%PDF- %PDF-
Direktori : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/codegen/ |
Current File : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/codegen/safepoint-table.cc |
// Copyright 2011 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/codegen/safepoint-table.h" #include <iomanip> #include "src/codegen/assembler-inl.h" #include "src/codegen/macro-assembler.h" #include "src/deoptimizer/deoptimizer.h" #include "src/diagnostics/disasm.h" #include "src/execution/frames-inl.h" #include "src/utils/ostreams.h" #if V8_ENABLE_WEBASSEMBLY #include "src/wasm/wasm-code-manager.h" #endif // V8_ENABLE_WEBASSEMBLY namespace v8 { namespace internal { SafepointTable::SafepointTable(Isolate* isolate, Address pc, Tagged<Code> code) : SafepointTable(code->InstructionStart(isolate, pc), code->safepoint_table_address()) {} SafepointTable::SafepointTable(Isolate* isolate, Address pc, Tagged<GcSafeCode> code) : SafepointTable(code->InstructionStart(isolate, pc), code->safepoint_table_address()) {} #if V8_ENABLE_WEBASSEMBLY SafepointTable::SafepointTable(const wasm::WasmCode* code) : SafepointTable( code->instruction_start(), code->instruction_start() + code->safepoint_table_offset()) {} #endif // V8_ENABLE_WEBASSEMBLY SafepointTable::SafepointTable(Address instruction_start, Address safepoint_table_address) : instruction_start_(instruction_start), safepoint_table_address_(safepoint_table_address), length_(base::Memory<int>(safepoint_table_address + kLengthOffset)), entry_configuration_(base::Memory<uint32_t>(safepoint_table_address + kEntryConfigurationOffset)) {} int SafepointTable::find_return_pc(int pc_offset) { for (int i = 0; i < length(); i++) { SafepointEntry entry = GetEntry(i); if (entry.trampoline_pc() == pc_offset || entry.pc() == pc_offset) { return entry.pc(); } } UNREACHABLE(); } SafepointEntry SafepointTable::FindEntry(Address pc) const { int pc_offset = static_cast<int>(pc - instruction_start_); // Check if the PC is pointing at a trampoline. if (has_deopt_data()) { int candidate = -1; for (int i = 0; i < length_; ++i) { int trampoline_pc = GetEntry(i).trampoline_pc(); if (trampoline_pc != -1 && trampoline_pc <= pc_offset) candidate = i; if (trampoline_pc > pc_offset) break; } if (candidate != -1) return GetEntry(candidate); } for (int i = 0; i < length_; ++i) { SafepointEntry entry = GetEntry(i); if (i == length_ - 1 || GetEntry(i + 1).pc() > pc_offset) { DCHECK_LE(entry.pc(), pc_offset); return entry; } } UNREACHABLE(); } // static SafepointEntry SafepointTable::FindEntry(Isolate* isolate, Tagged<GcSafeCode> code, Address pc) { SafepointTable table(isolate, pc, code); return table.FindEntry(pc); } void SafepointTable::Print(std::ostream& os) const { os << "Safepoints (entries = " << length_ << ", byte size = " << byte_size() << ")\n"; for (int index = 0; index < length_; index++) { SafepointEntry entry = GetEntry(index); os << reinterpret_cast<const void*>(instruction_start_ + entry.pc()) << " " << std::setw(6) << std::hex << entry.pc() << std::dec; if (!entry.tagged_slots().empty()) { os << " slots (sp->fp): "; for (uint8_t bits : entry.tagged_slots()) { for (int bit = 0; bit < kBitsPerByte; ++bit) { os << ((bits >> bit) & 1); } } } if (entry.tagged_register_indexes() != 0) { os << " registers: "; uint32_t register_bits = entry.tagged_register_indexes(); int bits = 32 - base::bits::CountLeadingZeros32(register_bits); for (int j = bits - 1; j >= 0; --j) { os << ((register_bits >> j) & 1); } } if (entry.has_deoptimization_index()) { os << " deopt " << std::setw(6) << entry.deoptimization_index() << " trampoline: " << std::setw(6) << std::hex << entry.trampoline_pc(); } os << "\n"; } } SafepointTableBuilder::Safepoint SafepointTableBuilder::DefineSafepoint( Assembler* assembler) { entries_.emplace_back(zone_, assembler->pc_offset_for_safepoint()); return SafepointTableBuilder::Safepoint(&entries_.back(), this); } int SafepointTableBuilder::UpdateDeoptimizationInfo(int pc, int trampoline, int start, int deopt_index) { DCHECK_NE(SafepointEntry::kNoTrampolinePC, trampoline); DCHECK_NE(SafepointEntry::kNoDeoptIndex, deopt_index); auto it = entries_.begin() + start; DCHECK(std::any_of(it, entries_.end(), [pc](auto& entry) { return entry.pc == pc; })); int index = start; while (it->pc != pc) ++it, ++index; it->trampoline = trampoline; it->deopt_index = deopt_index; return index; } void SafepointTableBuilder::Emit(Assembler* assembler, int tagged_slots_size) { DCHECK_LT(max_stack_index_, tagged_slots_size); #ifdef DEBUG int last_pc = -1; int last_trampoline = -1; for (const EntryBuilder& entry : entries_) { // Entries are ordered by PC. DCHECK_LT(last_pc, entry.pc); last_pc = entry.pc; // Trampoline PCs are increasing, and larger than regular PCs. if (entry.trampoline != SafepointEntry::kNoTrampolinePC) { DCHECK_LT(last_trampoline, entry.trampoline); DCHECK_LT(entries_.back().pc, entry.trampoline); last_trampoline = entry.trampoline; } // An entry either has trampoline and deopt index, or none of the two. DCHECK_EQ(entry.trampoline == SafepointEntry::kNoTrampolinePC, entry.deopt_index == SafepointEntry::kNoDeoptIndex); } #endif // DEBUG RemoveDuplicates(); // The encoding is compacted by translating stack slot indices s.t. they // start at 0. See also below. tagged_slots_size -= min_stack_index(); #if V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_ARM64 // We cannot emit a const pool within the safepoint table. Assembler::BlockConstPoolScope block_const_pool(assembler); #endif // Make sure the safepoint table is properly aligned. Pad with nops. assembler->Align(InstructionStream::kMetadataAlignment); assembler->RecordComment(";;; Safepoint table."); set_safepoint_table_offset(assembler->pc_offset()); // Compute the required sizes of the fields. int used_register_indexes = 0; static_assert(SafepointEntry::kNoTrampolinePC == -1); int max_pc = SafepointEntry::kNoTrampolinePC; static_assert(SafepointEntry::kNoDeoptIndex == -1); int max_deopt_index = SafepointEntry::kNoDeoptIndex; for (const EntryBuilder& entry : entries_) { used_register_indexes |= entry.register_indexes; max_pc = std::max(max_pc, std::max(entry.pc, entry.trampoline)); max_deopt_index = std::max(max_deopt_index, entry.deopt_index); } // Derive the bytes and bools for the entry configuration from the values. auto value_to_bytes = [](int value) { DCHECK_LE(0, value); if (value == 0) return 0; if (value <= 0xff) return 1; if (value <= 0xffff) return 2; if (value <= 0xffffff) return 3; return 4; }; bool has_deopt_data = max_deopt_index != -1; int register_indexes_size = value_to_bytes(used_register_indexes); // Add 1 so all values (including kNoDeoptIndex and kNoTrampolinePC) are // non-negative. static_assert(SafepointEntry::kNoDeoptIndex == -1); static_assert(SafepointEntry::kNoTrampolinePC == -1); int pc_size = value_to_bytes(max_pc + 1); int deopt_index_size = value_to_bytes(max_deopt_index + 1); int tagged_slots_bytes = (tagged_slots_size + kBitsPerByte - 1) / kBitsPerByte; // Add a CHECK to ensure we never overflow the space in the bitfield, even for // huge functions which might not be covered by tests. CHECK(SafepointTable::RegisterIndexesSizeField::is_valid( register_indexes_size)); CHECK(SafepointTable::PcSizeField::is_valid(pc_size)); CHECK(SafepointTable::DeoptIndexSizeField::is_valid(deopt_index_size)); CHECK(SafepointTable::TaggedSlotsBytesField::is_valid(tagged_slots_bytes)); uint32_t entry_configuration = SafepointTable::HasDeoptDataField::encode(has_deopt_data) | SafepointTable::RegisterIndexesSizeField::encode(register_indexes_size) | SafepointTable::PcSizeField::encode(pc_size) | SafepointTable::DeoptIndexSizeField::encode(deopt_index_size) | SafepointTable::TaggedSlotsBytesField::encode(tagged_slots_bytes); // Emit the table header. static_assert(SafepointTable::kLengthOffset == 0 * kIntSize); static_assert(SafepointTable::kEntryConfigurationOffset == 1 * kIntSize); static_assert(SafepointTable::kHeaderSize == 2 * kIntSize); int length = static_cast<int>(entries_.size()); assembler->dd(length); assembler->dd(entry_configuration); auto emit_bytes = [assembler](int value, int bytes) { DCHECK_LE(0, value); for (; bytes > 0; --bytes, value >>= 8) assembler->db(value); DCHECK_EQ(0, value); }; // Emit entries, sorted by pc offsets. for (const EntryBuilder& entry : entries_) { emit_bytes(entry.pc, pc_size); if (has_deopt_data) { // Add 1 so all values (including kNoDeoptIndex and kNoTrampolinePC) are // non-negative. static_assert(SafepointEntry::kNoDeoptIndex == -1); static_assert(SafepointEntry::kNoTrampolinePC == -1); emit_bytes(entry.deopt_index + 1, deopt_index_size); emit_bytes(entry.trampoline + 1, pc_size); } emit_bytes(entry.register_indexes, register_indexes_size); } // Emit bitmaps of tagged stack slots. Note the slot list is reversed in the // encoding. // TODO(jgruber): Avoid building a reversed copy of the bit vector. ZoneVector<uint8_t> bits(tagged_slots_bytes, 0, zone_); for (const EntryBuilder& entry : entries_) { std::fill(bits.begin(), bits.end(), 0); // Run through the indexes and build a bitmap. for (int idx : *entry.stack_indexes) { // The encoding is compacted by translating stack slot indices s.t. they // start at 0. See also above. const int adjusted_idx = idx - min_stack_index(); DCHECK_GT(tagged_slots_size, adjusted_idx); int index = tagged_slots_size - 1 - adjusted_idx; int byte_index = index >> kBitsPerByteLog2; int bit_index = index & (kBitsPerByte - 1); bits[byte_index] |= (1u << bit_index); } // Emit the bitmap for the current entry. for (uint8_t byte : bits) assembler->db(byte); } } void SafepointTableBuilder::RemoveDuplicates() { // Remove any duplicate entries, i.e. succeeding entries that are identical // except for the PC. During lookup, we will find the first entry whose PC is // not larger than the PC at hand, and find the first non-duplicate. if (entries_.size() < 2) return; auto is_identical_except_for_pc = [](const EntryBuilder& entry1, const EntryBuilder& entry2) { if (entry1.deopt_index != entry2.deopt_index) return false; DCHECK_EQ(entry1.trampoline, entry2.trampoline); return entry1.register_indexes == entry2.register_indexes && entry1.stack_indexes->Equals(*entry2.stack_indexes); }; auto remaining_it = entries_.begin(); auto end = entries_.end(); for (auto it = entries_.begin(); it != end; ++remaining_it) { if (remaining_it != it) *remaining_it = *it; // Merge identical entries. do { ++it; } while (it != end && is_identical_except_for_pc(*it, *remaining_it)); } entries_.erase(remaining_it, end); } } // namespace internal } // namespace v8