%PDF- %PDF-
Direktori : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/deoptimizer/ |
Current File : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/deoptimizer/deoptimizer.cc |
// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/deoptimizer/deoptimizer.h" #include "src/base/memory.h" #include "src/codegen/interface-descriptors.h" #include "src/codegen/register-configuration.h" #include "src/codegen/reloc-info.h" #include "src/debug/debug.h" #include "src/deoptimizer/deoptimized-frame-info.h" #include "src/deoptimizer/materialized-object-store.h" #include "src/deoptimizer/translated-state.h" #include "src/execution/frames-inl.h" #include "src/execution/isolate.h" #include "src/execution/pointer-authentication.h" #include "src/execution/v8threads.h" #include "src/handles/handles-inl.h" #include "src/heap/heap-inl.h" #include "src/logging/counters.h" #include "src/logging/log.h" #include "src/logging/runtime-call-stats-scope.h" #include "src/objects/js-function-inl.h" #include "src/objects/oddball.h" #include "src/snapshot/embedded/embedded-data.h" #include "src/utils/utils.h" #if V8_ENABLE_WEBASSEMBLY #include "src/wasm/wasm-linkage.h" #endif // V8_ENABLE_WEBASSEMBLY namespace v8 { using base::Memory; namespace internal { namespace { class DeoptimizableCodeIterator { public: explicit DeoptimizableCodeIterator(Isolate* isolate); DeoptimizableCodeIterator(const DeoptimizableCodeIterator&) = delete; DeoptimizableCodeIterator& operator=(const DeoptimizableCodeIterator&) = delete; Tagged<Code> Next(); private: Isolate* const isolate_; std::unique_ptr<SafepointScope> safepoint_scope_; std::unique_ptr<ObjectIterator> object_iterator_; enum { kIteratingCodeSpace, kIteratingCodeLOSpace, kDone } state_; DISALLOW_GARBAGE_COLLECTION(no_gc) }; DeoptimizableCodeIterator::DeoptimizableCodeIterator(Isolate* isolate) : isolate_(isolate), safepoint_scope_(std::make_unique<SafepointScope>( isolate, isolate->is_shared_space_isolate() ? SafepointKind::kGlobal : SafepointKind::kIsolate)), object_iterator_( isolate->heap()->code_space()->GetObjectIterator(isolate->heap())), state_(kIteratingCodeSpace) {} Tagged<Code> DeoptimizableCodeIterator::Next() { while (true) { Tagged<HeapObject> object = object_iterator_->Next(); if (object.is_null()) { // No objects left in the current iterator, try to move to the next space // based on the state. switch (state_) { case kIteratingCodeSpace: { object_iterator_ = isolate_->heap()->code_lo_space()->GetObjectIterator( isolate_->heap()); state_ = kIteratingCodeLOSpace; continue; } case kIteratingCodeLOSpace: // No other spaces to iterate, so clean up and we're done. Keep the // object iterator so that it keeps returning null on Next(), to avoid // needing to branch on state_ before the while loop, but drop the // safepoint scope since we no longer need to stop the heap from // moving. safepoint_scope_.reset(); state_ = kDone; V8_FALLTHROUGH; case kDone: return Code(); } } Tagged<InstructionStream> istream = InstructionStream::cast(object); Tagged<Code> code; if (!istream->TryGetCode(&code, kAcquireLoad)) continue; if (!CodeKindCanDeoptimize(code->kind())) continue; return code; } } } // namespace // {FrameWriter} offers a stack writer abstraction for writing // FrameDescriptions. The main service the class provides is managing // {top_offset_}, i.e. the offset of the next slot to write to. // // Note: Not in an anonymous namespace due to the friend class declaration // in Deoptimizer. class FrameWriter { public: static const int NO_INPUT_INDEX = -1; FrameWriter(Deoptimizer* deoptimizer, FrameDescription* frame, CodeTracer::Scope* trace_scope) : deoptimizer_(deoptimizer), frame_(frame), trace_scope_(trace_scope), top_offset_(frame->GetFrameSize()) {} void PushRawValue(intptr_t value, const char* debug_hint) { PushValue(value); if (trace_scope_ != nullptr) { DebugPrintOutputValue(value, debug_hint); } } void PushRawObject(Tagged<Object> obj, const char* debug_hint) { intptr_t value = obj.ptr(); PushValue(value); if (trace_scope_ != nullptr) { DebugPrintOutputObject(obj, top_offset_, debug_hint); } } // There is no check against the allowed addresses for bottommost frames, as // the caller's pc could be anything. The caller's pc pushed here should never // be re-signed. void PushBottommostCallerPc(intptr_t pc) { top_offset_ -= kPCOnStackSize; frame_->SetFrameSlot(top_offset_, pc); DebugPrintOutputPc(pc, "bottommost caller's pc\n"); } void PushApprovedCallerPc(intptr_t pc) { top_offset_ -= kPCOnStackSize; frame_->SetCallerPc(top_offset_, pc); DebugPrintOutputPc(pc, "caller's pc\n"); } void PushCallerFp(intptr_t fp) { top_offset_ -= kFPOnStackSize; frame_->SetCallerFp(top_offset_, fp); DebugPrintOutputValue(fp, "caller's fp\n"); } void PushCallerConstantPool(intptr_t cp) { top_offset_ -= kSystemPointerSize; frame_->SetCallerConstantPool(top_offset_, cp); DebugPrintOutputValue(cp, "caller's constant_pool\n"); } void PushTranslatedValue(const TranslatedFrame::iterator& iterator, const char* debug_hint = "") { Tagged<Object> obj = iterator->GetRawValue(); PushRawObject(obj, debug_hint); if (trace_scope_ != nullptr) { PrintF(trace_scope_->file(), " (input #%d)\n", iterator.input_index()); } deoptimizer_->QueueValueForMaterialization(output_address(top_offset_), obj, iterator); } void PushFeedbackVectorForMaterialization( const TranslatedFrame::iterator& iterator) { // Push a marker temporarily. PushRawObject(ReadOnlyRoots(deoptimizer_->isolate()).arguments_marker(), "feedback vector"); deoptimizer_->QueueFeedbackVectorForMaterialization( output_address(top_offset_), iterator); } void PushStackJSArguments(TranslatedFrame::iterator& iterator, int parameters_count) { std::vector<TranslatedFrame::iterator> parameters; parameters.reserve(parameters_count); for (int i = 0; i < parameters_count; ++i, ++iterator) { parameters.push_back(iterator); } for (auto& parameter : base::Reversed(parameters)) { PushTranslatedValue(parameter, "stack parameter"); } } unsigned top_offset() const { return top_offset_; } FrameDescription* frame() { return frame_; } private: void PushValue(intptr_t value) { CHECK_GE(top_offset_, 0); top_offset_ -= kSystemPointerSize; frame_->SetFrameSlot(top_offset_, value); } Address output_address(unsigned output_offset) { Address output_address = static_cast<Address>(frame_->GetTop()) + output_offset; return output_address; } void DebugPrintOutputValue(intptr_t value, const char* debug_hint = "") { if (trace_scope_ != nullptr) { PrintF(trace_scope_->file(), " " V8PRIxPTR_FMT ": [top + %3d] <- " V8PRIxPTR_FMT " ; %s", output_address(top_offset_), top_offset_, value, debug_hint); } } void DebugPrintOutputPc(intptr_t value, const char* debug_hint = "") { #ifdef V8_ENABLE_CONTROL_FLOW_INTEGRITY if (trace_scope_ != nullptr) { PrintF(trace_scope_->file(), " " V8PRIxPTR_FMT ": [top + %3d] <- " V8PRIxPTR_FMT " (signed) " V8PRIxPTR_FMT " (unsigned) ; %s", output_address(top_offset_), top_offset_, value, PointerAuthentication::StripPAC(value), debug_hint); } #else DebugPrintOutputValue(value, debug_hint); #endif } void DebugPrintOutputObject(Tagged<Object> obj, unsigned output_offset, const char* debug_hint = "") { if (trace_scope_ != nullptr) { PrintF(trace_scope_->file(), " " V8PRIxPTR_FMT ": [top + %3d] <- ", output_address(output_offset), output_offset); if (IsSmi(obj)) { PrintF(trace_scope_->file(), V8PRIxPTR_FMT " <Smi %d>", obj.ptr(), Smi::cast(obj).value()); } else { ShortPrint(obj, trace_scope_->file()); } PrintF(trace_scope_->file(), " ; %s", debug_hint); } } Deoptimizer* deoptimizer_; FrameDescription* frame_; CodeTracer::Scope* const trace_scope_; unsigned top_offset_; }; // We rely on this function not causing a GC. It is called from generated code // without having a real stack frame in place. Deoptimizer* Deoptimizer::New(Address raw_function, DeoptimizeKind kind, Address from, int fp_to_sp_delta, Isolate* isolate) { Tagged<JSFunction> function = JSFunction::cast(Tagged<Object>(raw_function)); Deoptimizer* deoptimizer = new Deoptimizer(isolate, function, kind, from, fp_to_sp_delta); isolate->set_current_deoptimizer(deoptimizer); return deoptimizer; } Deoptimizer* Deoptimizer::Grab(Isolate* isolate) { Deoptimizer* result = isolate->GetAndClearCurrentDeoptimizer(); result->DeleteFrameDescriptions(); return result; } DeoptimizedFrameInfo* Deoptimizer::DebuggerInspectableFrame( JavaScriptFrame* frame, int jsframe_index, Isolate* isolate) { CHECK(frame->is_optimized()); TranslatedState translated_values(frame); translated_values.Prepare(frame->fp()); TranslatedState::iterator frame_it = translated_values.end(); int counter = jsframe_index; for (auto it = translated_values.begin(); it != translated_values.end(); it++) { if (it->kind() == TranslatedFrame::kUnoptimizedFunction || it->kind() == TranslatedFrame::kJavaScriptBuiltinContinuation || it->kind() == TranslatedFrame::kJavaScriptBuiltinContinuationWithCatch) { if (counter == 0) { frame_it = it; break; } counter--; } } CHECK(frame_it != translated_values.end()); // We only include kJavaScriptBuiltinContinuation frames above to get the // counting right. CHECK_EQ(frame_it->kind(), TranslatedFrame::kUnoptimizedFunction); DeoptimizedFrameInfo* info = new DeoptimizedFrameInfo(&translated_values, frame_it, isolate); return info; } namespace { class ActivationsFinder : public ThreadVisitor { public: ActivationsFinder(Tagged<GcSafeCode> topmost_optimized_code, bool safe_to_deopt_topmost_optimized_code) { #ifdef DEBUG topmost_ = topmost_optimized_code; safe_to_deopt_ = safe_to_deopt_topmost_optimized_code; #endif } // Find the frames with activations of codes marked for deoptimization, search // for the trampoline to the deoptimizer call respective to each code, and use // it to replace the current pc on the stack. void VisitThread(Isolate* isolate, ThreadLocalTop* top) override { for (StackFrameIterator it(isolate, top); !it.done(); it.Advance()) { if (it.frame()->is_optimized()) { Tagged<GcSafeCode> code = it.frame()->GcSafeLookupCode(); if (CodeKindCanDeoptimize(code->kind()) && code->marked_for_deoptimization()) { // Obtain the trampoline to the deoptimizer call. int trampoline_pc; if (code->is_maglevved()) { MaglevSafepointEntry safepoint = MaglevSafepointTable::FindEntry( isolate, code, it.frame()->pc()); trampoline_pc = safepoint.trampoline_pc(); } else { SafepointEntry safepoint = SafepointTable::FindEntry(isolate, code, it.frame()->pc()); trampoline_pc = safepoint.trampoline_pc(); } DCHECK_IMPLIES(code == topmost_, safe_to_deopt_); static_assert(SafepointEntry::kNoTrampolinePC == -1); CHECK_GE(trampoline_pc, 0); // Replace the current pc on the stack with the trampoline. // TODO(v8:10026): avoid replacing a signed pointer. Address* pc_addr = it.frame()->pc_address(); Address new_pc = code->instruction_start() + trampoline_pc; PointerAuthentication::ReplacePC(pc_addr, new_pc, kSystemPointerSize); } } } } private: #ifdef DEBUG Tagged<GcSafeCode> topmost_; bool safe_to_deopt_; #endif }; } // namespace // Replace pc on the stack for codes marked for deoptimization. // static void Deoptimizer::DeoptimizeMarkedCode(Isolate* isolate) { DisallowGarbageCollection no_gc; Tagged<GcSafeCode> topmost_optimized_code; bool safe_to_deopt_topmost_optimized_code = false; #ifdef DEBUG // Make sure all activations of optimized code can deopt at their current PC. // The topmost optimized code has special handling because it cannot be // deoptimized due to weak object dependency. for (StackFrameIterator it(isolate, isolate->thread_local_top()); !it.done(); it.Advance()) { if (it.frame()->is_optimized()) { Tagged<GcSafeCode> code = it.frame()->GcSafeLookupCode(); Tagged<JSFunction> function = static_cast<OptimizedFrame*>(it.frame())->function(); TraceFoundActivation(isolate, function); bool safe_if_deopt_triggered; if (code->is_maglevved()) { MaglevSafepointEntry safepoint = MaglevSafepointTable::FindEntry(isolate, code, it.frame()->pc()); safe_if_deopt_triggered = safepoint.has_deoptimization_index(); } else { SafepointEntry safepoint = SafepointTable::FindEntry(isolate, code, it.frame()->pc()); safe_if_deopt_triggered = safepoint.has_deoptimization_index(); } // Deopt is checked when we are patching addresses on stack. bool is_builtin_code = code->kind() == CodeKind::BUILTIN; DCHECK(topmost_optimized_code.is_null() || safe_if_deopt_triggered || is_builtin_code); if (topmost_optimized_code.is_null()) { topmost_optimized_code = code; safe_to_deopt_topmost_optimized_code = safe_if_deopt_triggered; } } } #endif ActivationsFinder visitor(topmost_optimized_code, safe_to_deopt_topmost_optimized_code); // Iterate over the stack of this thread. visitor.VisitThread(isolate, isolate->thread_local_top()); // In addition to iterate over the stack of this thread, we also // need to consider all the other threads as they may also use // the code currently beings deoptimized. isolate->thread_manager()->IterateArchivedThreads(&visitor); } void Deoptimizer::DeoptimizeAll(Isolate* isolate) { RCS_SCOPE(isolate, RuntimeCallCounterId::kDeoptimizeCode); TimerEventScope<TimerEventDeoptimizeCode> timer(isolate); TRACE_EVENT0("v8", "V8.DeoptimizeCode"); TraceDeoptAll(isolate); isolate->AbortConcurrentOptimization(BlockingBehavior::kBlock); // Mark all code, then deoptimize. { DeoptimizableCodeIterator it(isolate); for (Tagged<Code> code = it.Next(); !code.is_null(); code = it.Next()) { code->set_marked_for_deoptimization(true); } } DeoptimizeMarkedCode(isolate); } // static void Deoptimizer::DeoptimizeFunction(Tagged<JSFunction> function, Tagged<Code> code) { Isolate* isolate = function->GetIsolate(); RCS_SCOPE(isolate, RuntimeCallCounterId::kDeoptimizeCode); TimerEventScope<TimerEventDeoptimizeCode> timer(isolate); TRACE_EVENT0("v8", "V8.DeoptimizeCode"); function->ResetIfCodeFlushed(); if (code.is_null()) code = function->code(); if (CodeKindCanDeoptimize(code->kind())) { // Mark the code for deoptimization and unlink any functions that also // refer to that code. The code cannot be shared across native contexts, // so we only need to search one. code->set_marked_for_deoptimization(true); // The code in the function's optimized code feedback vector slot might // be different from the code on the function - evict it if necessary. function->feedback_vector()->EvictOptimizedCodeMarkedForDeoptimization( isolate, function->shared(), "unlinking code marked for deopt"); DeoptimizeMarkedCode(isolate); } } // static void Deoptimizer::DeoptimizeAllOptimizedCodeWithFunction( Isolate* isolate, Handle<SharedFunctionInfo> function) { RCS_SCOPE(isolate, RuntimeCallCounterId::kDeoptimizeCode); TimerEventScope<TimerEventDeoptimizeCode> timer(isolate); TRACE_EVENT0("v8", "V8.DeoptimizeAllOptimizedCodeWithFunction"); // Make sure no new code is compiled with the function. isolate->AbortConcurrentOptimization(BlockingBehavior::kBlock); // Mark all code that inlines this function, then deoptimize. bool any_marked = false; { DeoptimizableCodeIterator it(isolate); for (Tagged<Code> code = it.Next(); !code.is_null(); code = it.Next()) { if (code->Inlines(*function)) { code->set_marked_for_deoptimization(true); any_marked = true; } } } if (any_marked) { DeoptimizeMarkedCode(isolate); } } void Deoptimizer::ComputeOutputFrames(Deoptimizer* deoptimizer) { deoptimizer->DoComputeOutputFrames(); } const char* Deoptimizer::MessageFor(DeoptimizeKind kind) { switch (kind) { case DeoptimizeKind::kEager: return "deopt-eager"; case DeoptimizeKind::kLazy: return "deopt-lazy"; } } Deoptimizer::Deoptimizer(Isolate* isolate, Tagged<JSFunction> function, DeoptimizeKind kind, Address from, int fp_to_sp_delta) : isolate_(isolate), function_(function), deopt_exit_index_(kFixedExitSizeMarker), deopt_kind_(kind), from_(from), fp_to_sp_delta_(fp_to_sp_delta), deoptimizing_throw_(false), catch_handler_data_(-1), catch_handler_pc_offset_(-1), restart_frame_index_(-1), input_(nullptr), output_count_(0), output_(nullptr), caller_frame_top_(0), caller_fp_(0), caller_pc_(0), caller_constant_pool_(0), actual_argument_count_(0), stack_fp_(0), trace_scope_(v8_flags.trace_deopt || v8_flags.log_deopt ? new CodeTracer::Scope(isolate->GetCodeTracer()) : nullptr) { if (isolate->deoptimizer_lazy_throw()) { CHECK_EQ(kind, DeoptimizeKind::kLazy); isolate->set_deoptimizer_lazy_throw(false); deoptimizing_throw_ = true; } if (isolate->debug()->IsRestartFrameScheduled()) { CHECK(deoptimizing_throw_); restart_frame_index_ = isolate->debug()->restart_inline_frame_index(); CHECK_GE(restart_frame_index_, 0); isolate->debug()->clear_restart_frame(); } DCHECK_NE(from, kNullAddress); compiled_code_ = isolate_->heap()->FindCodeForInnerPointer(from); DCHECK(!compiled_code_.is_null()); DCHECK(IsCode(compiled_code_)); DCHECK(IsJSFunction(function)); #ifdef DEBUG DCHECK(AllowGarbageCollection::IsAllowed()); disallow_garbage_collection_ = new DisallowGarbageCollection(); #endif // DEBUG CHECK(CodeKindCanDeoptimize(compiled_code_->kind())); { HandleScope scope(isolate_); PROFILE(isolate_, CodeDeoptEvent(handle(compiled_code_, isolate_), kind, from_, fp_to_sp_delta_)); } unsigned size = ComputeInputFrameSize(); const int parameter_count = function->shared()->internal_formal_parameter_count_with_receiver(); input_ = new (size) FrameDescription(size, parameter_count, isolate_); DCHECK_EQ(deopt_exit_index_, kFixedExitSizeMarker); // Calculate the deopt exit index from return address. DCHECK_GT(kEagerDeoptExitSize, 0); DCHECK_GT(kLazyDeoptExitSize, 0); Tagged<DeoptimizationData> deopt_data = DeoptimizationData::cast(compiled_code_->deoptimization_data()); Address deopt_start = compiled_code_->instruction_start() + deopt_data->DeoptExitStart().value(); int eager_deopt_count = deopt_data->EagerDeoptCount().value(); Address lazy_deopt_start = deopt_start + eager_deopt_count * kEagerDeoptExitSize; // The deoptimization exits are sorted so that lazy deopt exits appear after // eager deopts. static_assert(static_cast<int>(DeoptimizeKind::kLazy) == static_cast<int>(kLastDeoptimizeKind), "lazy deopts are expected to be emitted last"); // from_ is the value of the link register after the call to the // deoptimizer, so for the last lazy deopt, from_ points to the first // non-lazy deopt, so we use <=, similarly for the last non-lazy deopt and // the first deopt with resume entry. if (from_ <= lazy_deopt_start) { int offset = static_cast<int>(from_ - kEagerDeoptExitSize - deopt_start); DCHECK_EQ(0, offset % kEagerDeoptExitSize); deopt_exit_index_ = offset / kEagerDeoptExitSize; } else { int offset = static_cast<int>(from_ - kLazyDeoptExitSize - lazy_deopt_start); DCHECK_EQ(0, offset % kLazyDeoptExitSize); deopt_exit_index_ = eager_deopt_count + (offset / kLazyDeoptExitSize); } } Handle<JSFunction> Deoptimizer::function() const { return Handle<JSFunction>(function_, isolate()); } Handle<Code> Deoptimizer::compiled_code() const { return Handle<Code>(compiled_code_, isolate()); } Deoptimizer::~Deoptimizer() { DCHECK(input_ == nullptr && output_ == nullptr); DCHECK_NULL(disallow_garbage_collection_); delete trace_scope_; } void Deoptimizer::DeleteFrameDescriptions() { delete input_; for (int i = 0; i < output_count_; ++i) { if (output_[i] != input_) delete output_[i]; } delete[] output_; input_ = nullptr; output_ = nullptr; #ifdef DEBUG DCHECK(!AllowGarbageCollection::IsAllowed()); DCHECK_NOT_NULL(disallow_garbage_collection_); delete disallow_garbage_collection_; disallow_garbage_collection_ = nullptr; #endif // DEBUG } Builtin Deoptimizer::GetDeoptimizationEntry(DeoptimizeKind kind) { switch (kind) { case DeoptimizeKind::kEager: return Builtin::kDeoptimizationEntry_Eager; case DeoptimizeKind::kLazy: return Builtin::kDeoptimizationEntry_Lazy; } } namespace { int LookupCatchHandler(Isolate* isolate, TranslatedFrame* translated_frame, int* data_out) { switch (translated_frame->kind()) { case TranslatedFrame::kUnoptimizedFunction: { int bytecode_offset = translated_frame->bytecode_offset().ToInt(); HandlerTable table( translated_frame->raw_shared_info()->GetBytecodeArray(isolate)); return table.LookupRange(bytecode_offset, data_out, nullptr); } case TranslatedFrame::kJavaScriptBuiltinContinuationWithCatch: { return 0; } default: break; } return -1; } } // namespace void Deoptimizer::TraceDeoptBegin(int optimization_id, BytecodeOffset bytecode_offset) { DCHECK(tracing_enabled()); FILE* file = trace_scope()->file(); Deoptimizer::DeoptInfo info = Deoptimizer::GetDeoptInfo(); PrintF(file, "[bailout (kind: %s, reason: %s): begin. deoptimizing ", MessageFor(deopt_kind_), DeoptimizeReasonToString(info.deopt_reason)); if (IsJSFunction(function_)) { ShortPrint(function_, file); PrintF(file, ", "); } ShortPrint(compiled_code_, file); PrintF(file, ", opt id %d, " #ifdef DEBUG "node id %d, " #endif // DEBUG "bytecode offset %d, deopt exit %d, FP to SP " "delta %d, " "caller SP " V8PRIxPTR_FMT ", pc " V8PRIxPTR_FMT "]\n", optimization_id, #ifdef DEBUG info.node_id, #endif // DEBUG bytecode_offset.ToInt(), deopt_exit_index_, fp_to_sp_delta_, caller_frame_top_, PointerAuthentication::StripPAC(from_)); if (verbose_tracing_enabled() && deopt_kind_ != DeoptimizeKind::kLazy) { PrintF(file, " ;;; deoptimize at "); OFStream outstr(file); info.position.Print(outstr, compiled_code_); PrintF(file, "\n"); } } void Deoptimizer::TraceDeoptEnd(double deopt_duration) { DCHECK(verbose_tracing_enabled()); PrintF(trace_scope()->file(), "[bailout end. took %0.3f ms]\n", deopt_duration); } // static void Deoptimizer::TraceMarkForDeoptimization(Isolate* isolate, Tagged<Code> code, const char* reason) { if (!v8_flags.trace_deopt && !v8_flags.log_deopt) return; DisallowGarbageCollection no_gc; Tagged<Object> maybe_data = code->deoptimization_data(); if (maybe_data == ReadOnlyRoots(isolate).empty_fixed_array()) return; Tagged<DeoptimizationData> deopt_data = DeoptimizationData::cast(maybe_data); CodeTracer::Scope scope(isolate->GetCodeTracer()); if (v8_flags.trace_deopt) { PrintF(scope.file(), "[marking dependent code "); ShortPrint(code, scope.file()); PrintF(scope.file(), " ("); ShortPrint(deopt_data->SharedFunctionInfo(), scope.file()); PrintF(") (opt id %d) for deoptimization, reason: %s]\n", deopt_data->OptimizationId().value(), reason); } if (!v8_flags.log_deopt) return; no_gc.Release(); { HandleScope handle_scope(isolate); PROFILE( isolate, CodeDependencyChangeEvent( handle(code, isolate), handle(SharedFunctionInfo::cast(deopt_data->SharedFunctionInfo()), isolate), reason)); } } // static void Deoptimizer::TraceEvictFromOptimizedCodeCache( Isolate* isolate, Tagged<SharedFunctionInfo> sfi, const char* reason) { if (!v8_flags.trace_deopt_verbose) return; DisallowGarbageCollection no_gc; CodeTracer::Scope scope(isolate->GetCodeTracer()); PrintF(scope.file(), "[evicting optimized code marked for deoptimization (%s) for ", reason); ShortPrint(sfi, scope.file()); PrintF(scope.file(), "]\n"); } #ifdef DEBUG // static void Deoptimizer::TraceFoundActivation(Isolate* isolate, Tagged<JSFunction> function) { if (!v8_flags.trace_deopt_verbose) return; CodeTracer::Scope scope(isolate->GetCodeTracer()); PrintF(scope.file(), "[deoptimizer found activation of function: "); function->PrintName(scope.file()); PrintF(scope.file(), " / %" V8PRIxPTR "]\n", function.ptr()); } #endif // DEBUG // static void Deoptimizer::TraceDeoptAll(Isolate* isolate) { if (!v8_flags.trace_deopt_verbose) return; CodeTracer::Scope scope(isolate->GetCodeTracer()); PrintF(scope.file(), "[deoptimize all code in all contexts]\n"); } // We rely on this function not causing a GC. It is called from generated code // without having a real stack frame in place. void Deoptimizer::DoComputeOutputFrames() { // When we call this function, the return address of the previous frame has // been removed from the stack by the DeoptimizationEntry builtin, so the // stack is not iterable by the StackFrameIteratorForProfiler. #if V8_TARGET_ARCH_STORES_RETURN_ADDRESS_ON_STACK DCHECK_EQ(0, isolate()->isolate_data()->stack_is_iterable()); #endif base::ElapsedTimer timer; // Determine basic deoptimization information. The optimized frame is // described by the input data. Tagged<DeoptimizationData> input_data = DeoptimizationData::cast(compiled_code_->deoptimization_data()); { // Read caller's PC, caller's FP and caller's constant pool values // from input frame. Compute caller's frame top address. Register fp_reg = JavaScriptFrame::fp_register(); stack_fp_ = input_->GetRegister(fp_reg.code()); caller_frame_top_ = stack_fp_ + ComputeInputFrameAboveFpFixedSize(); Address fp_address = input_->GetFramePointerAddress(); caller_fp_ = Memory<intptr_t>(fp_address); caller_pc_ = Memory<intptr_t>(fp_address + CommonFrameConstants::kCallerPCOffset); actual_argument_count_ = static_cast<int>( Memory<intptr_t>(fp_address + StandardFrameConstants::kArgCOffset)); if (V8_EMBEDDED_CONSTANT_POOL_BOOL) { caller_constant_pool_ = Memory<intptr_t>( fp_address + CommonFrameConstants::kConstantPoolOffset); } } StackGuard* const stack_guard = isolate()->stack_guard(); CHECK_GT(static_cast<uintptr_t>(caller_frame_top_), stack_guard->real_jslimit()); BytecodeOffset bytecode_offset = input_data->GetBytecodeOffsetOrBuiltinContinuationId(deopt_exit_index_); auto translations = input_data->FrameTranslation(); unsigned translation_index = input_data->TranslationIndex(deopt_exit_index_).value(); if (tracing_enabled()) { timer.Start(); TraceDeoptBegin(input_data->OptimizationId().value(), bytecode_offset); } FILE* trace_file = verbose_tracing_enabled() ? trace_scope()->file() : nullptr; DeoptimizationFrameTranslation::Iterator state_iterator(translations, translation_index); translated_state_.Init( isolate_, input_->GetFramePointerAddress(), stack_fp_, &state_iterator, input_data->LiteralArray(), input_->GetRegisterValues(), trace_file, IsHeapObject(function_) ? function_->shared() ->internal_formal_parameter_count_without_receiver() : 0, actual_argument_count_ - kJSArgcReceiverSlots); bytecode_offset_in_outermost_frame_ = translated_state_.frames()[0].bytecode_offset(); // Do the input frame to output frame(s) translation. size_t count = translated_state_.frames().size(); if (is_restart_frame()) { // If the debugger requested to restart a particular frame, only materialize // up to that frame. count = restart_frame_index_ + 1; } else if (deoptimizing_throw_) { // If we are supposed to go to the catch handler, find the catching frame // for the catch and make sure we only deoptimize up to that frame. size_t catch_handler_frame_index = count; for (size_t i = count; i-- > 0;) { catch_handler_pc_offset_ = LookupCatchHandler( isolate(), &(translated_state_.frames()[i]), &catch_handler_data_); if (catch_handler_pc_offset_ >= 0) { catch_handler_frame_index = i; break; } } CHECK_LT(catch_handler_frame_index, count); count = catch_handler_frame_index + 1; } DCHECK_NULL(output_); output_ = new FrameDescription*[count]; for (size_t i = 0; i < count; ++i) { output_[i] = nullptr; } output_count_ = static_cast<int>(count); // Translate each output frame. int frame_index = 0; size_t total_output_frame_size = 0; for (size_t i = 0; i < count; ++i, ++frame_index) { TranslatedFrame* translated_frame = &(translated_state_.frames()[i]); const bool handle_exception = deoptimizing_throw_ && i == count - 1; switch (translated_frame->kind()) { case TranslatedFrame::kUnoptimizedFunction: DoComputeUnoptimizedFrame(translated_frame, frame_index, handle_exception); break; case TranslatedFrame::kInlinedExtraArguments: DoComputeInlinedExtraArguments(translated_frame, frame_index); break; case TranslatedFrame::kConstructCreateStub: DoComputeConstructCreateStubFrame(translated_frame, frame_index); break; case TranslatedFrame::kConstructInvokeStub: DoComputeConstructInvokeStubFrame(translated_frame, frame_index); break; case TranslatedFrame::kBuiltinContinuation: #if V8_ENABLE_WEBASSEMBLY case TranslatedFrame::kJSToWasmBuiltinContinuation: #endif // V8_ENABLE_WEBASSEMBLY DoComputeBuiltinContinuation(translated_frame, frame_index, BuiltinContinuationMode::STUB); break; case TranslatedFrame::kJavaScriptBuiltinContinuation: DoComputeBuiltinContinuation(translated_frame, frame_index, BuiltinContinuationMode::JAVASCRIPT); break; case TranslatedFrame::kJavaScriptBuiltinContinuationWithCatch: DoComputeBuiltinContinuation( translated_frame, frame_index, handle_exception ? BuiltinContinuationMode::JAVASCRIPT_HANDLE_EXCEPTION : BuiltinContinuationMode::JAVASCRIPT_WITH_CATCH); break; #if V8_ENABLE_WEBASSEMBLY case TranslatedFrame::kWasmInlinedIntoJS: FATAL("inlined wasm frames may not appear in deopts for built-ins"); #endif case TranslatedFrame::kInvalid: FATAL("invalid frame"); } total_output_frame_size += output_[frame_index]->GetFrameSize(); } FrameDescription* topmost = output_[count - 1]; topmost->GetRegisterValues()->SetRegister(kRootRegister.code(), isolate()->isolate_root()); #ifdef V8_COMPRESS_POINTERS topmost->GetRegisterValues()->SetRegister(kPtrComprCageBaseRegister.code(), isolate()->cage_base()); #endif // Don't reset the tiering state for OSR code since we might reuse OSR code // after deopt, and we still want to tier up to non-OSR code even if OSR code // deoptimized. bool osr_early_exit = Deoptimizer::GetDeoptInfo().deopt_reason == DeoptimizeReason::kOSREarlyExit; if (IsJSFunction(function_) && (compiled_code_->osr_offset().IsNone() ? function_->code() == compiled_code_ : (!osr_early_exit && DeoptExitIsInsideOsrLoop(isolate(), function_, bytecode_offset_in_outermost_frame_, compiled_code_->osr_offset())))) { function_->reset_tiering_state(); function_->SetInterruptBudget(isolate_, CodeKind::INTERPRETED_FUNCTION); } // Print some helpful diagnostic information. if (verbose_tracing_enabled()) { TraceDeoptEnd(timer.Elapsed().InMillisecondsF()); } // The following invariant is fairly tricky to guarantee, since the size of // an optimized frame and its deoptimized counterparts usually differs. We // thus need to consider the case in which deoptimized frames are larger than // the optimized frame in stack checks in optimized code. We do this by // applying an offset to stack checks (see kArchStackPointerGreaterThan in the // code generator). // Note that we explicitly allow deopts to exceed the limit by a certain // number of slack bytes. CHECK_GT( static_cast<uintptr_t>(caller_frame_top_) - total_output_frame_size, stack_guard->real_jslimit() - kStackLimitSlackForDeoptimizationInBytes); } // static bool Deoptimizer::DeoptExitIsInsideOsrLoop(Isolate* isolate, Tagged<JSFunction> function, BytecodeOffset deopt_exit_offset, BytecodeOffset osr_offset) { DisallowGarbageCollection no_gc; HandleScope scope(isolate); DCHECK(!deopt_exit_offset.IsNone()); DCHECK(!osr_offset.IsNone()); Handle<BytecodeArray> bytecode_array( function->shared()->GetBytecodeArray(isolate), isolate); DCHECK(interpreter::BytecodeArrayIterator::IsValidOffset( bytecode_array, deopt_exit_offset.ToInt())); interpreter::BytecodeArrayIterator it(bytecode_array, osr_offset.ToInt()); DCHECK_EQ(it.current_bytecode(), interpreter::Bytecode::kJumpLoop); for (; !it.done(); it.Advance()) { const int current_offset = it.current_offset(); // If we've reached the deopt exit, it's contained in the current loop // (this is covered by IsInRange below, but this check lets us avoid // useless iteration). if (current_offset == deopt_exit_offset.ToInt()) return true; // We're only interested in loop ranges. if (it.current_bytecode() != interpreter::Bytecode::kJumpLoop) continue; // Is the deopt exit contained in the current loop? if (base::IsInRange(deopt_exit_offset.ToInt(), it.GetJumpTargetOffset(), current_offset)) { return true; } // We've reached nesting level 0, i.e. the current JumpLoop concludes a // top-level loop. const int loop_nesting_level = it.GetImmediateOperand(1); if (loop_nesting_level == 0) return false; } UNREACHABLE(); } namespace { // Get the dispatch builtin for unoptimized frames. Builtin DispatchBuiltinFor(bool deopt_to_baseline, bool advance_bc, bool is_restart_frame) { if (is_restart_frame) return Builtin::kRestartFrameTrampoline; if (deopt_to_baseline) { return advance_bc ? Builtin::kBaselineOrInterpreterEnterAtNextBytecode : Builtin::kBaselineOrInterpreterEnterAtBytecode; } else { return advance_bc ? Builtin::kInterpreterEnterAtNextBytecode : Builtin::kInterpreterEnterAtBytecode; } } } // namespace void Deoptimizer::DoComputeUnoptimizedFrame(TranslatedFrame* translated_frame, int frame_index, bool goto_catch_handler) { Tagged<SharedFunctionInfo> shared = translated_frame->raw_shared_info(); TranslatedFrame::iterator value_iterator = translated_frame->begin(); const bool is_bottommost = (0 == frame_index); const bool is_topmost = (output_count_ - 1 == frame_index); const int real_bytecode_offset = translated_frame->bytecode_offset().ToInt(); const int bytecode_offset = goto_catch_handler ? catch_handler_pc_offset_ : real_bytecode_offset; const int parameters_count = shared->internal_formal_parameter_count_with_receiver(); // If this is the bottom most frame or the previous frame was the inlined // extra arguments frame, then we already have extra arguments in the stack // (including any extra padding). Therefore we should not try to add any // padding. bool should_pad_arguments = !is_bottommost && (translated_state_.frames()[frame_index - 1]).kind() != TranslatedFrame::kInlinedExtraArguments; const int locals_count = translated_frame->height(); UnoptimizedFrameInfo frame_info = UnoptimizedFrameInfo::Precise( parameters_count, locals_count, is_topmost, should_pad_arguments); const uint32_t output_frame_size = frame_info.frame_size_in_bytes(); TranslatedFrame::iterator function_iterator = value_iterator++; Tagged<BytecodeArray> bytecode_array; base::Optional<Tagged<DebugInfo>> debug_info = shared->TryGetDebugInfo(isolate()); if (debug_info.has_value() && debug_info.value()->HasBreakInfo()) { bytecode_array = debug_info.value()->DebugBytecodeArray(); } else { bytecode_array = shared->GetBytecodeArray(isolate()); } // Allocate and store the output frame description. FrameDescription* output_frame = new (output_frame_size) FrameDescription(output_frame_size, parameters_count, isolate()); FrameWriter frame_writer(this, output_frame, verbose_trace_scope()); CHECK(frame_index >= 0 && frame_index < output_count_); CHECK_NULL(output_[frame_index]); output_[frame_index] = output_frame; // Compute this frame's PC and state. // For interpreted frames, the PC will be a special builtin that // continues the bytecode dispatch. Note that non-topmost and lazy-style // bailout handlers also advance the bytecode offset before dispatch, hence // simulating what normal handlers do upon completion of the operation. // For baseline frames, the PC will be a builtin to convert the interpreter // frame to a baseline frame before continuing execution of baseline code. // We can't directly continue into baseline code, because of CFI. Builtins* builtins = isolate_->builtins(); const bool advance_bc = (!is_topmost || (deopt_kind_ == DeoptimizeKind::kLazy)) && !goto_catch_handler; const bool deopt_to_baseline = shared->HasBaselineCode() && v8_flags.deopt_to_baseline; const bool restart_frame = goto_catch_handler && is_restart_frame(); Tagged<Code> dispatch_builtin = builtins->code( DispatchBuiltinFor(deopt_to_baseline, advance_bc, restart_frame)); if (verbose_tracing_enabled()) { PrintF(trace_scope()->file(), " translating %s frame ", deopt_to_baseline ? "baseline" : "interpreted"); std::unique_ptr<char[]> name = shared->DebugNameCStr(); PrintF(trace_scope()->file(), "%s", name.get()); PrintF(trace_scope()->file(), " => bytecode_offset=%d, ", real_bytecode_offset); PrintF(trace_scope()->file(), "variable_frame_size=%d, frame_size=%d%s\n", frame_info.frame_size_in_bytes_without_fixed(), output_frame_size, goto_catch_handler ? " (throw)" : ""); } // The top address of the frame is computed from the previous frame's top and // this frame's size. const intptr_t top_address = is_bottommost ? caller_frame_top_ - output_frame_size : output_[frame_index - 1]->GetTop() - output_frame_size; output_frame->SetTop(top_address); // Compute the incoming parameter translation. ReadOnlyRoots roots(isolate()); if (should_pad_arguments) { for (int i = 0; i < ArgumentPaddingSlots(parameters_count); ++i) { frame_writer.PushRawObject(roots.the_hole_value(), "padding\n"); } } if (verbose_tracing_enabled() && is_bottommost && actual_argument_count_ > parameters_count) { PrintF(trace_scope_->file(), " -- %d extra argument(s) already in the stack --\n", actual_argument_count_ - parameters_count); } frame_writer.PushStackJSArguments(value_iterator, parameters_count); DCHECK_EQ(output_frame->GetLastArgumentSlotOffset(should_pad_arguments), frame_writer.top_offset()); if (verbose_tracing_enabled()) { PrintF(trace_scope()->file(), " -------------------------\n"); } // There are no translation commands for the caller's pc and fp, the // context, the function and the bytecode offset. Synthesize // their values and set them up // explicitly. // // The caller's pc for the bottommost output frame is the same as in the // input frame. For all subsequent output frames, it can be read from the // previous one. This frame's pc can be computed from the non-optimized // function code and bytecode offset of the bailout. if (is_bottommost) { frame_writer.PushBottommostCallerPc(caller_pc_); } else { frame_writer.PushApprovedCallerPc(output_[frame_index - 1]->GetPc()); } // The caller's frame pointer for the bottommost output frame is the same // as in the input frame. For all subsequent output frames, it can be // read from the previous one. Also compute and set this frame's frame // pointer. const intptr_t caller_fp = is_bottommost ? caller_fp_ : output_[frame_index - 1]->GetFp(); frame_writer.PushCallerFp(caller_fp); const intptr_t fp_value = top_address + frame_writer.top_offset(); output_frame->SetFp(fp_value); if (is_topmost) { Register fp_reg = UnoptimizedFrame::fp_register(); output_frame->SetRegister(fp_reg.code(), fp_value); } if (V8_EMBEDDED_CONSTANT_POOL_BOOL) { // For the bottommost output frame the constant pool pointer can be gotten // from the input frame. For subsequent output frames, it can be read from // the previous frame. const intptr_t caller_cp = is_bottommost ? caller_constant_pool_ : output_[frame_index - 1]->GetConstantPool(); frame_writer.PushCallerConstantPool(caller_cp); } // For the bottommost output frame the context can be gotten from the input // frame. For all subsequent output frames it can be gotten from the function // so long as we don't inline functions that need local contexts. // When deoptimizing into a catch block, we need to take the context // from a register that was specified in the handler table. TranslatedFrame::iterator context_pos = value_iterator++; if (goto_catch_handler) { // Skip to the translated value of the register specified // in the handler table. for (int i = 0; i < catch_handler_data_ + 1; ++i) { context_pos++; } } // Read the context from the translations. Tagged<Object> context = context_pos->GetRawValue(); output_frame->SetContext(static_cast<intptr_t>(context.ptr())); frame_writer.PushTranslatedValue(context_pos, "context"); // The function was mentioned explicitly in the BEGIN_FRAME. frame_writer.PushTranslatedValue(function_iterator, "function"); // Actual argument count. int argc; if (is_bottommost) { argc = actual_argument_count_; } else { TranslatedFrame::Kind previous_frame_kind = (translated_state_.frames()[frame_index - 1]).kind(); argc = previous_frame_kind == TranslatedFrame::kInlinedExtraArguments ? output_[frame_index - 1]->parameter_count() : parameters_count; } frame_writer.PushRawValue(argc, "actual argument count\n"); // Set the bytecode array pointer. frame_writer.PushRawObject(bytecode_array, "bytecode array\n"); // The bytecode offset was mentioned explicitly in the BEGIN_FRAME. const int raw_bytecode_offset = BytecodeArray::kHeaderSize - kHeapObjectTag + bytecode_offset; Tagged<Smi> smi_bytecode_offset = Smi::FromInt(raw_bytecode_offset); frame_writer.PushRawObject(smi_bytecode_offset, "bytecode offset\n"); // We need to materialize the closure before getting the feedback vector. frame_writer.PushFeedbackVectorForMaterialization(function_iterator); if (verbose_tracing_enabled()) { PrintF(trace_scope()->file(), " -------------------------\n"); } // Translate the rest of the interpreter registers in the frame. // The return_value_offset is counted from the top. Here, we compute the // register index (counted from the start). const int return_value_first_reg = locals_count - translated_frame->return_value_offset(); const int return_value_count = translated_frame->return_value_count(); for (int i = 0; i < locals_count; ++i, ++value_iterator) { // Ensure we write the return value if we have one and we are returning // normally to a lazy deopt point. if (is_topmost && !goto_catch_handler && deopt_kind_ == DeoptimizeKind::kLazy && i >= return_value_first_reg && i < return_value_first_reg + return_value_count) { const int return_index = i - return_value_first_reg; if (return_index == 0) { frame_writer.PushRawValue(input_->GetRegister(kReturnRegister0.code()), "return value 0\n"); // We do not handle the situation when one return value should go into // the accumulator and another one into an ordinary register. Since // the interpreter should never create such situation, just assert // this does not happen. CHECK_LE(return_value_first_reg + return_value_count, locals_count); } else { CHECK_EQ(return_index, 1); frame_writer.PushRawValue(input_->GetRegister(kReturnRegister1.code()), "return value 1\n"); } } else { // This is not return value, just write the value from the translations. frame_writer.PushTranslatedValue(value_iterator, "stack parameter"); } } uint32_t register_slots_written = static_cast<uint32_t>(locals_count); DCHECK_LE(register_slots_written, frame_info.register_stack_slot_count()); // Some architectures must pad the stack frame with extra stack slots // to ensure the stack frame is aligned. Do this now. while (register_slots_written < frame_info.register_stack_slot_count()) { register_slots_written++; frame_writer.PushRawObject(roots.the_hole_value(), "padding\n"); } // Translate the accumulator register (depending on frame position). if (is_topmost) { for (int i = 0; i < ArgumentPaddingSlots(1); ++i) { frame_writer.PushRawObject(roots.the_hole_value(), "padding\n"); } // For topmost frame, put the accumulator on the stack. The // {NotifyDeoptimized} builtin pops it off the topmost frame (possibly // after materialization). if (goto_catch_handler) { // If we are lazy deopting to a catch handler, we set the accumulator to // the exception (which lives in the result register). intptr_t accumulator_value = input_->GetRegister(kInterpreterAccumulatorRegister.code()); frame_writer.PushRawObject(Tagged<Object>(accumulator_value), "accumulator\n"); } else { // If we are lazily deoptimizing make sure we store the deopt // return value into the appropriate slot. if (deopt_kind_ == DeoptimizeKind::kLazy && translated_frame->return_value_offset() == 0 && translated_frame->return_value_count() > 0) { CHECK_EQ(translated_frame->return_value_count(), 1); frame_writer.PushRawValue(input_->GetRegister(kReturnRegister0.code()), "return value 0\n"); } else { frame_writer.PushTranslatedValue(value_iterator, "accumulator"); } } ++value_iterator; // Move over the accumulator. } else { // For non-topmost frames, skip the accumulator translation. For those // frames, the return value from the callee will become the accumulator. ++value_iterator; } CHECK_EQ(translated_frame->end(), value_iterator); CHECK_EQ(0u, frame_writer.top_offset()); const intptr_t pc = static_cast<intptr_t>(dispatch_builtin->instruction_start()); if (is_topmost) { // Only the pc of the topmost frame needs to be signed since it is // authenticated at the end of the DeoptimizationEntry builtin. const intptr_t top_most_pc = PointerAuthentication::SignAndCheckPC( isolate(), pc, frame_writer.frame()->GetTop()); output_frame->SetPc(top_most_pc); } else { output_frame->SetPc(pc); } // Update constant pool. if (V8_EMBEDDED_CONSTANT_POOL_BOOL) { intptr_t constant_pool_value = static_cast<intptr_t>(dispatch_builtin->constant_pool()); output_frame->SetConstantPool(constant_pool_value); if (is_topmost) { Register constant_pool_reg = UnoptimizedFrame::constant_pool_pointer_register(); output_frame->SetRegister(constant_pool_reg.code(), constant_pool_value); } } // Clear the context register. The context might be a de-materialized object // and will be materialized by {Runtime_NotifyDeoptimized}. For additional // safety we use Tagged<Smi>(0) instead of the potential {arguments_marker} // here. if (is_topmost) { intptr_t context_value = static_cast<intptr_t>(Smi::zero().ptr()); Register context_reg = JavaScriptFrame::context_register(); output_frame->SetRegister(context_reg.code(), context_value); // Set the continuation for the topmost frame. Tagged<Code> continuation = builtins->code(Builtin::kNotifyDeoptimized); output_frame->SetContinuation( static_cast<intptr_t>(continuation->instruction_start())); } } void Deoptimizer::DoComputeInlinedExtraArguments( TranslatedFrame* translated_frame, int frame_index) { // Inlined arguments frame can not be the topmost, nor the bottom most frame. CHECK(frame_index < output_count_ - 1); CHECK_GT(frame_index, 0); CHECK_NULL(output_[frame_index]); // During deoptimization we need push the extra arguments of inlined functions // (arguments with index greater than the formal parameter count). // For more info, see the design document: // https://docs.google.com/document/d/150wGaUREaZI6YWqOQFD5l2mWQXaPbbZjcAIJLOFrzMs TranslatedFrame::iterator value_iterator = translated_frame->begin(); const int argument_count_without_receiver = translated_frame->height() - 1; const int formal_parameter_count = translated_frame->raw_shared_info() ->internal_formal_parameter_count_without_receiver(); const int extra_argument_count = argument_count_without_receiver - formal_parameter_count; // The number of pushed arguments is the maximum of the actual argument count // and the formal parameter count + the receiver. const int padding = ArgumentPaddingSlots( std::max(argument_count_without_receiver, formal_parameter_count) + 1); const int output_frame_size = (std::max(0, extra_argument_count) + padding) * kSystemPointerSize; if (verbose_tracing_enabled()) { PrintF(trace_scope_->file(), " translating inlined arguments frame => variable_size=%d\n", output_frame_size); } // Allocate and store the output frame description. FrameDescription* output_frame = new (output_frame_size) FrameDescription( output_frame_size, JSParameterCount(argument_count_without_receiver), isolate()); // The top address of the frame is computed from the previous frame's top and // this frame's size. const intptr_t top_address = output_[frame_index - 1]->GetTop() - output_frame_size; output_frame->SetTop(top_address); // This is not a real frame, we take PC and FP values from the parent frame. output_frame->SetPc(output_[frame_index - 1]->GetPc()); output_frame->SetFp(output_[frame_index - 1]->GetFp()); output_[frame_index] = output_frame; FrameWriter frame_writer(this, output_frame, verbose_trace_scope()); ReadOnlyRoots roots(isolate()); for (int i = 0; i < padding; ++i) { frame_writer.PushRawObject(roots.the_hole_value(), "padding\n"); } if (extra_argument_count > 0) { // The receiver and arguments with index below the formal parameter // count are in the fake adaptor frame, because they are used to create the // arguments object. We should however not push them, since the interpreter // frame with do that. value_iterator++; // Skip function. value_iterator++; // Skip receiver. for (int i = 0; i < formal_parameter_count; i++) value_iterator++; frame_writer.PushStackJSArguments(value_iterator, extra_argument_count); } } void Deoptimizer::DoComputeConstructCreateStubFrame( TranslatedFrame* translated_frame, int frame_index) { TranslatedFrame::iterator value_iterator = translated_frame->begin(); const bool is_topmost = (output_count_ - 1 == frame_index); // The construct frame could become topmost only if we inlined a constructor // call which does a tail call (otherwise the tail callee's frame would be // the topmost one). So it could only be the DeoptimizeKind::kLazy case. CHECK(!is_topmost || deopt_kind_ == DeoptimizeKind::kLazy); DCHECK_EQ(translated_frame->kind(), TranslatedFrame::kConstructCreateStub); const int parameters_count = translated_frame->height(); ConstructStubFrameInfo frame_info = ConstructStubFrameInfo::Precise(parameters_count, is_topmost); const uint32_t output_frame_size = frame_info.frame_size_in_bytes(); TranslatedFrame::iterator function_iterator = value_iterator++; if (verbose_tracing_enabled()) { PrintF(trace_scope()->file(), " translating construct create stub => variable_frame_size=%d, " "frame_size=%d\n", frame_info.frame_size_in_bytes_without_fixed(), output_frame_size); } // Allocate and store the output frame description. FrameDescription* output_frame = new (output_frame_size) FrameDescription(output_frame_size, parameters_count, isolate()); FrameWriter frame_writer(this, output_frame, verbose_trace_scope()); DCHECK(frame_index > 0 && frame_index < output_count_); DCHECK_NULL(output_[frame_index]); output_[frame_index] = output_frame; // The top address of the frame is computed from the previous frame's top and // this frame's size. const intptr_t top_address = output_[frame_index - 1]->GetTop() - output_frame_size; output_frame->SetTop(top_address); ReadOnlyRoots roots(isolate()); for (int i = 0; i < ArgumentPaddingSlots(parameters_count); ++i) { frame_writer.PushRawObject(roots.the_hole_value(), "padding\n"); } // The allocated receiver of a construct stub frame is passed as the // receiver parameter through the translation. It might be encoding // a captured object, so we need save it for later. TranslatedFrame::iterator receiver_iterator = value_iterator; // Compute the incoming parameter translation. frame_writer.PushStackJSArguments(value_iterator, parameters_count); DCHECK_EQ(output_frame->GetLastArgumentSlotOffset(), frame_writer.top_offset()); // Read caller's PC from the previous frame. const intptr_t caller_pc = output_[frame_index - 1]->GetPc(); frame_writer.PushApprovedCallerPc(caller_pc); // Read caller's FP from the previous frame, and set this frame's FP. const intptr_t caller_fp = output_[frame_index - 1]->GetFp(); frame_writer.PushCallerFp(caller_fp); const intptr_t fp_value = top_address + frame_writer.top_offset(); output_frame->SetFp(fp_value); if (is_topmost) { Register fp_reg = JavaScriptFrame::fp_register(); output_frame->SetRegister(fp_reg.code(), fp_value); } if (V8_EMBEDDED_CONSTANT_POOL_BOOL) { // Read the caller's constant pool from the previous frame. const intptr_t caller_cp = output_[frame_index - 1]->GetConstantPool(); frame_writer.PushCallerConstantPool(caller_cp); } // A marker value is used to mark the frame. intptr_t marker = StackFrame::TypeToMarker(StackFrame::CONSTRUCT); frame_writer.PushRawValue(marker, "context (construct stub sentinel)\n"); frame_writer.PushTranslatedValue(value_iterator++, "context"); // Number of incoming arguments. const uint32_t argc = parameters_count; frame_writer.PushRawObject(Smi::FromInt(argc), "argc\n"); // The constructor function was mentioned explicitly in the // CONSTRUCT_STUB_FRAME. frame_writer.PushTranslatedValue(function_iterator, "constructor function\n"); // The deopt info contains the implicit receiver or the new target at the // position of the receiver. Copy it to the top of stack, with the hole value // as padding to maintain alignment. frame_writer.PushRawObject(roots.the_hole_value(), "padding\n"); frame_writer.PushTranslatedValue(receiver_iterator, "new target\n"); if (is_topmost) { for (int i = 0; i < ArgumentPaddingSlots(1); ++i) { frame_writer.PushRawObject(roots.the_hole_value(), "padding\n"); } // Ensure the result is restored back when we return to the stub. Register result_reg = kReturnRegister0; intptr_t result = input_->GetRegister(result_reg.code()); frame_writer.PushRawValue(result, "subcall result\n"); } CHECK_EQ(translated_frame->end(), value_iterator); CHECK_EQ(0u, frame_writer.top_offset()); // Compute this frame's PC. Tagged<Code> construct_stub = isolate_->builtins()->code(Builtin::kJSConstructStubGeneric); Address start = construct_stub->instruction_start(); const int pc_offset = isolate_->heap()->construct_stub_create_deopt_pc_offset().value(); intptr_t pc_value = static_cast<intptr_t>(start + pc_offset); if (is_topmost) { // Only the pc of the topmost frame needs to be signed since it is // authenticated at the end of the DeoptimizationEntry builtin. output_frame->SetPc(PointerAuthentication::SignAndCheckPC( isolate(), pc_value, frame_writer.frame()->GetTop())); } else { output_frame->SetPc(pc_value); } // Update constant pool. if (V8_EMBEDDED_CONSTANT_POOL_BOOL) { intptr_t constant_pool_value = static_cast<intptr_t>(construct_stub->constant_pool()); output_frame->SetConstantPool(constant_pool_value); if (is_topmost) { Register constant_pool_reg = JavaScriptFrame::constant_pool_pointer_register(); output_frame->SetRegister(constant_pool_reg.code(), constant_pool_value); } } // Clear the context register. The context might be a de-materialized object // and will be materialized by {Runtime_NotifyDeoptimized}. For additional // safety we use Tagged<Smi>(0) instead of the potential {arguments_marker} // here. if (is_topmost) { intptr_t context_value = static_cast<intptr_t>(Smi::zero().ptr()); Register context_reg = JavaScriptFrame::context_register(); output_frame->SetRegister(context_reg.code(), context_value); // Set the continuation for the topmost frame. DCHECK_EQ(DeoptimizeKind::kLazy, deopt_kind_); Tagged<Code> continuation = isolate_->builtins()->code(Builtin::kNotifyDeoptimized); output_frame->SetContinuation( static_cast<intptr_t>(continuation->instruction_start())); } } void Deoptimizer::DoComputeConstructInvokeStubFrame( TranslatedFrame* translated_frame, int frame_index) { TranslatedFrame::iterator value_iterator = translated_frame->begin(); const bool is_topmost = (output_count_ - 1 == frame_index); // The construct frame could become topmost only if we inlined a constructor // call which does a tail call (otherwise the tail callee's frame would be // the topmost one). So it could only be the DeoptimizeKind::kLazy case. CHECK(!is_topmost || deopt_kind_ == DeoptimizeKind::kLazy); DCHECK_EQ(translated_frame->kind(), TranslatedFrame::kConstructInvokeStub); DCHECK_EQ(translated_frame->height(), 0); FastConstructStubFrameInfo frame_info = FastConstructStubFrameInfo::Precise(is_topmost); const uint32_t output_frame_size = frame_info.frame_size_in_bytes(); if (verbose_tracing_enabled()) { PrintF(trace_scope()->file(), " translating construct invoke stub => variable_frame_size=%d, " "frame_size=%d\n", frame_info.frame_size_in_bytes_without_fixed(), output_frame_size); } // Allocate and store the output frame description. FrameDescription* output_frame = new (output_frame_size) FrameDescription(output_frame_size, 0, isolate()); FrameWriter frame_writer(this, output_frame, verbose_trace_scope()); DCHECK(frame_index > 0 && frame_index < output_count_); DCHECK_NULL(output_[frame_index]); output_[frame_index] = output_frame; // The top address of the frame is computed from the previous frame's top and // this frame's size. const intptr_t top_address = output_[frame_index - 1]->GetTop() - output_frame_size; output_frame->SetTop(top_address); // The allocated receiver of a construct stub frame is passed as the // receiver parameter through the translation. It might be encoding // a captured object, so we need save it for later. TranslatedFrame::iterator receiver_iterator = value_iterator; value_iterator++; // Read caller's PC from the previous frame. const intptr_t caller_pc = output_[frame_index - 1]->GetPc(); frame_writer.PushApprovedCallerPc(caller_pc); // Read caller's FP from the previous frame, and set this frame's FP. const intptr_t caller_fp = output_[frame_index - 1]->GetFp(); frame_writer.PushCallerFp(caller_fp); const intptr_t fp_value = top_address + frame_writer.top_offset(); output_frame->SetFp(fp_value); if (is_topmost) { Register fp_reg = JavaScriptFrame::fp_register(); output_frame->SetRegister(fp_reg.code(), fp_value); } if (V8_EMBEDDED_CONSTANT_POOL_BOOL) { // Read the caller's constant pool from the previous frame. const intptr_t caller_cp = output_[frame_index - 1]->GetConstantPool(); frame_writer.PushCallerConstantPool(caller_cp); } intptr_t marker = StackFrame::TypeToMarker(StackFrame::FAST_CONSTRUCT); frame_writer.PushRawValue(marker, "fast construct stub sentinel\n"); frame_writer.PushTranslatedValue(value_iterator++, "context"); frame_writer.PushTranslatedValue(receiver_iterator, "implicit receiver"); // The FastConstructFrame needs to be aligned in some architectures. ReadOnlyRoots roots(isolate()); for (int i = 0; i < ArgumentPaddingSlots(1); ++i) { frame_writer.PushRawObject(roots.the_hole_value(), "padding\n"); } if (is_topmost) { for (int i = 0; i < ArgumentPaddingSlots(1); ++i) { frame_writer.PushRawObject(roots.the_hole_value(), "padding\n"); } // Ensure the result is restored back when we return to the stub. Register result_reg = kReturnRegister0; intptr_t result = input_->GetRegister(result_reg.code()); frame_writer.PushRawValue(result, "subcall result\n"); } CHECK_EQ(translated_frame->end(), value_iterator); CHECK_EQ(0u, frame_writer.top_offset()); // Compute this frame's PC. Tagged<Code> construct_stub = isolate_->builtins()->code( Builtin::kInterpreterPushArgsThenFastConstructFunction); Address start = construct_stub->instruction_start(); const int pc_offset = isolate_->heap()->construct_stub_invoke_deopt_pc_offset().value(); intptr_t pc_value = static_cast<intptr_t>(start + pc_offset); if (is_topmost) { // Only the pc of the topmost frame needs to be signed since it is // authenticated at the end of the DeoptimizationEntry builtin. output_frame->SetPc(PointerAuthentication::SignAndCheckPC( isolate(), pc_value, frame_writer.frame()->GetTop())); } else { output_frame->SetPc(pc_value); } // Update constant pool. if (V8_EMBEDDED_CONSTANT_POOL_BOOL) { intptr_t constant_pool_value = static_cast<intptr_t>(construct_stub->constant_pool()); output_frame->SetConstantPool(constant_pool_value); if (is_topmost) { Register constant_pool_reg = JavaScriptFrame::constant_pool_pointer_register(); output_frame->SetRegister(constant_pool_reg.code(), constant_pool_value); } } // Clear the context register. The context might be a de-materialized object // and will be materialized by {Runtime_NotifyDeoptimized}. For additional // safety we use Tagged<Smi>(0) instead of the potential {arguments_marker} // here. if (is_topmost) { intptr_t context_value = static_cast<intptr_t>(Smi::zero().ptr()); Register context_reg = JavaScriptFrame::context_register(); output_frame->SetRegister(context_reg.code(), context_value); // Set the continuation for the topmost frame. DCHECK_EQ(DeoptimizeKind::kLazy, deopt_kind_); Tagged<Code> continuation = isolate_->builtins()->code(Builtin::kNotifyDeoptimized); output_frame->SetContinuation( static_cast<intptr_t>(continuation->instruction_start())); } } namespace { bool BuiltinContinuationModeIsJavaScript(BuiltinContinuationMode mode) { switch (mode) { case BuiltinContinuationMode::STUB: return false; case BuiltinContinuationMode::JAVASCRIPT: case BuiltinContinuationMode::JAVASCRIPT_WITH_CATCH: case BuiltinContinuationMode::JAVASCRIPT_HANDLE_EXCEPTION: return true; } UNREACHABLE(); } StackFrame::Type BuiltinContinuationModeToFrameType( BuiltinContinuationMode mode) { switch (mode) { case BuiltinContinuationMode::STUB: return StackFrame::BUILTIN_CONTINUATION; case BuiltinContinuationMode::JAVASCRIPT: return StackFrame::JAVA_SCRIPT_BUILTIN_CONTINUATION; case BuiltinContinuationMode::JAVASCRIPT_WITH_CATCH: return StackFrame::JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH; case BuiltinContinuationMode::JAVASCRIPT_HANDLE_EXCEPTION: return StackFrame::JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH; } UNREACHABLE(); } } // namespace Builtin Deoptimizer::TrampolineForBuiltinContinuation( BuiltinContinuationMode mode, bool must_handle_result) { switch (mode) { case BuiltinContinuationMode::STUB: return must_handle_result ? Builtin::kContinueToCodeStubBuiltinWithResult : Builtin::kContinueToCodeStubBuiltin; case BuiltinContinuationMode::JAVASCRIPT: case BuiltinContinuationMode::JAVASCRIPT_WITH_CATCH: case BuiltinContinuationMode::JAVASCRIPT_HANDLE_EXCEPTION: return must_handle_result ? Builtin::kContinueToJavaScriptBuiltinWithResult : Builtin::kContinueToJavaScriptBuiltin; } UNREACHABLE(); } #if V8_ENABLE_WEBASSEMBLY TranslatedValue Deoptimizer::TranslatedValueForWasmReturnKind( base::Optional<wasm::ValueKind> wasm_call_return_kind) { if (wasm_call_return_kind) { switch (wasm_call_return_kind.value()) { case wasm::kI32: return TranslatedValue::NewInt32( &translated_state_, (int32_t)input_->GetRegister(kReturnRegister0.code())); case wasm::kI64: return TranslatedValue::NewInt64ToBigInt( &translated_state_, (int64_t)input_->GetRegister(kReturnRegister0.code())); case wasm::kF32: return TranslatedValue::NewFloat( &translated_state_, Float32(*reinterpret_cast<float*>( input_->GetDoubleRegister(wasm::kFpReturnRegisters[0].code()) .get_bits_address()))); case wasm::kF64: return TranslatedValue::NewDouble( &translated_state_, input_->GetDoubleRegister(wasm::kFpReturnRegisters[0].code())); default: UNREACHABLE(); } } return TranslatedValue::NewTagged(&translated_state_, ReadOnlyRoots(isolate()).undefined_value()); } #endif // V8_ENABLE_WEBASSEMBLY // BuiltinContinuationFrames capture the machine state that is expected as input // to a builtin, including both input register values and stack parameters. When // the frame is reactivated (i.e. the frame below it returns), a // ContinueToBuiltin stub restores the register state from the frame and tail // calls to the actual target builtin, making it appear that the stub had been // directly called by the frame above it. The input values to populate the frame // are taken from the deopt's FrameState. // // Frame translation happens in two modes, EAGER and LAZY. In EAGER mode, all of // the parameters to the Builtin are explicitly specified in the TurboFan // FrameState node. In LAZY mode, there is always one fewer parameters specified // in the FrameState than expected by the Builtin. In that case, construction of // BuiltinContinuationFrame adds the final missing parameter during // deoptimization, and that parameter is always on the stack and contains the // value returned from the callee of the call site triggering the LAZY deopt // (e.g. rax on x64). This requires that continuation Builtins for LAZY deopts // must have at least one stack parameter. // // TO // | .... | // +-------------------------+ // | arg padding (arch dept) |<- at most 1*kSystemPointerSize // +-------------------------+ // | builtin param 0 |<- FrameState input value n becomes // +-------------------------+ // | ... | // +-------------------------+ // | builtin param m |<- FrameState input value n+m-1, or in // +-----needs-alignment-----+ the LAZY case, return LAZY result value // | ContinueToBuiltin entry | // +-------------------------+ // | | saved frame (FP) | // | +=====needs=alignment=====+<- fpreg // | |constant pool (if ool_cp)| // v +-------------------------+ // |BUILTIN_CONTINUATION mark| // +-------------------------+ // | JSFunction (or zero) |<- only if JavaScript builtin // +-------------------------+ // | frame height above FP | // +-------------------------+ // | context |<- this non-standard context slot contains // +-------------------------+ the context, even for non-JS builtins. // | builtin index | // +-------------------------+ // | builtin input GPR reg0 |<- populated from deopt FrameState using // +-------------------------+ the builtin's CallInterfaceDescriptor // | ... | to map a FrameState's 0..n-1 inputs to // +-------------------------+ the builtin's n input register params. // | builtin input GPR regn | // +-------------------------+ // | reg padding (arch dept) | // +-----needs--alignment----+ // | res padding (arch dept) |<- only if {is_topmost}; result is pop'd by // +-------------------------+<- kNotifyDeopt ASM stub and moved to acc // | result value |<- reg, as ContinueToBuiltin stub expects. // +-----needs-alignment-----+<- spreg // void Deoptimizer::DoComputeBuiltinContinuation( TranslatedFrame* translated_frame, int frame_index, BuiltinContinuationMode mode) { TranslatedFrame::iterator result_iterator = translated_frame->end(); bool is_js_to_wasm_builtin_continuation = false; #if V8_ENABLE_WEBASSEMBLY is_js_to_wasm_builtin_continuation = translated_frame->kind() == TranslatedFrame::kJSToWasmBuiltinContinuation; if (is_js_to_wasm_builtin_continuation) { // For JSToWasmBuiltinContinuations, add a TranslatedValue with the result // of the Wasm call, extracted from the input FrameDescription. // This TranslatedValue will be written in the output frame in place of the // hole and we'll use ContinueToCodeStubBuiltin in place of // ContinueToCodeStubBuiltinWithResult. TranslatedValue result = TranslatedValueForWasmReturnKind( translated_frame->wasm_call_return_kind()); translated_frame->Add(result); } #endif // V8_ENABLE_WEBASSEMBLY TranslatedFrame::iterator value_iterator = translated_frame->begin(); const BytecodeOffset bytecode_offset = translated_frame->bytecode_offset(); Builtin builtin = Builtins::GetBuiltinFromBytecodeOffset(bytecode_offset); CallInterfaceDescriptor continuation_descriptor = Builtins::CallInterfaceDescriptorFor(builtin); const RegisterConfiguration* config = RegisterConfiguration::Default(); const bool is_bottommost = (0 == frame_index); const bool is_topmost = (output_count_ - 1 == frame_index); const int parameters_count = translated_frame->height(); BuiltinContinuationFrameInfo frame_info = BuiltinContinuationFrameInfo::Precise(parameters_count, continuation_descriptor, config, is_topmost, deopt_kind_, mode); const unsigned output_frame_size = frame_info.frame_size_in_bytes(); const unsigned output_frame_size_above_fp = frame_info.frame_size_in_bytes_above_fp(); // Validate types of parameters. They must all be tagged except for argc for // JS builtins. bool has_argc = false; const int register_parameter_count = continuation_descriptor.GetRegisterParameterCount(); for (int i = 0; i < register_parameter_count; ++i) { MachineType type = continuation_descriptor.GetParameterType(i); int code = continuation_descriptor.GetRegisterParameter(i).code(); // Only tagged and int32 arguments are supported, and int32 only for the // arguments count on JavaScript builtins. if (type == MachineType::Int32()) { CHECK_EQ(code, kJavaScriptCallArgCountRegister.code()); has_argc = true; } else { // Any other argument must be a tagged value. CHECK(IsAnyTagged(type.representation())); } } CHECK_EQ(BuiltinContinuationModeIsJavaScript(mode), has_argc); if (verbose_tracing_enabled()) { PrintF(trace_scope()->file(), " translating BuiltinContinuation to %s," " => register_param_count=%d," " stack_param_count=%d, frame_size=%d\n", Builtins::name(builtin), register_parameter_count, frame_info.stack_parameter_count(), output_frame_size); } FrameDescription* output_frame = new (output_frame_size) FrameDescription( output_frame_size, frame_info.stack_parameter_count(), isolate()); output_[frame_index] = output_frame; FrameWriter frame_writer(this, output_frame, verbose_trace_scope()); // The top address of the frame is computed from the previous frame's top and // this frame's size. const intptr_t top_address = is_bottommost ? caller_frame_top_ - output_frame_size : output_[frame_index - 1]->GetTop() - output_frame_size; output_frame->SetTop(top_address); // Get the possible JSFunction for the case that this is a // JavaScriptBuiltinContinuationFrame, which needs the JSFunction pointer // like a normal JavaScriptFrame. const intptr_t maybe_function = value_iterator->GetRawValue().ptr(); ++value_iterator; ReadOnlyRoots roots(isolate()); const int padding = ArgumentPaddingSlots(frame_info.stack_parameter_count()); for (int i = 0; i < padding; ++i) { frame_writer.PushRawObject(roots.the_hole_value(), "padding\n"); } if (mode == BuiltinContinuationMode::STUB) { DCHECK_EQ( Builtins::CallInterfaceDescriptorFor(builtin).GetStackArgumentOrder(), StackArgumentOrder::kDefault); for (uint32_t i = 0; i < frame_info.translated_stack_parameter_count(); ++i, ++value_iterator) { frame_writer.PushTranslatedValue(value_iterator, "stack parameter"); } if (frame_info.frame_has_result_stack_slot()) { if (is_js_to_wasm_builtin_continuation) { frame_writer.PushTranslatedValue(result_iterator, "return result on lazy deopt\n"); } else { DCHECK_EQ(result_iterator, translated_frame->end()); frame_writer.PushRawObject( roots.the_hole_value(), "placeholder for return result on lazy deopt\n"); } } } else { // JavaScript builtin. if (frame_info.frame_has_result_stack_slot()) { frame_writer.PushRawObject( roots.the_hole_value(), "placeholder for return result on lazy deopt\n"); } switch (mode) { case BuiltinContinuationMode::STUB: UNREACHABLE(); case BuiltinContinuationMode::JAVASCRIPT: break; case BuiltinContinuationMode::JAVASCRIPT_WITH_CATCH: { frame_writer.PushRawObject(roots.the_hole_value(), "placeholder for exception on lazy deopt\n"); } break; case BuiltinContinuationMode::JAVASCRIPT_HANDLE_EXCEPTION: { intptr_t accumulator_value = input_->GetRegister(kInterpreterAccumulatorRegister.code()); frame_writer.PushRawObject(Tagged<Object>(accumulator_value), "exception (from accumulator)\n"); } break; } frame_writer.PushStackJSArguments( value_iterator, frame_info.translated_stack_parameter_count()); } DCHECK_EQ(output_frame->GetLastArgumentSlotOffset(), frame_writer.top_offset()); std::vector<TranslatedFrame::iterator> register_values; int total_registers = config->num_general_registers(); register_values.resize(total_registers, {value_iterator}); for (int i = 0; i < register_parameter_count; ++i, ++value_iterator) { int code = continuation_descriptor.GetRegisterParameter(i).code(); register_values[code] = value_iterator; } // The context register is always implicit in the CallInterfaceDescriptor but // its register must be explicitly set when continuing to the builtin. Make // sure that it's harvested from the translation and copied into the register // set (it was automatically added at the end of the FrameState by the // instruction selector). Tagged<Object> context = value_iterator->GetRawValue(); const intptr_t value = context.ptr(); TranslatedFrame::iterator context_register_value = value_iterator++; register_values[kContextRegister.code()] = context_register_value; output_frame->SetContext(value); output_frame->SetRegister(kContextRegister.code(), value); // Set caller's PC (JSFunction continuation). if (is_bottommost) { frame_writer.PushBottommostCallerPc(caller_pc_); } else { frame_writer.PushApprovedCallerPc(output_[frame_index - 1]->GetPc()); } // Read caller's FP from the previous frame, and set this frame's FP. const intptr_t caller_fp = is_bottommost ? caller_fp_ : output_[frame_index - 1]->GetFp(); frame_writer.PushCallerFp(caller_fp); const intptr_t fp_value = top_address + frame_writer.top_offset(); output_frame->SetFp(fp_value); DCHECK_EQ(output_frame_size_above_fp, frame_writer.top_offset()); if (V8_EMBEDDED_CONSTANT_POOL_BOOL) { // Read the caller's constant pool from the previous frame. const intptr_t caller_cp = is_bottommost ? caller_constant_pool_ : output_[frame_index - 1]->GetConstantPool(); frame_writer.PushCallerConstantPool(caller_cp); } // A marker value is used in place of the context. const intptr_t marker = StackFrame::TypeToMarker(BuiltinContinuationModeToFrameType(mode)); frame_writer.PushRawValue(marker, "context (builtin continuation sentinel)\n"); if (BuiltinContinuationModeIsJavaScript(mode)) { frame_writer.PushRawValue(maybe_function, "JSFunction\n"); } else { frame_writer.PushRawValue(0, "unused\n"); } // The delta from the SP to the FP; used to reconstruct SP in // Isolate::UnwindAndFindHandler. frame_writer.PushRawObject(Smi::FromInt(output_frame_size_above_fp), "frame height at deoptimization\n"); // The context even if this is a stub continuation frame. We can't use the // usual context slot, because we must store the frame marker there. frame_writer.PushTranslatedValue(context_register_value, "builtin JavaScript context\n"); // The builtin to continue to. frame_writer.PushRawObject(Smi::FromInt(static_cast<int>(builtin)), "builtin index\n"); const int allocatable_register_count = config->num_allocatable_general_registers(); for (int i = 0; i < allocatable_register_count; ++i) { int code = config->GetAllocatableGeneralCode(i); base::ScopedVector<char> str(128); if (verbose_tracing_enabled()) { if (BuiltinContinuationModeIsJavaScript(mode) && code == kJavaScriptCallArgCountRegister.code()) { SNPrintF( str, "tagged argument count %s (will be untagged by continuation)\n", RegisterName(Register::from_code(code))); } else { SNPrintF(str, "builtin register argument %s\n", RegisterName(Register::from_code(code))); } } frame_writer.PushTranslatedValue( register_values[code], verbose_tracing_enabled() ? str.begin() : ""); } // Some architectures must pad the stack frame with extra stack slots // to ensure the stack frame is aligned. const int padding_slot_count = BuiltinContinuationFrameConstants::PaddingSlotCount( allocatable_register_count); for (int i = 0; i < padding_slot_count; ++i) { frame_writer.PushRawObject(roots.the_hole_value(), "padding\n"); } if (is_topmost) { for (int i = 0; i < ArgumentPaddingSlots(1); ++i) { frame_writer.PushRawObject(roots.the_hole_value(), "padding\n"); } // Ensure the result is restored back when we return to the stub. if (frame_info.frame_has_result_stack_slot()) { Register result_reg = kReturnRegister0; frame_writer.PushRawValue(input_->GetRegister(result_reg.code()), "callback result\n"); } else { frame_writer.PushRawObject(roots.undefined_value(), "callback result\n"); } } CHECK_EQ(result_iterator, value_iterator); CHECK_EQ(0u, frame_writer.top_offset()); // Clear the context register. The context might be a de-materialized object // and will be materialized by {Runtime_NotifyDeoptimized}. For additional // safety we use Tagged<Smi>(0) instead of the potential {arguments_marker} // here. if (is_topmost) { intptr_t context_value = static_cast<intptr_t>(Smi::zero().ptr()); Register context_reg = JavaScriptFrame::context_register(); output_frame->SetRegister(context_reg.code(), context_value); } // Ensure the frame pointer register points to the callee's frame. The builtin // will build its own frame once we continue to it. Register fp_reg = JavaScriptFrame::fp_register(); output_frame->SetRegister(fp_reg.code(), fp_value); // For JSToWasmBuiltinContinuations use ContinueToCodeStubBuiltin, and not // ContinueToCodeStubBuiltinWithResult because we don't want to overwrite the // return value that we have already set. Tagged<Code> continue_to_builtin = isolate()->builtins()->code(TrampolineForBuiltinContinuation( mode, frame_info.frame_has_result_stack_slot() && !is_js_to_wasm_builtin_continuation)); if (is_topmost) { // Only the pc of the topmost frame needs to be signed since it is // authenticated at the end of the DeoptimizationEntry builtin. const intptr_t top_most_pc = PointerAuthentication::SignAndCheckPC( isolate(), static_cast<intptr_t>(continue_to_builtin->instruction_start()), frame_writer.frame()->GetTop()); output_frame->SetPc(top_most_pc); } else { output_frame->SetPc( static_cast<intptr_t>(continue_to_builtin->instruction_start())); } Tagged<Code> continuation = isolate()->builtins()->code(Builtin::kNotifyDeoptimized); output_frame->SetContinuation( static_cast<intptr_t>(continuation->instruction_start())); } void Deoptimizer::MaterializeHeapObjects() { translated_state_.Prepare(static_cast<Address>(stack_fp_)); if (v8_flags.deopt_every_n_times > 0) { // Doing a GC here will find problems with the deoptimized frames. isolate_->heap()->CollectAllGarbage(GCFlag::kNoFlags, GarbageCollectionReason::kTesting); } for (auto& materialization : values_to_materialize_) { Handle<Object> value = materialization.value_->GetValue(); if (verbose_tracing_enabled()) { PrintF(trace_scope()->file(), "Materialization [" V8PRIxPTR_FMT "] <- " V8PRIxPTR_FMT " ; ", static_cast<intptr_t>(materialization.output_slot_address_), (*value).ptr()); ShortPrint(*value, trace_scope()->file()); PrintF(trace_scope()->file(), "\n"); } *(reinterpret_cast<Address*>(materialization.output_slot_address_)) = (*value).ptr(); } for (auto& fbv_materialization : feedback_vector_to_materialize_) { Handle<Object> closure = fbv_materialization.value_->GetValue(); DCHECK(IsJSFunction(*closure)); Tagged<Object> feedback_vector = Tagged<JSFunction>::cast(*closure)->raw_feedback_cell()->value(); CHECK(IsFeedbackVector(feedback_vector)); *(reinterpret_cast<Address*>(fbv_materialization.output_slot_address_)) = feedback_vector.ptr(); } translated_state_.VerifyMaterializedObjects(); bool feedback_updated = translated_state_.DoUpdateFeedback(); if (verbose_tracing_enabled() && feedback_updated) { FILE* file = trace_scope()->file(); Deoptimizer::DeoptInfo info = Deoptimizer::GetDeoptInfo(); PrintF(file, "Feedback updated from deoptimization at "); OFStream outstr(file); info.position.Print(outstr, compiled_code_); PrintF(file, ", %s\n", DeoptimizeReasonToString(info.deopt_reason)); } isolate_->materialized_object_store()->Remove( static_cast<Address>(stack_fp_)); } void Deoptimizer::QueueValueForMaterialization( Address output_address, Tagged<Object> obj, const TranslatedFrame::iterator& iterator) { if (obj == ReadOnlyRoots(isolate_).arguments_marker()) { values_to_materialize_.push_back({output_address, iterator}); } } void Deoptimizer::QueueFeedbackVectorForMaterialization( Address output_address, const TranslatedFrame::iterator& iterator) { feedback_vector_to_materialize_.push_back({output_address, iterator}); } unsigned Deoptimizer::ComputeInputFrameAboveFpFixedSize() const { unsigned fixed_size = CommonFrameConstants::kFixedFrameSizeAboveFp; // TODO(jkummerow): If {IsSmi(function_)} can indeed be true, then // {function_} should not have type {JSFunction}. if (!IsSmi(function_)) { fixed_size += ComputeIncomingArgumentSize(function_->shared()); } return fixed_size; } namespace { // Get the actual deopt call PC from the return address of the deopt, which // points to immediately after the deopt call). // // See also the Deoptimizer constructor. Address GetDeoptCallPCFromReturnPC(Address return_pc, Tagged<Code> code) { DCHECK_GT(Deoptimizer::kEagerDeoptExitSize, 0); DCHECK_GT(Deoptimizer::kLazyDeoptExitSize, 0); Tagged<DeoptimizationData> deopt_data = DeoptimizationData::cast(code->deoptimization_data()); Address deopt_start = code->instruction_start() + deopt_data->DeoptExitStart().value(); int eager_deopt_count = deopt_data->EagerDeoptCount().value(); Address lazy_deopt_start = deopt_start + eager_deopt_count * Deoptimizer::kEagerDeoptExitSize; // The deoptimization exits are sorted so that lazy deopt exits appear // after eager deopts. static_assert(static_cast<int>(DeoptimizeKind::kLazy) == static_cast<int>(kLastDeoptimizeKind), "lazy deopts are expected to be emitted last"); if (return_pc <= lazy_deopt_start) { return return_pc - Deoptimizer::kEagerDeoptExitSize; } else { return return_pc - Deoptimizer::kLazyDeoptExitSize; } } } // namespace unsigned Deoptimizer::ComputeInputFrameSize() const { // The fp-to-sp delta already takes the context, constant pool pointer and the // function into account so we have to avoid double counting them. unsigned fixed_size_above_fp = ComputeInputFrameAboveFpFixedSize(); unsigned result = fixed_size_above_fp + fp_to_sp_delta_; DCHECK(CodeKindCanDeoptimize(compiled_code_->kind())); unsigned stack_slots = compiled_code_->stack_slots(); if (compiled_code_->is_maglevved() && !deoptimizing_throw_) { // Maglev code can deopt in deferred code which has spilled registers across // the call. These will be included in the fp_to_sp_delta, but the expected // frame size won't include them, so we need to check for less-equal rather // than equal. For deoptimizing throws, these will have already been trimmed // off. CHECK_LE(fixed_size_above_fp + (stack_slots * kSystemPointerSize) - CommonFrameConstants::kFixedFrameSizeAboveFp, result); // With slow asserts we can check this exactly, by looking up the safepoint. if (v8_flags.enable_slow_asserts) { Address deopt_call_pc = GetDeoptCallPCFromReturnPC(from_, compiled_code_); MaglevSafepointTable table(isolate_, deopt_call_pc, compiled_code_); MaglevSafepointEntry safepoint = table.FindEntry(deopt_call_pc); unsigned extra_spills = safepoint.num_extra_spill_slots(); CHECK_EQ(fixed_size_above_fp + (stack_slots * kSystemPointerSize) - CommonFrameConstants::kFixedFrameSizeAboveFp + extra_spills * kSystemPointerSize, result); } } else { unsigned outgoing_size = 0; CHECK_EQ(fixed_size_above_fp + (stack_slots * kSystemPointerSize) - CommonFrameConstants::kFixedFrameSizeAboveFp + outgoing_size, result); } return result; } // static unsigned Deoptimizer::ComputeIncomingArgumentSize( Tagged<SharedFunctionInfo> shared) { int parameter_slots = shared->internal_formal_parameter_count_with_receiver(); return parameter_slots * kSystemPointerSize; } Deoptimizer::DeoptInfo Deoptimizer::GetDeoptInfo(Tagged<Code> code, Address pc) { CHECK(code->instruction_start() <= pc && pc <= code->instruction_end()); SourcePosition last_position = SourcePosition::Unknown(); DeoptimizeReason last_reason = DeoptimizeReason::kUnknown; uint32_t last_node_id = 0; int last_deopt_id = kNoDeoptimizationId; int mask = RelocInfo::ModeMask(RelocInfo::DEOPT_REASON) | RelocInfo::ModeMask(RelocInfo::DEOPT_ID) | RelocInfo::ModeMask(RelocInfo::DEOPT_SCRIPT_OFFSET) | RelocInfo::ModeMask(RelocInfo::DEOPT_INLINING_ID) | RelocInfo::ModeMask(RelocInfo::DEOPT_NODE_ID); for (RelocIterator it(code, mask); !it.done(); it.next()) { RelocInfo* info = it.rinfo(); if (info->pc() >= pc) break; if (info->rmode() == RelocInfo::DEOPT_SCRIPT_OFFSET) { int script_offset = static_cast<int>(info->data()); it.next(); DCHECK(it.rinfo()->rmode() == RelocInfo::DEOPT_INLINING_ID); int inlining_id = static_cast<int>(it.rinfo()->data()); last_position = SourcePosition(script_offset, inlining_id); } else if (info->rmode() == RelocInfo::DEOPT_ID) { last_deopt_id = static_cast<int>(info->data()); } else if (info->rmode() == RelocInfo::DEOPT_REASON) { last_reason = static_cast<DeoptimizeReason>(info->data()); } else if (info->rmode() == RelocInfo::DEOPT_NODE_ID) { last_node_id = static_cast<uint32_t>(info->data()); } } return DeoptInfo(last_position, last_reason, last_node_id, last_deopt_id); } } // namespace internal } // namespace v8