<Object> maybe_literal_site); TNode<Smi> LoadTransitionInfo(TNode<AllocationSite> allocation_site); TNode<JSObject> LoadBoilerplate(TNode<AllocationSite> allocation_site); TNode<Int32T> LoadElementsKind(TNode<AllocationSite> allocation_site); enum class IndexAdvanceMode { kPre, kPost }; enum class LoopUnrollingMode { kNo, kYes }; template <typename TIndex> using FastLoopBody = std::function<void(TNode<TIndex> index)>; template <typename TIndex> TNode<TIndex> BuildFastLoop( const VariableList& vars, TVariable<TIndex>& var_index, TNode<TIndex> start_index, TNode<TIndex> end_index, const FastLoopBody<TIndex>& body, int increment, LoopUnrollingMode unrolling_mode, IndexAdvanceMode advance_mode = IndexAdvanceMode::kPre); template <typename TIndex> TNode<TIndex> BuildFastLoop( TVariable<TIndex>& var_index, TNode<TIndex> start_index, TNode<TIndex> end_index, const FastLoopBody<TIndex>& body, int increment, LoopUnrollingMode unrolling_mode, IndexAdvanceMode advance_mode = IndexAdvanceMode::kPre) { return BuildFastLoop(VariableList(0, zone()), var_index, start_index, end_index, body, increment, unrolling_mode, advance_mode); } template <typename TIndex> TNode<TIndex> BuildFastLoop(const VariableList& vars, TNode<TIndex> start_index, TNode<TIndex> end_index, const FastLoopBody<TIndex>& body, int increment, LoopUnrollingMode unrolling_mode, IndexAdvanceMode advance_mode) { TVARIABLE(TIndex, var_index); return BuildFastLoop(vars, var_index, start_index, end_index, body, increment, unrolling_mode, advance_mode); } template <typename TIndex> TNode<TIndex> BuildFastLoop( TNode<TIndex> start_index, TNode<TIndex> end_index, const FastLoopBody<TIndex>& body, int increment, LoopUnrollingMode unrolling_mode, IndexAdvanceMode advance_mode = IndexAdvanceMode::kPre) { return BuildFastLoop(VariableList(0, zone()), start_index, end_index, body, increment, unrolling_mode, advance_mode); } enum class ForEachDirection { kForward, kReverse }; using FastArrayForEachBody = std::function<void(TNode<HeapObject> array, TNode<IntPtrT> offset)>; template <typename TIndex> void BuildFastArrayForEach( TNode<UnionT<UnionT<FixedArray, PropertyArray>, HeapObject>> array, ElementsKind kind, TNode<TIndex> first_element_inclusive, TNode<TIndex> last_element_exclusive, const FastArrayForEachBody& body, LoopUnrollingMode loop_unrolling_mode, ForEachDirection direction = ForEachDirection::kReverse); template <typename TIndex> TNode<IntPtrT> GetArrayAllocationSize(TNode<TIndex> element_count, ElementsKind kind, int header_size) { return ElementOffsetFromIndex(element_count, kind, header_size); } template <typename TIndex> TNode<IntPtrT> GetFixedArrayAllocationSize(TNode<TIndex> element_count, ElementsKind kind) { return GetArrayAllocationSize(element_count, kind, FixedArray::kHeaderSize); } TNode<IntPtrT> GetPropertyArrayAllocationSize(TNode<IntPtrT> element_count) { return GetArrayAllocationSize(element_count, PACKED_ELEMENTS, PropertyArray::kHeaderSize); } template <typename TIndex> void GotoIfFixedArraySizeDoesntFitInNewSpace(TNode<TIndex> element_count, Label* doesnt_fit, int base_size); void InitializeFieldsWithRoot(TNode<HeapObject> object, TNode<IntPtrT> start_offset, TNode<IntPtrT> end_offset, RootIndex root); // Goto the given |target| if the context chain starting at |context| has any // extensions up to the given |depth|. Returns the Context with the // extensions if there was one, otherwise returns the Context at the given // |depth|. TNode<Context> GotoIfHasContextExtensionUpToDepth(TNode<Context> context, TNode<Uint32T> depth, Label* target); TNode<Boolean> RelationalComparison( Operation op, TNode<Object> left, TNode<Object> right, TNode<Context> context, TVariable<Smi>* var_type_feedback = nullptr) { return RelationalComparison( op, left, right, [=]() { return context; }, var_type_feedback); } TNode<Boolean> RelationalComparison( Operation op, TNode<Object> left, TNode<Object> right, const LazyNode<Context>& context, TVariable<Smi>* var_type_feedback = nullptr); void BranchIfNumberRelationalComparison(Operation op, TNode<Number> left, TNode<Number> right, Label* if_true, Label* if_false); void BranchIfNumberEqual(TNode<Number> left, TNode<Number> right, Label* if_true, Label* if_false) { BranchIfNumberRelationalComparison(Operation::kEqual, left, right, if_true, if_false); } void BranchIfNumberNotEqual(TNode<Number> left, TNode<Number> right, Label* if_true, Label* if_false) { BranchIfNumberEqual(left, right, if_false, if_true); } void BranchIfNumberLessThan(TNode<Number> left, TNode<Number> right, Label* if_true, Label* if_false) { BranchIfNumberRelationalComparison(Operation::kLessThan, left, right, if_true, if_false); } void BranchIfNumberLessThanOrEqual(TNode<Number> left, TNode<Number> right, Label* if_true, Label* if_false) { BranchIfNumberRelationalComparison(Operation::kLessThanOrEqual, left, right, if_true, if_false); } void BranchIfNumberGreaterThan(TNode<Number> left, TNode<Number> right, Label* if_true, Label* if_false) { BranchIfNumberRelationalComparison(Operation::kGreaterThan, left, right, if_true, if_false); } void BranchIfNumberGreaterThanOrEqual(TNode<Number> left, TNode<Number> right, Label* if_true, Label* if_false) { BranchIfNumberRelationalComparison(Operation::kGreaterThanOrEqual, left, right, if_true, if_false); } void BranchIfAccessorPair(TNode<Object> value, Label* if_accessor_pair, Label* if_not_accessor_pair) { GotoIf(TaggedIsSmi(value), if_not_accessor_pair); Branch(IsAccessorPair(CAST(value)), if_accessor_pair, if_not_accessor_pair); } void GotoIfNumberGreaterThanOrEqual(TNode<Number> left, TNode<Number> right, Label* if_false); TNode<Boolean> Equal(TNode<Object> lhs, TNode<Object> rhs, TNode<Context> context, TVariable<Smi>* var_type_feedback = nullptr) { return Equal( lhs, rhs, [=]() { return context; }, var_type_feedback); } TNode<Boolean> Equal(TNode<Object> lhs, TNode<Object> rhs, const LazyNode<Context>& context, TVariable<Smi>* var_type_feedback = nullptr); TNode<Boolean> StrictEqual(TNode<Object> lhs, TNode<Object> rhs, TVariable<Smi>* var_type_feedback = nullptr); void GotoIfStringEqual(TNode<String> lhs, TNode<IntPtrT> lhs_length, TNode<String> rhs, Label* if_true) { Label if_false(this); // Callers must handle the case where {lhs} and {rhs} refer to the same // String object. CSA_DCHECK(this, TaggedNotEqual(lhs, rhs)); TNode<IntPtrT> rhs_length = LoadStringLengthAsWord(rhs); BranchIfStringEqual(lhs, lhs_length, rhs, rhs_length, if_true, &if_false, nullptr); BIND(&if_false); } void BranchIfStringEqual(TNode<String> lhs, TNode<String> rhs, Label* if_true, Label* if_false, TVariable<Boolean>* result = nullptr) { return BranchIfStringEqual(lhs, LoadStringLengthAsWord(lhs), rhs, LoadStringLengthAsWord(rhs), if_true, if_false, result); } void BranchIfStringEqual(TNode<String> lhs, TNode<IntPtrT> lhs_length, TNode<String> rhs, TNode<IntPtrT> rhs_length, Label* if_true, Label* if_false, TVariable<Boolean>* result = nullptr); // ECMA#sec-samevalue // Similar to StrictEqual except that NaNs are treated as equal and minus zero // differs from positive zero. enum class SameValueMode { kNumbersOnly, kFull }; void BranchIfSameValue(TNode<Object> lhs, TNode<Object> rhs, Label* if_true, Label* if_false, SameValueMode mode = SameValueMode::kFull); // A part of BranchIfSameValue() that handles two double values. // Treats NaN == NaN and +0 != -0. void BranchIfSameNumberValue(TNode<Float64T> lhs_value, TNode<Float64T> rhs_value, Label* if_true, Label* if_false); enum HasPropertyLookupMode { kHasProperty, kForInHasProperty }; TNode<Boolean> HasProperty(TNode<Context> context, TNode<Object> object, TNode<Object> key, HasPropertyLookupMode mode); // Due to naming conflict with the builtin function namespace. TNode<Boolean> HasProperty_Inline(TNode<Context> context, TNode<JSReceiver> object, TNode<Object> key) { return HasProperty(context, object, key, HasPropertyLookupMode::kHasProperty); } void ForInPrepare(TNode<HeapObject> enumerator, TNode<UintPtrT> slot, TNode<HeapObject> maybe_feedback_vector, TNode<FixedArray>* cache_array_out, TNode<Smi>* cache_length_out, UpdateFeedbackMode update_feedback_mode); TNode<String> Typeof(TNode<Object> value); TNode<HeapObject> GetSuperConstructor(TNode<JSFunction> active_function); TNode<JSReceiver> SpeciesConstructor(TNode<Context> context, TNode<Object> object, TNode<JSReceiver> default_constructor); TNode<Boolean> InstanceOf(TNode<Object> object, TNode<Object> callable, TNode<Context> context); // Debug helpers TNode<BoolT> IsDebugActive(); // JSArrayBuffer helpers TNode<UintPtrT> LoadJSArrayBufferByteLength( TNode<JSArrayBuffer> array_buffer); TNode<UintPtrT> LoadJSArrayBufferMaxByteLength( TNode<JSArrayBuffer> array_buffer); TNode<RawPtrT> LoadJSArrayBufferBackingStorePtr( TNode<JSArrayBuffer> array_buffer); void ThrowIfArrayBufferIsDetached(TNode<Context> context, TNode<JSArrayBuffer> array_buffer, const char* method_name); // JSArrayBufferView helpers TNode<JSArrayBuffer> LoadJSArrayBufferViewBuffer( TNode<JSArrayBufferView> array_buffer_view); TNode<UintPtrT> LoadJSArrayBufferViewByteLength( TNode<JSArrayBufferView> array_buffer_view); void StoreJSArrayBufferViewByteLength( TNode<JSArrayBufferView> array_buffer_view, TNode<UintPtrT> value); TNode<UintPtrT> LoadJSArrayBufferViewByteOffset( TNode<JSArrayBufferView> array_buffer_view); void StoreJSArrayBufferViewByteOffset( TNode<JSArrayBufferView> array_buffer_view, TNode<UintPtrT> value); void ThrowIfArrayBufferViewBufferIsDetached( TNode<Context> context, TNode<JSArrayBufferView> array_buffer_view, const char* method_name); // JSTypedArray helpers TNode<UintPtrT> LoadJSTypedArrayLength(TNode<JSTypedArray> typed_array); void StoreJSTypedArrayLength(TNode<JSTypedArray> typed_array, TNode<UintPtrT> value); TNode<UintPtrT> LoadJSTypedArrayLengthAndCheckDetached( TNode<JSTypedArray> typed_array, Label* detached); // Helper for length tracking JSTypedArrays and JSTypedArrays backed by // ResizableArrayBuffer. TNode<UintPtrT> LoadVariableLengthJSTypedArrayLength( TNode<JSTypedArray> array, TNode<JSArrayBuffer> buffer, Label* detached_or_out_of_bounds); // Helper for length tracking JSTypedArrays and JSTypedArrays backed by // ResizableArrayBuffer. TNode<UintPtrT> LoadVariableLengthJSTypedArrayByteLength( TNode<Context> context, TNode<JSTypedArray> array, TNode<JSArrayBuffer> buffer); TNode<UintPtrT> LoadVariableLengthJSArrayBufferViewByteLength( TNode<JSArrayBufferView> array, TNode<JSArrayBuffer> buffer, Label* detached_or_out_of_bounds); void IsJSArrayBufferViewDetachedOrOutOfBounds( TNode<JSArrayBufferView> array_buffer_view, Label* detached_or_oob, Label* not_detached_nor_oob); TNode<BoolT> IsJSArrayBufferViewDetachedOrOutOfBoundsBoolean( TNode<JSArrayBufferView> array_buffer_view); void CheckJSTypedArrayIndex(TNode<JSTypedArray> typed_array, TNode<UintPtrT> index, Label* detached_or_out_of_bounds); TNode<IntPtrT> RabGsabElementsKindToElementByteSize( TNode<Int32T> elementsKind); TNode<RawPtrT> LoadJSTypedArrayDataPtr(TNode<JSTypedArray> typed_array); TNode<JSArrayBuffer> GetTypedArrayBuffer(TNode<Context> context, TNode<JSTypedArray> array); template <typename TIndex> TNode<IntPtrT> ElementOffsetFromIndex(TNode<TIndex> index, ElementsKind kind, int base_size = 0); // Check that a field offset is within the bounds of the an object. TNode<BoolT> IsOffsetInBounds(TNode<IntPtrT> offset, TNode<IntPtrT> length, int header_size, ElementsKind kind = HOLEY_ELEMENTS); // Load a builtin's code from the builtin array in the isolate. TNode<Code> LoadBuiltin(TNode<Smi> builtin_id); // Figure out the SFI's code object using its data field. // If |data_type_out| is provided, the instance type of the function data will // be stored in it. In case the code object is a builtin (data is a Smi), // data_type_out will be set to 0. // If |if_compile_lazy| is provided then the execution will go to the given // label in case of an CompileLazy code object. TNode<Code> GetSharedFunctionInfoCode( TNode<SharedFunctionInfo> shared_info, TVariable<Uint16T>* data_type_out = nullptr, Label* if_compile_lazy = nullptr); TNode<JSFunction> AllocateFunctionWithMapAndContext( TNode<Map> map, TNode<SharedFunctionInfo> shared_info, TNode<Context> context); // Promise helpers TNode<Uint32T> PromiseHookFlags(); TNode<BoolT> HasAsyncEventDelegate(); #ifdef V8_ENABLE_JAVASCRIPT_PROMISE_HOOKS TNode<BoolT> IsContextPromiseHookEnabled(TNode<Uint32T> flags); #endif TNode<BoolT> IsIsolatePromiseHookEnabled(TNode<Uint32T> flags); TNode<BoolT> IsAnyPromiseHookEnabled(TNode<Uint32T> flags); TNode<BoolT> IsAnyPromiseHookEnabled() { return IsAnyPromiseHookEnabled(PromiseHookFlags()); } TNode<BoolT> IsIsolatePromiseHookEnabledOrHasAsyncEventDelegate( TNode<Uint32T> flags); TNode<BoolT> IsIsolatePromiseHookEnabledOrHasAsyncEventDelegate() { return IsIsolatePromiseHookEnabledOrHasAsyncEventDelegate( PromiseHookFlags()); } TNode<BoolT> IsIsolatePromiseHookEnabledOrDebugIsActiveOrHasAsyncEventDelegate( TNode<Uint32T> flags); TNode<BoolT> IsIsolatePromiseHookEnabledOrDebugIsActiveOrHasAsyncEventDelegate() { return IsIsolatePromiseHookEnabledOrDebugIsActiveOrHasAsyncEventDelegate( PromiseHookFlags()); } TNode<BoolT> NeedsAnyPromiseHooks(TNode<Uint32T> flags); TNode<BoolT> NeedsAnyPromiseHooks() { return NeedsAnyPromiseHooks(PromiseHookFlags()); } // for..in helpers void CheckPrototypeEnumCache(TNode<JSReceiver> receiver, TNode<Map> receiver_map, Label* if_fast, Label* if_slow); TNode<Map> CheckEnumCache(TNode<JSReceiver> receiver, Label* if_empty, Label* if_runtime); TNode<Object> GetArgumentValue(TorqueStructArguments args, TNode<IntPtrT> index); void SetArgumentValue(TorqueStructArguments args, TNode<IntPtrT> index, TNode<Object> value); enum class FrameArgumentsArgcType { kCountIncludesReceiver, kCountExcludesReceiver }; TorqueStructArguments GetFrameArguments( TNode<RawPtrT> frame, TNode<IntPtrT> argc, FrameArgumentsArgcType argc_type = FrameArgumentsArgcType::kCountExcludesReceiver); inline TNode<Int32T> JSParameterCount(int argc_without_receiver) { return Int32Constant(argc_without_receiver + kJSArgcReceiverSlots); } inline TNode<Word32T> JSParameterCount(TNode<Word32T> argc_without_receiver) { return Int32Add(argc_without_receiver, Int32Constant(kJSArgcReceiverSlots)); } // Support for printf-style debugging void Print(const char* s); void Print(const char* prefix, TNode<MaybeObject> tagged_value); void Print(TNode<MaybeObject> tagged_value) { return Print(nullptr, tagged_value); } void Print(const char* prefix, TNode<UintPtrT> value); void Print(const char* prefix, TNode<Float64T> value); void PrintErr(const char* s); void PrintErr(const char* prefix, TNode<MaybeObject> tagged_value); void PrintErr(TNode<MaybeObject> tagged_value) { return PrintErr(nullptr, tagged_value); } void PrintToStream(const char* s, int stream); void PrintToStream(const char* prefix, TNode<MaybeObject> tagged_value, int stream); void PrintToStream(const char* prefix, TNode<UintPtrT> value, int stream); void PrintToStream(const char* prefix, TNode<Float64T> value, int stream); template <class... TArgs> TNode<HeapObject> MakeTypeError(MessageTemplate message, TNode<Context> context, TArgs... args) { static_assert(sizeof...(TArgs) <= 3); return CAST(CallRuntime(Runtime::kNewTypeError, context, SmiConstant(message), args...)); } void Abort(AbortReason reason) { CallRuntime(Runtime::kAbort, NoContextConstant(), SmiConstant(reason)); Unreachable(); } bool ConstexprBoolNot(bool value) { return !value; } int31_t ConstexprIntegerLiteralToInt31(const IntegerLiteral& i) { return int31_t(i.To<int32_t>()); } int32_t ConstexprIntegerLiteralToInt32(const IntegerLiteral& i) { return i.To<int32_t>(); } uint32_t ConstexprIntegerLiteralToUint32(const IntegerLiteral& i) { return i.To<uint32_t>(); } int8_t ConstexprIntegerLiteralToInt8(const IntegerLiteral& i) { return i.To<int8_t>(); } uint8_t ConstexprIntegerLiteralToUint8(const IntegerLiteral& i) { return i.To<uint8_t>(); } int64_t ConstexprIntegerLiteralToInt64(const IntegerLiteral& i) { return i.To<int64_t>(); } uint64_t ConstexprIntegerLiteralToUint64(const IntegerLiteral& i) { return i.To<uint64_t>(); } intptr_t ConstexprIntegerLiteralToIntptr(const IntegerLiteral& i) { return i.To<intptr_t>(); } uintptr_t ConstexprIntegerLiteralToUintptr(const IntegerLiteral& i) { return i.To<uintptr_t>(); } double ConstexprIntegerLiteralToFloat64(const IntegerLiteral& i) { int64_t i_value = i.To<int64_t>(); double d_value = static_cast<double>(i_value); CHECK_EQ(i_value, static_cast<int64_t>(d_value)); return d_value; } bool ConstexprIntegerLiteralEqual(IntegerLiteral lhs, IntegerLiteral rhs) { return lhs == rhs; } IntegerLiteral ConstexprIntegerLiteralAdd(const IntegerLiteral& lhs, const IntegerLiteral& rhs); IntegerLiteral ConstexprIntegerLiteralLeftShift(const IntegerLiteral& lhs, const IntegerLiteral& rhs); IntegerLiteral ConstexprIntegerLiteralBitwiseOr(const IntegerLiteral& lhs, const IntegerLiteral& rhs); bool ConstexprInt31Equal(int31_t a, int31_t b) { return a == b; } bool ConstexprInt31NotEqual(int31_t a, int31_t b) { return a != b; } bool ConstexprInt31GreaterThanEqual(int31_t a, int31_t b) { return a >= b; } bool ConstexprUint32Equal(uint32_t a, uint32_t b) { return a == b; } bool ConstexprUint32NotEqual(uint32_t a, uint32_t b) { return a != b; } bool ConstexprInt32Equal(int32_t a, int32_t b) { return a == b; } bool ConstexprInt32NotEqual(int32_t a, int32_t b) { return a != b; } bool ConstexprInt32GreaterThanEqual(int32_t a, int32_t b) { return a >= b; } uint32_t ConstexprUint32Add(uint32_t a, uint32_t b) { return a + b; } int32_t ConstexprUint32Sub(uint32_t a, uint32_t b) { return a - b; } int32_t ConstexprInt32Sub(int32_t a, int32_t b) { return a - b; } int32_t ConstexprInt32Add(int32_t a, int32_t b) { return a + b; } int31_t ConstexprInt31Add(int31_t a, int31_t b) { int32_t val; CHECK(!base::bits::SignedAddOverflow32(a, b, &val)); return val; } int31_t ConstexprInt31Mul(int31_t a, int31_t b) { int32_t val; CHECK(!base::bits::SignedMulOverflow32(a, b, &val)); return val; } int32_t ConstexprWord32Or(int32_t a, int32_t b) { return a | b; } uint32_t ConstexprWord32Shl(uint32_t a, int32_t b) { return a << b; } bool ConstexprUintPtrLessThan(uintptr_t a, uintptr_t b) { return a < b; } // CSA does not support 64-bit types on 32-bit platforms so as a workaround // the kMaxSafeIntegerUint64 is defined as uintptr and allowed to be used only // inside if constexpr (Is64()) i.e. on 64-bit architectures. static uintptr_t MaxSafeIntegerUintPtr() { #if defined(V8_HOST_ARCH_64_BIT) // This ifdef is required to avoid build issues on 32-bit MSVC which // complains about static_cast<uintptr_t>(kMaxSafeIntegerUint64). return kMaxSafeIntegerUint64; #else UNREACHABLE(); #endif } void PerformStackCheck(TNode<Context> context); void SetPropertyLength(TNode<Context> context, TNode<Object> array, TNode<Number> length); // Implements DescriptorArray::Search(). void DescriptorLookup(TNode<Name> unique_name, TNode<DescriptorArray> descriptors, TNode<Uint32T> bitfield3, Label* if_found, TVariable<IntPtrT>* var_name_index, Label* if_not_found); // Implements TransitionArray::SearchName() - searches for first transition // entry with given name (note that there could be multiple entries with // the same name). void TransitionLookup(TNode<Name> unique_name, TNode<TransitionArray> transitions, Label* if_found, TVariable<IntPtrT>* var_name_index, Label* if_not_found); // Implements generic search procedure like i::Search<Array>(). template <typename Array> void Lookup(TNode<Name> unique_name, TNode<Array> array, TNode<Uint32T> number_of_valid_entries, Label* if_found, TVariable<IntPtrT>* var_name_index, Label* if_not_found); // Implements generic linear search procedure like i::LinearSearch<Array>(). template <typename Array> void LookupLinear(TNode<Name> unique_name, TNode<Array> array, TNode<Uint32T> number_of_valid_entries, Label* if_found, TVariable<IntPtrT>* var_name_index, Label* if_not_found); // Implements generic binary search procedure like i::BinarySearch<Array>(). template <typename Array> void LookupBinary(TNode<Name> unique_name, TNode<Array> array, TNode<Uint32T> number_of_valid_entries, Label* if_found, TVariable<IntPtrT>* var_name_index, Label* if_not_found); // Converts [Descriptor/Transition]Array entry number to a fixed array index. template <typename Array> TNode<IntPtrT> EntryIndexToIndex(TNode<Uint32T> entry_index); // Implements [Descriptor/Transition]Array::ToKeyIndex. template <typename Array> TNode<IntPtrT> ToKeyIndex(TNode<Uint32T> entry_index); // Implements [Descriptor/Transition]Array::GetKey. template <typename Array> TNode<Name> GetKey(TNode<Array> array, TNode<Uint32T> entry_index); // Implements DescriptorArray::GetDetails. TNode<Uint32T> DescriptorArrayGetDetails(TNode<DescriptorArray> descriptors, TNode<Uint32T> descriptor_number); using ForEachDescriptorBodyFunction = std::function<void(TNode<IntPtrT> descriptor_key_index)>; // Descriptor array accessors based on key_index, which is equal to // DescriptorArray::ToKeyIndex(descriptor). TNode<Name> LoadKeyByKeyIndex(TNode<DescriptorArray> container, TNode<IntPtrT> key_index); TNode<Uint32T> LoadDetailsByKeyIndex(TNode<DescriptorArray> container, TNode<IntPtrT> key_index); TNode<Object> LoadValueByKeyIndex(TNode<DescriptorArray> container, TNode<IntPtrT> key_index); TNode<MaybeObject> LoadFieldTypeByKeyIndex(TNode<DescriptorArray> container, TNode<IntPtrT> key_index); TNode<IntPtrT> DescriptorEntryToIndex(TNode<IntPtrT> descriptor); // Descriptor array accessors based on descriptor. TNode<Name> LoadKeyByDescriptorEntry(TNode<DescriptorArray> descriptors, TNode<IntPtrT> descriptor); TNode<Name> LoadKeyByDescriptorEntry(TNode<DescriptorArray> descriptors, int descriptor); TNode<Uint32T> LoadDetailsByDescriptorEntry( TNode<DescriptorArray> descriptors, TNode<IntPtrT> descriptor); TNode<Uint32T> LoadDetailsByDescriptorEntry( TNode<DescriptorArray> descriptors, int descriptor); TNode<Object> LoadValueByDescriptorEntry(TNode<DescriptorArray> descriptors, TNode<IntPtrT> descriptor); TNode<Object> LoadValueByDescriptorEntry(TNode<DescriptorArray> descriptors, int descriptor); TNode<MaybeObject> LoadFieldTypeByDescriptorEntry( TNode<DescriptorArray> descriptors, TNode<IntPtrT> descriptor); using ForEachKeyValueFunction = std::function<void(TNode<Name> key, TNode<Object> value)>; // For each JSObject property (in DescriptorArray order), check if the key is // enumerable, and if so, load the value from the receiver and evaluate the // closure. void ForEachEnumerableOwnProperty(TNode<Context> context, TNode<Map> map, TNode<JSObject> object, PropertiesEnumerationMode mode, const ForEachKeyValueFunction& body, Label* bailout); TNode<Object> CallGetterIfAccessor( TNode<Object> value, TNode<HeapObject> holder, TNode<Uint32T> details, TNode<Context> context, TNode<Object> receiver, TNode<Object> name, Label* if_bailout, GetOwnPropertyMode mode = kCallJSGetterDontUseCachedName, ExpectedReceiverMode expected_receiver_mode = kExpectingJSReceiver); TNode<IntPtrT> TryToIntptr(TNode<Object> key, Label* if_not_intptr, TVariable<Int32T>* var_instance_type = nullptr); TNode<JSArray> ArrayCreate(TNode<Context> context, TNode<Number> length); // Allocate a clone of a mutable primitive, if {object} is a mutable // HeapNumber. TNode<Object> CloneIfMutablePrimitive(TNode<Object> object); TNode<Smi> RefillMathRandom(TNode<NativeContext> native_context); void RemoveFinalizationRegistryCellFromUnregisterTokenMap( TNode<JSFinalizationRegistry> finalization_registry, TNode<WeakCell> weak_cell); TNode<IntPtrT> FeedbackIteratorEntrySize() { return IntPtrConstant(FeedbackIterator::kEntrySize); } TNode<IntPtrT> FeedbackIteratorHandlerOffset() { return IntPtrConstant(FeedbackIterator::kHandlerOffset); } TNode<SwissNameDictionary> AllocateSwissNameDictionary( TNode<IntPtrT> at_least_space_for); TNode<SwissNameDictionary> AllocateSwissNameDictionary( int at_least_space_for); TNode<SwissNameDictionary> AllocateSwissNameDictionaryWithCapacity( TNode<IntPtrT> capacity); // MT stands for "minus tag". TNode<IntPtrT> SwissNameDictionaryOffsetIntoDataTableMT( TNode<SwissNameDictionary> dict, TNode<IntPtrT> index, int field_index); // MT stands for "minus tag". TNode<IntPtrT> SwissNameDictionaryOffsetIntoPropertyDetailsTableMT( TNode<SwissNameDictionary> dict, TNode<IntPtrT> capacity, TNode<IntPtrT> index); TNode<IntPtrT> LoadSwissNameDictionaryNumberOfElements( TNode<SwissNameDictionary> table, TNode<IntPtrT> capacity); TNode<IntPtrT> LoadSwissNameDictionaryNumberOfDeletedElements( TNode<SwissNameDictionary> table, TNode<IntPtrT> capacity); // Specialized operation to be used when adding entries: // If used capacity (= number of present + deleted elements) is less than // |max_usable|, increment the number of present entries and return the used // capacity value (prior to the incrementation). Otherwise, goto |bailout|. TNode<Uint32T> SwissNameDictionaryIncreaseElementCountOrBailout( TNode<ByteArray> meta_table, TNode<IntPtrT> capacity, TNode<Uint32T> max_usable_capacity, Label* bailout); // Specialized operation to be used when deleting entries: Decreases the // number of present entries and increases the number of deleted ones. Returns // new (= decremented) number of present entries. TNode<Uint32T> SwissNameDictionaryUpdateCountsForDeletion( TNode<ByteArray> meta_table, TNode<IntPtrT> capacity); void StoreSwissNameDictionaryCapacity(TNode<SwissNameDictionary> table, TNode<Int32T> capacity); void StoreSwissNameDictionaryEnumToEntryMapping( TNode<SwissNameDictionary> table, TNode<IntPtrT> capacity, TNode<IntPtrT> enum_index, TNode<Int32T> entry); TNode<Name> LoadSwissNameDictionaryKey(TNode<SwissNameDictionary> dict, TNode<IntPtrT> entry); void StoreSwissNameDictionaryKeyAndValue(TNode<SwissNameDictionary> dict, TNode<IntPtrT> entry, TNode<Object> key, TNode<Object> value); // Equivalent to SwissNameDictionary::SetCtrl, therefore preserves the copy of // the first group at the end of the control table. void SwissNameDictionarySetCtrl(TNode<SwissNameDictionary> table, TNode<IntPtrT> capacity, TNode<IntPtrT> entry, TNode<Uint8T> ctrl); TNode<Uint64T> LoadSwissNameDictionaryCtrlTableGroup(TNode<IntPtrT> address); TNode<Uint8T> LoadSwissNameDictionaryPropertyDetails( TNode<SwissNameDictionary> table, TNode<IntPtrT> capacity, TNode<IntPtrT> entry); void StoreSwissNameDictionaryPropertyDetails(TNode<SwissNameDictionary> table, TNode<IntPtrT> capacity, TNode<IntPtrT> entry, TNode<Uint8T> details); TNode<SwissNameDictionary> CopySwissNameDictionary( TNode<SwissNameDictionary> original); void SwissNameDictionaryFindEntry(TNode<SwissNameDictionary> table, TNode<Name> key, Label* found, TVariable<IntPtrT>* var_found_entry, Label* not_found); void SwissNameDictionaryAdd(TNode<SwissNameDictionary> table, TNode<Name> key, TNode<Object> value, TNode<Uint8T> property_details, Label* needs_resize); private: friend class CodeStubArguments; void BigInt64Comparison(Operation op, TNode<Object>& left, TNode<Object>& right, Label* return_true, Label* return_false); void HandleBreakOnNode(); TNode<HeapObject> AllocateRawDoubleAligned(TNode<IntPtrT> size_in_bytes, AllocationFlags flags, TNode<RawPtrT> top_address, TNode<RawPtrT> limit_address); TNode<HeapObject> AllocateRawUnaligned(TNode<IntPtrT> size_in_bytes, AllocationFlags flags, TNode<RawPtrT> top_address, TNode<RawPtrT> limit_address); TNode<HeapObject> AllocateRaw(TNode<IntPtrT> size_in_bytes, AllocationFlags flags, TNode<RawPtrT> top_address, TNode<RawPtrT> limit_address); // Allocate and return a JSArray of given total size in bytes with header // fields initialized. TNode<JSArray> AllocateUninitializedJSArray( TNode<Map> array_map, TNode<Smi> length, base::Optional<TNode<AllocationSite>> allocation_site, TNode<IntPtrT> size_in_bytes); // Increases the provided capacity to the next valid value, if necessary. template <typename CollectionType> TNode<CollectionType> AllocateOrderedHashTable(TNode<IntPtrT> capacity); // Uses the provided capacity (which must be valid) in verbatim. template <typename CollectionType> TNode<CollectionType> AllocateOrderedHashTableWithCapacity( TNode<IntPtrT> capacity); TNode<IntPtrT> SmiShiftBitsConstant() { return IntPtrConstant(kSmiShiftSize + kSmiTagSize); } TNode<Int32T> SmiShiftBitsConstant32() { return Int32Constant(kSmiShiftSize + kSmiTagSize); } TNode<String> AllocateSlicedString(RootIndex map_root_index, TNode<Uint32T> length, TNode<String> parent, TNode<Smi> offset); // Implements [Descriptor/Transition]Array::number_of_entries. template <typename Array> TNode<Uint32T> NumberOfEntries(TNode<Array> array); // Implements [Descriptor/Transition]Array::GetSortedKeyIndex. template <typename Array> TNode<Uint32T> GetSortedKeyIndex(TNode<Array> descriptors, TNode<Uint32T> entry_index); TNode<Smi> CollectFeedbackForString(TNode<Int32T> instance_type); void GenerateEqual_Same(TNode<Object> value, Label* if_equal, Label* if_notequal, TVariable<Smi>* var_type_feedback = nullptr); static const int kElementLoopUnrollThreshold = 8; // {convert_bigint} is only meaningful when {mode} == kToNumber. TNode<Numeric> NonNumberToNumberOrNumeric( TNode<Context> context, TNode<HeapObject> input, Object::Conversion mode, BigIntHandling bigint_handling = BigIntHandling::kThrow); enum IsKnownTaggedPointer { kNo, kYes }; template <Object::Conversion conversion> void TaggedToWord32OrBigIntImpl( TNode<Context> context, TNode<Object> value, Label* if_number, TVariable<Word32T>* var_word32, IsKnownTaggedPointer is_known_tagged_pointer, const FeedbackValues& feedback, Label* if_bigint = nullptr, Label* if_bigint64 = nullptr, TVariable<BigInt>* var_maybe_bigint = nullptr); // Low-level accessors for Descriptor arrays. template <typename T> TNode<T> LoadDescriptorArrayElement(TNode<DescriptorArray> object, TNode<IntPtrT> index, int additional_offset); // Hide LoadRoot for subclasses of CodeStubAssembler. If you get an error // complaining about this method, don't make it public, add your root to // HEAP_(IM)MUTABLE_IMMOVABLE_OBJECT_LIST instead. If you *really* need // LoadRoot, use CodeAssembler::LoadRoot. TNode<Object> LoadRoot(RootIndex root_index) { return CodeAssembler::LoadRoot(root_index); } TNode<AnyTaggedT> LoadRootMapWord(RootIndex root_index) { return CodeAssembler::LoadRootMapWord(root_index); } template <typename TIndex> void StoreFixedArrayOrPropertyArrayElement( TNode<UnionT<FixedArray, PropertyArray>> array, TNode<TIndex> index, TNode<Object> value, WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER, int additional_offset = 0); template <typename TIndex> void StoreElementTypedArrayBigInt(TNode<RawPtrT> elements, ElementsKind kind, TNode<TIndex> index, TNode<BigInt> value); template <typename TIndex> void StoreElementTypedArrayWord32(TNode<RawPtrT> elements, ElementsKind kind, TNode<TIndex> index, TNode<Word32T> value); // Store value to an elements array with given elements kind. // TODO(turbofan): For BIGINT64_ELEMENTS and BIGUINT64_ELEMENTS // we pass {value} as BigInt object instead of int64_t. We should // teach TurboFan to handle int64_t on 32-bit platforms eventually. // TODO(solanes): This method can go away and simplify into only one version // of StoreElement once we have "if constexpr" available to use. template <typename TArray, typename TIndex, typename TValue> void StoreElementTypedArray(TNode<TArray> elements, ElementsKind kind, TNode<TIndex> index, TNode<TValue> value); template <typename TIndex> void StoreElement(TNode<FixedArrayBase> elements, ElementsKind kind, TNode<TIndex> index, TNode<Object> value); template <typename TIndex> void StoreElement(TNode<FixedArrayBase> elements, ElementsKind kind, TNode<TIndex> index, TNode<Float64T> value); // Converts {input} to a number if {input} is a plain primitve (i.e. String or // Oddball) and stores the result in {var_result}. Otherwise, it bails out to // {if_bailout}. void TryPlainPrimitiveNonNumberToNumber(TNode<HeapObject> input, TVariable<Number>* var_result, Label* if_bailout); void DcheckHasValidMap(TNode<HeapObject> object); template <typename TValue> void EmitElementStoreTypedArray(TNode<JSTypedArray> typed_array, TNode<IntPtrT> key, TNode<Object> value, ElementsKind elements_kind, KeyedAccessStoreMode store_mode, Label* bailout, TNode<Context> context, TVariable<Object>* maybe_converted_value); template <typename TValue> void EmitElementStoreTypedArrayUpdateValue( TNode<Object> value, ElementsKind elements_kind, TNode<TValue> converted_value, TVariable<Object>* maybe_converted_value); }; class V8_EXPORT_PRIVATE CodeStubArguments { public: // |argc| specifies the number of arguments passed to the builtin excluding // the receiver. The arguments include the receiver. CodeStubArguments(CodeStubAssembler* assembler, TNode<IntPtrT> argc) : CodeStubArguments(assembler, argc, TNode<RawPtrT>()) {} CodeStubArguments(CodeStubAssembler* assembler, TNode<Int32T> argc) : CodeStubArguments(assembler, assembler->ChangeInt32ToIntPtr(argc)) {} CodeStubArguments(CodeStubAssembler* assembler, TNode<IntPtrT> argc, TNode<RawPtrT> fp); // Used by Torque to construct arguments based on a Torque-defined // struct of values. CodeStubArguments(CodeStubAssembler* assembler, TorqueStructArguments torque_arguments) : assembler_(assembler), argc_(torque_arguments.actual_count), base_(torque_arguments.base), fp_(torque_arguments.frame) {} TNode<Object> GetReceiver() const; // Replaces receiver argument on the expression stack. Should be used only // for manipulating arguments in trampoline builtins before tail calling // further with passing all the JS arguments as is. void SetReceiver(TNode<Object> object) const; // Computes address of the index'th argument. TNode<RawPtrT> AtIndexPtr(TNode<IntPtrT> index) const; // |index| is zero-based and does not include the receiver TNode<Object> AtIndex(TNode<IntPtrT> index) const; TNode<Object> AtIndex(int index) const; // Return the number of arguments (excluding the receiver). TNode<IntPtrT> GetLengthWithoutReceiver() const; // Return the number of arguments (including the receiver). TNode<IntPtrT> GetLengthWithReceiver() const; TorqueStructArguments GetTorqueArguments() const { return TorqueStructArguments{fp_, base_, GetLengthWithoutReceiver(), argc_}; } TNode<Object> GetOptionalArgumentValue(TNode<IntPtrT> index, TNode<Object> default_value); TNode<Object> GetOptionalArgumentValue(TNode<IntPtrT> index) { return GetOptionalArgumentValue(index, assembler_->UndefinedConstant()); } TNode<Object> GetOptionalArgumentValue(int index) { return GetOptionalArgumentValue(assembler_->IntPtrConstant(index)); } void SetArgumentValue(TNode<IntPtrT> index, TNode<Object> value); // Iteration doesn't include the receiver. |first| and |last| are zero-based. using ForEachBodyFunction = std::function<void(TNode<Object> arg)>; void ForEach(const ForEachBodyFunction& body, TNode<IntPtrT> first = {}, TNode<IntPtrT> last = {}) const { CodeStubAssembler::VariableList list(0, assembler_->zone()); ForEach(list, body, first, last); } void ForEach(const CodeStubAssembler::VariableList& vars, const ForEachBodyFunction& body, TNode<IntPtrT> first = {}, TNode<IntPtrT> last = {}) const; void PopAndReturn(TNode<Object> value); private: CodeStubAssembler* assembler_; TNode<IntPtrT> argc_; TNode<RawPtrT> base_; TNode<RawPtrT> fp_; }; class ToDirectStringAssembler : public CodeStubAssembler { private: enum StringPointerKind { PTR_TO_DATA, PTR_TO_STRING }; public: enum Flag { kDontUnpackSlicedStrings = 1 << 0, }; using Flags = base::Flags<Flag>; ToDirectStringAssembler(compiler::CodeAssemblerState* state, TNode<String> string, Flags flags = Flags()); // Converts flat cons, thin, and sliced strings and returns the direct // string. The result can be either a sequential or external string. // Jumps to if_bailout if the string if the string is indirect and cannot // be unpacked. TNode<String> TryToDirect(Label* if_bailout); // Returns a pointer to the beginning of the string data. // Jumps to if_bailout if the external string cannot be unpacked. TNode<RawPtrT> PointerToData(Label* if_bailout) { return TryToSequential(PTR_TO_DATA, if_bailout); } // Returns a pointer that, offset-wise, looks like a String. // Jumps to if_bailout if the external string cannot be unpacked. TNode<RawPtrT> PointerToString(Label* if_bailout) { return TryToSequential(PTR_TO_STRING, if_bailout); } TNode<String> string() { return var_string_.value(); } TNode<Int32T> instance_type() { return var_instance_type_.value(); } TNode<IntPtrT> offset() { return var_offset_.value(); } TNode<Word32T> is_external() { return var_is_external_.value(); } private: TNode<RawPtrT> TryToSequential(StringPointerKind ptr_kind, Label* if_bailout); TVariable<String> var_string_; TVariable<Int32T> var_instance_type_; // TODO(v8:9880): Use UintPtrT here. TVariable<IntPtrT> var_offset_; TVariable<Word32T> var_is_external_; const Flags flags_; }; // Performs checks on a given prototype (e.g. map identity, property // verification), intended for use in fast path checks. class PrototypeCheckAssembler : public CodeStubAssembler { public: enum Flag { kCheckPrototypePropertyConstness = 1 << 0, kCheckPrototypePropertyIdentity = 1 << 1, kCheckFull = kCheckPrototypePropertyConstness | kCheckPrototypePropertyIdentity, }; using Flags = base::Flags<Flag>; // A tuple describing a relevant property. It contains the descriptor index of // the property (within the descriptor array), the property's expected name // (stored as a root), and the property's expected value (stored on the native // context). struct DescriptorIndexNameValue { int descriptor_index; RootIndex name_root_index; int expected_value_context_index; }; PrototypeCheckAssembler(compiler::CodeAssemblerState* state, Flags flags, TNode<NativeContext> native_context, TNode<Map> initial_prototype_map, base::Vector<DescriptorIndexNameValue> properties); void CheckAndBranch(TNode<HeapObject> prototype, Label* if_unmodified, Label* if_modified); private: const Flags flags_; const TNode<NativeContext> native_context_; const TNode<Map> initial_prototype_map_; const base::Vector<DescriptorIndexNameValue> properties_; }; DEFINE_OPERATORS_FOR_FLAGS(CodeStubAssembler::AllocationFlags) #define CLASS_MAP_CONSTANT_ADAPTER(V, rootIndexName, rootAccessorName, \ class_name) \ template <> \ inline bool CodeStubAssembler::ClassHasMapConstant<class_name>() { \ return true; \ } \ template <> \ inline TNode<Map> CodeStubAssembler::GetClassMapConstant<class_name>() { \ return class_name##MapConstant(); \ } UNIQUE_INSTANCE_TYPE_MAP_LIST_GENERATOR(CLASS_MAP_CONSTANT_ADAPTER, _) } // namespace internal } // namespace v8 #endif // V8_CODEGEN_CODE_STUB_ASSEMBLER_H_