%PDF- %PDF-
Direktori : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/execution/ |
Current File : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/execution/frames.cc |
// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/execution/frames.h" #include <cstdint> #include <memory> #include <sstream> #include "src/api/api-arguments.h" #include "src/api/api-natives.h" #include "src/base/bits.h" #include "src/codegen/interface-descriptors.h" #include "src/codegen/linkage-location.h" #include "src/codegen/macro-assembler.h" #include "src/codegen/maglev-safepoint-table.h" #include "src/codegen/register-configuration.h" #include "src/codegen/safepoint-table.h" #include "src/common/globals.h" #include "src/deoptimizer/deoptimizer.h" #include "src/execution/arguments.h" #include "src/execution/frame-constants.h" #include "src/execution/frames-inl.h" #include "src/execution/vm-state-inl.h" #include "src/ic/ic-stats.h" #include "src/logging/counters.h" #include "src/objects/code.h" #include "src/objects/slots.h" #include "src/objects/smi.h" #include "src/objects/visitors.h" #include "src/snapshot/embedded/embedded-data-inl.h" #include "src/strings/string-stream.h" #include "src/zone/zone-containers.h" #if V8_ENABLE_WEBASSEMBLY #include "src/debug/debug-wasm-objects.h" #include "src/wasm/serialized-signature-inl.h" #include "src/wasm/stacks.h" #include "src/wasm/wasm-code-manager.h" #include "src/wasm/wasm-engine.h" #include "src/wasm/wasm-linkage.h" #include "src/wasm/wasm-objects-inl.h" #endif // V8_ENABLE_WEBASSEMBLY namespace v8 { namespace internal { ReturnAddressLocationResolver StackFrame::return_address_location_resolver_ = nullptr; namespace { Address AddressOf(const StackHandler* handler) { Address raw = handler->address(); #ifdef V8_USE_ADDRESS_SANITIZER // ASan puts C++-allocated StackHandler markers onto its fake stack. // We work around that by storing the real stack address in the "padding" // field. StackHandlers allocated from generated code have 0 as padding. Address padding = base::Memory<Address>(raw + StackHandlerConstants::kPaddingOffset); if (padding != 0) return padding; #endif return raw; } } // namespace // Iterator that supports traversing the stack handlers of a // particular frame. Needs to know the top of the handler chain. class StackHandlerIterator { public: StackHandlerIterator(const StackFrame* frame, StackHandler* handler) : limit_(frame->fp()), handler_(handler) { #if V8_ENABLE_WEBASSEMBLY // Make sure the handler has already been unwound to this frame. With stack // switching this is not equivalent to the inequality below, because the // frame and the handler could be in different stacks. DCHECK_IMPLIES(!v8_flags.experimental_wasm_stack_switching, frame->sp() <= AddressOf(handler)); // For CWasmEntry frames, the handler was registered by the last C++ // frame (Execution::CallWasm), so even though its address is already // beyond the limit, we know we always want to unwind one handler. if (frame->is_c_wasm_entry()) handler_ = handler_->next(); #else // Make sure the handler has already been unwound to this frame. DCHECK_LE(frame->sp(), AddressOf(handler)); #endif // V8_ENABLE_WEBASSEMBLY } StackHandler* handler() const { return handler_; } bool done() { return handler_ == nullptr || AddressOf(handler_) > limit_; } void Advance() { DCHECK(!done()); handler_ = handler_->next(); } private: const Address limit_; StackHandler* handler_; }; // ------------------------------------------------------------------------- #define INITIALIZE_SINGLETON(type, field) field##_(this), StackFrameIteratorBase::StackFrameIteratorBase(Isolate* isolate) : isolate_(isolate), STACK_FRAME_TYPE_LIST(INITIALIZE_SINGLETON) frame_(nullptr), handler_(nullptr) {} #undef INITIALIZE_SINGLETON StackFrameIterator::StackFrameIterator(Isolate* isolate) : StackFrameIterator(isolate, isolate->thread_local_top()) {} StackFrameIterator::StackFrameIterator(Isolate* isolate, ThreadLocalTop* t) : StackFrameIteratorBase(isolate) { Reset(t); } #if V8_ENABLE_WEBASSEMBLY StackFrameIterator::StackFrameIterator(Isolate* isolate, wasm::StackMemory* stack) : StackFrameIteratorBase(isolate) { Reset(isolate->thread_local_top(), stack); } #endif void StackFrameIterator::Advance() { DCHECK(!done()); // Compute the state of the calling frame before restoring // callee-saved registers and unwinding handlers. This allows the // frame code that computes the caller state to access the top // handler and the value of any callee-saved register if needed. StackFrame::State state; StackFrame::Type type = frame_->GetCallerState(&state); // Unwind handlers corresponding to the current frame. StackHandlerIterator it(frame_, handler_); while (!it.done()) it.Advance(); handler_ = it.handler(); // Advance to the calling frame. frame_ = SingletonFor(type, &state); // When we're done iterating over the stack frames, the handler // chain must have been completely unwound. Except for wasm stack-switching: // we stop at the end of the current segment. #if V8_ENABLE_WEBASSEMBLY DCHECK_IMPLIES(done() && !v8_flags.experimental_wasm_stack_switching, handler_ == nullptr); #else DCHECK_IMPLIES(done(), handler_ == nullptr); #endif } StackFrame* StackFrameIterator::Reframe() { StackFrame::Type type = ComputeStackFrameType(&frame_->state_); frame_ = SingletonFor(type, &frame_->state_); return frame(); } void StackFrameIterator::Reset(ThreadLocalTop* top) { StackFrame::State state; StackFrame::Type type = ExitFrame::GetStateForFramePointer(Isolate::c_entry_fp(top), &state); handler_ = StackHandler::FromAddress(Isolate::handler(top)); frame_ = SingletonFor(type, &state); } #if V8_ENABLE_WEBASSEMBLY void StackFrameIterator::Reset(ThreadLocalTop* top, wasm::StackMemory* stack) { if (stack->jmpbuf()->state == wasm::JumpBuffer::Retired) { return; } StackFrame::State state; StackSwitchFrame::GetStateForJumpBuffer(stack->jmpbuf(), &state); handler_ = StackHandler::FromAddress(Isolate::handler(top)); frame_ = SingletonFor(StackFrame::STACK_SWITCH, &state); } #endif StackFrame* StackFrameIteratorBase::SingletonFor(StackFrame::Type type, StackFrame::State* state) { StackFrame* result = SingletonFor(type); DCHECK((!result) == (type == StackFrame::NO_FRAME_TYPE)); if (result) result->state_ = *state; return result; } StackFrame* StackFrameIteratorBase::SingletonFor(StackFrame::Type type) { #define FRAME_TYPE_CASE(type, field) \ case StackFrame::type: \ return &field##_; switch (type) { case StackFrame::NO_FRAME_TYPE: return nullptr; STACK_FRAME_TYPE_LIST(FRAME_TYPE_CASE) default: break; } return nullptr; #undef FRAME_TYPE_CASE } // ------------------------------------------------------------------------- void TypedFrameWithJSLinkage::Iterate(RootVisitor* v) const { IterateExpressions(v); IteratePc(v, pc_address(), constant_pool_address(), GcSafeLookupCode()); } // ------------------------------------------------------------------------- void JavaScriptStackFrameIterator::Advance() { do { iterator_.Advance(); } while (!iterator_.done() && !iterator_.frame()->is_java_script()); } // ------------------------------------------------------------------------- DebuggableStackFrameIterator::DebuggableStackFrameIterator(Isolate* isolate) : iterator_(isolate) { if (!done() && !IsValidFrame(iterator_.frame())) Advance(); } DebuggableStackFrameIterator::DebuggableStackFrameIterator(Isolate* isolate, StackFrameId id) : DebuggableStackFrameIterator(isolate) { while (!done() && frame()->id() != id) Advance(); } void DebuggableStackFrameIterator::Advance() { do { iterator_.Advance(); } while (!done() && !IsValidFrame(iterator_.frame())); } int DebuggableStackFrameIterator::FrameFunctionCount() const { DCHECK(!done()); if (!iterator_.frame()->is_optimized()) return 1; std::vector<Tagged<SharedFunctionInfo>> infos; TurbofanFrame::cast(iterator_.frame())->GetFunctions(&infos); return static_cast<int>(infos.size()); } FrameSummary DebuggableStackFrameIterator::GetTopValidFrame() const { DCHECK(!done()); // Like FrameSummary::GetTop, but additionally observes // DebuggableStackFrameIterator filtering semantics. std::vector<FrameSummary> frames; frame()->Summarize(&frames); if (is_javascript()) { for (int i = static_cast<int>(frames.size()) - 1; i >= 0; i--) { const FrameSummary& summary = frames[i]; if (summary.is_subject_to_debugging()) { return summary; } } UNREACHABLE(); } #if V8_ENABLE_WEBASSEMBLY if (is_wasm()) return frames.back(); #endif // V8_ENABLE_WEBASSEMBLY UNREACHABLE(); } // static bool DebuggableStackFrameIterator::IsValidFrame(StackFrame* frame) { if (frame->is_java_script()) { Tagged<JSFunction> function = static_cast<JavaScriptFrame*>(frame)->function(); return function->shared()->IsSubjectToDebugging(); } #if V8_ENABLE_WEBASSEMBLY if (frame->is_wasm()) return true; #endif // V8_ENABLE_WEBASSEMBLY return false; } // ------------------------------------------------------------------------- namespace { base::Optional<bool> IsInterpreterFramePc(Isolate* isolate, Address pc, StackFrame::State* state) { Builtin builtin = OffHeapInstructionStream::TryLookupCode(isolate, pc); if (builtin != Builtin::kNoBuiltinId && (builtin == Builtin::kInterpreterEntryTrampoline || builtin == Builtin::kInterpreterEnterAtBytecode || builtin == Builtin::kInterpreterEnterAtNextBytecode || builtin == Builtin::kBaselineOrInterpreterEnterAtBytecode || builtin == Builtin::kBaselineOrInterpreterEnterAtNextBytecode)) { return true; } else if (v8_flags.interpreted_frames_native_stack) { intptr_t marker = Memory<intptr_t>( state->fp + CommonFrameConstants::kContextOrFrameTypeOffset); MSAN_MEMORY_IS_INITIALIZED( state->fp + StandardFrameConstants::kFunctionOffset, kSystemPointerSize); Tagged<Object> maybe_function = Tagged<Object>( Memory<Address>(state->fp + StandardFrameConstants::kFunctionOffset)); // There's no need to run a full ContainsSlow if we know the frame can't be // an InterpretedFrame, so we do these fast checks first if (StackFrame::IsTypeMarker(marker) || IsSmi(maybe_function)) { return false; } else if (!isolate->heap()->InSpaceSlow(pc, CODE_SPACE)) { return false; } if (!ThreadIsolation::CanLookupStartOfJitAllocationAt(pc)) { return {}; } Tagged<Code> interpreter_entry_trampoline = isolate->heap()->FindCodeForInnerPointer(pc); return interpreter_entry_trampoline->is_interpreter_trampoline_builtin(); } else { return false; } } } // namespace bool StackFrameIteratorForProfiler::IsNoFrameBytecodeHandlerPc( Isolate* isolate, Address pc, Address fp) const { EmbeddedData d = EmbeddedData::FromBlob(isolate); if (pc < d.InstructionStartOfBytecodeHandlers() || pc >= d.InstructionEndOfBytecodeHandlers()) { return false; } Address frame_type_address = fp + CommonFrameConstants::kContextOrFrameTypeOffset; if (!IsValidStackAddress(frame_type_address)) { return false; } // Check if top stack frame is a bytecode handler stub frame. MSAN_MEMORY_IS_INITIALIZED(frame_type_address, kSystemPointerSize); intptr_t marker = Memory<intptr_t>(frame_type_address); if (StackFrame::IsTypeMarker(marker) && StackFrame::MarkerToType(marker) == StackFrame::STUB) { // Bytecode handler built a frame. return false; } return true; } StackFrameIteratorForProfiler::StackFrameIteratorForProfiler( Isolate* isolate, Address pc, Address fp, Address sp, Address lr, Address js_entry_sp) : StackFrameIteratorBase(isolate), low_bound_(sp), high_bound_(js_entry_sp), top_frame_type_(StackFrame::NO_FRAME_TYPE), external_callback_scope_(isolate->external_callback_scope()), top_link_register_(lr) { if (!isolate->isolate_data()->stack_is_iterable()) { // The stack is not iterable in a short time interval during deoptimization. // See also: ExternalReference::stack_is_iterable_address. DCHECK(done()); return; } // For Advance below, we need frame_ to be set; and that only happens if the // type is not NO_FRAME_TYPE. // TODO(jgruber): Clean this up. static constexpr StackFrame::Type kTypeForAdvance = StackFrame::TURBOFAN; StackFrame::State state; StackFrame::Type type; ThreadLocalTop* const top = isolate->thread_local_top(); bool advance_frame = true; const Address fast_c_fp = isolate->isolate_data()->fast_c_call_caller_fp(); if (fast_c_fp != kNullAddress) { // 'Fast C calls' are a special type of C call where we call directly from // JS to C without an exit frame inbetween. The CEntryStub is responsible // for setting Isolate::c_entry_fp, meaning that it won't be set for fast C // calls. To keep the stack iterable, we store the FP and PC of the caller // of the fast C call on the isolate. This is guaranteed to be the topmost // JS frame, because fast C calls cannot call back into JS. We start // iterating the stack from this topmost JS frame. DCHECK_NE(kNullAddress, isolate->isolate_data()->fast_c_call_caller_pc()); state.fp = fast_c_fp; state.sp = sp; state.pc_address = reinterpret_cast<Address*>( isolate->isolate_data()->fast_c_call_caller_pc_address()); // ComputeStackFrameType will read both kContextOffset and // kFunctionOffset, we check only that kFunctionOffset is within the stack // bounds and do a compile time check that kContextOffset slot is pushed on // the stack before kFunctionOffset. static_assert(StandardFrameConstants::kFunctionOffset < StandardFrameConstants::kContextOffset); if (IsValidStackAddress(state.fp + StandardFrameConstants::kFunctionOffset)) { type = ComputeStackFrameType(&state); if (IsValidFrameType(type)) { top_frame_type_ = type; advance_frame = false; } } else { // Cannot determine the actual type; the frame will be skipped below. type = kTypeForAdvance; } } else if (IsValidTop(top)) { type = ExitFrame::GetStateForFramePointer(Isolate::c_entry_fp(top), &state); top_frame_type_ = type; } else if (IsValidStackAddress(fp)) { DCHECK_NE(fp, kNullAddress); state.fp = fp; state.sp = sp; state.pc_address = StackFrame::ResolveReturnAddressLocation(reinterpret_cast<Address*>( fp + StandardFrameConstants::kCallerPCOffset)); // If the current PC is in a bytecode handler, the top stack frame isn't // the bytecode handler's frame and the top of stack or link register is a // return address into the interpreter entry trampoline, then we are likely // in a bytecode handler with elided frame. In that case, set the PC // properly and make sure we do not drop the frame. bool is_no_frame_bytecode_handler = false; bool cant_lookup_frame_type = false; if (IsNoFrameBytecodeHandlerPc(isolate, pc, fp)) { Address* top_location = nullptr; if (top_link_register_) { top_location = &top_link_register_; } else if (IsValidStackAddress(sp)) { MSAN_MEMORY_IS_INITIALIZED(sp, kSystemPointerSize); top_location = reinterpret_cast<Address*>(sp); } base::Optional<bool> is_interpreter_frame_pc = IsInterpreterFramePc(isolate, *top_location, &state); // Since we're in a signal handler, the pc lookup might not be possible // since the required locks are taken by the same thread. if (!is_interpreter_frame_pc.has_value()) { cant_lookup_frame_type = true; } else if (is_interpreter_frame_pc.value()) { state.pc_address = top_location; is_no_frame_bytecode_handler = true; advance_frame = false; } } // ComputeStackFrameType will read both kContextOffset and // kFunctionOffset, we check only that kFunctionOffset is within the stack // bounds and do a compile time check that kContextOffset slot is pushed on // the stack before kFunctionOffset. static_assert(StandardFrameConstants::kFunctionOffset < StandardFrameConstants::kContextOffset); Address function_slot = fp + StandardFrameConstants::kFunctionOffset; if (cant_lookup_frame_type) { type = StackFrame::NO_FRAME_TYPE; } else if (IsValidStackAddress(function_slot)) { if (is_no_frame_bytecode_handler) { type = StackFrame::INTERPRETED; } else { type = ComputeStackFrameType(&state); } top_frame_type_ = type; } else { // Cannot determine the actual type; the frame will be skipped below. type = kTypeForAdvance; } } else { // Not iterable. DCHECK(done()); return; } frame_ = SingletonFor(type, &state); if (advance_frame && !done()) { Advance(); } } bool StackFrameIteratorForProfiler::IsValidTop(ThreadLocalTop* top) const { Address c_entry_fp = Isolate::c_entry_fp(top); if (!IsValidExitFrame(c_entry_fp)) return false; // There should be at least one JS_ENTRY stack handler. Address handler = Isolate::handler(top); if (handler == kNullAddress) return false; // Check that there are no js frames on top of the native frames. return c_entry_fp < handler; } void StackFrameIteratorForProfiler::AdvanceOneFrame() { DCHECK(!done()); StackFrame* last_frame = frame_; Address last_sp = last_frame->sp(), last_fp = last_frame->fp(); // Before advancing to the next stack frame, perform pointer validity tests. if (!IsValidFrame(last_frame) || !IsValidCaller(last_frame)) { frame_ = nullptr; return; } // Advance to the previous frame. StackFrame::State state; StackFrame::Type type = frame_->GetCallerState(&state); frame_ = SingletonFor(type, &state); if (!frame_) return; // Check that we have actually moved to the previous frame in the stack. if (frame_->sp() <= last_sp || frame_->fp() <= last_fp) { frame_ = nullptr; } } bool StackFrameIteratorForProfiler::IsValidFrame(StackFrame* frame) const { return IsValidStackAddress(frame->sp()) && IsValidStackAddress(frame->fp()); } bool StackFrameIteratorForProfiler::IsValidCaller(StackFrame* frame) { StackFrame::State state; if (frame->is_entry() || frame->is_construct_entry()) { // See EntryFrame::GetCallerState. It computes the caller FP address // and calls ExitFrame::GetStateForFramePointer on it. We need to be // sure that caller FP address is valid. Address next_exit_frame_fp_address = frame->fp() + EntryFrameConstants::kNextExitFrameFPOffset; // Profiling tick might be triggered in the middle of JSEntry builtin // before the next_exit_frame_fp value is initialized. IsValidExitFrame() // is able to deal with such a case, so just suppress the MSan warning. MSAN_MEMORY_IS_INITIALIZED(next_exit_frame_fp_address, kSystemPointerSize); Address next_exit_frame_fp = Memory<Address>(next_exit_frame_fp_address); if (!IsValidExitFrame(next_exit_frame_fp)) return false; } frame->ComputeCallerState(&state); return IsValidStackAddress(state.sp) && IsValidStackAddress(state.fp) && SingletonFor(frame->GetCallerState(&state)) != nullptr; } bool StackFrameIteratorForProfiler::IsValidExitFrame(Address fp) const { if (!IsValidStackAddress(fp)) return false; Address sp = ExitFrame::ComputeStackPointer(fp); if (!IsValidStackAddress(sp)) return false; StackFrame::State state; ExitFrame::FillState(fp, sp, &state); MSAN_MEMORY_IS_INITIALIZED(state.pc_address, sizeof(state.pc_address)); return *state.pc_address != kNullAddress; } void StackFrameIteratorForProfiler::Advance() { while (true) { AdvanceOneFrame(); if (done()) break; ExternalCallbackScope* last_callback_scope = nullptr; while (external_callback_scope_ != nullptr && external_callback_scope_->scope_address() < frame_->fp()) { // As long as the setup of a frame is not atomic, we may happen to be // in an interval where an ExternalCallbackScope is already created, // but the frame is not yet entered. So we are actually observing // the previous frame. // Skip all the ExternalCallbackScope's that are below the current fp. last_callback_scope = external_callback_scope_; external_callback_scope_ = external_callback_scope_->previous(); } if (frame_->is_java_script()) break; #if V8_ENABLE_WEBASSEMBLY if (frame_->is_wasm() || frame_->is_wasm_to_js() || frame_->is_js_to_wasm()) { break; } #endif // V8_ENABLE_WEBASSEMBLY if (frame_->is_exit() || frame_->is_builtin_exit() || frame_->is_api_callback_exit()) { // Some of the EXIT frames may have ExternalCallbackScope allocated on // top of them. In that case the scope corresponds to the first EXIT // frame beneath it. There may be other EXIT frames on top of the // ExternalCallbackScope, just skip them as we cannot collect any useful // information about them. if (last_callback_scope) { frame_->state_.pc_address = last_callback_scope->callback_entrypoint_address(); } break; } } } StackFrameIteratorForProfilerForTesting:: StackFrameIteratorForProfilerForTesting(Isolate* isolate, Address pc, Address fp, Address sp, Address lr, Address js_entry_sp) : StackFrameIteratorForProfiler(isolate, pc, fp, sp, lr, js_entry_sp) {} void StackFrameIteratorForProfilerForTesting::Advance() { StackFrameIteratorForProfiler::Advance(); } // ------------------------------------------------------------------------- namespace { base::Optional<Tagged<GcSafeCode>> GetContainingCode(Isolate* isolate, Address pc) { return isolate->inner_pointer_to_code_cache()->GetCacheEntry(pc)->code; } } // namespace Tagged<GcSafeCode> StackFrame::GcSafeLookupCode() const { base::Optional<Tagged<GcSafeCode>> result = GetContainingCode(isolate(), pc()); DCHECK_GE(pc(), result.value()->InstructionStart(isolate(), pc())); DCHECK_LT(pc(), result.value()->InstructionEnd(isolate(), pc())); return result.value(); } Tagged<Code> StackFrame::LookupCode() const { DCHECK_NE(isolate()->heap()->gc_state(), Heap::MARK_COMPACT); return GcSafeLookupCode()->UnsafeCastToCode(); } void StackFrame::IteratePc(RootVisitor* v, Address* pc_address, Address* constant_pool_address, Tagged<GcSafeCode> holder) const { const Address old_pc = ReadPC(pc_address); DCHECK_GE(old_pc, holder->InstructionStart(isolate(), old_pc)); DCHECK_LT(old_pc, holder->InstructionEnd(isolate(), old_pc)); // Keep the old pc offset before visiting the code since we need it to // calculate the new pc after a potential InstructionStream move. const uintptr_t pc_offset_from_start = old_pc - holder->instruction_start(); // Visit. Tagged<GcSafeCode> visited_holder = holder; PtrComprCageBase code_cage_base{isolate()->code_cage_base()}; const Tagged<Object> old_istream = holder->raw_instruction_stream(code_cage_base); Tagged<Object> visited_istream = old_istream; v->VisitRunningCode(FullObjectSlot{&visited_holder}, FullObjectSlot{&visited_istream}); if (visited_istream == old_istream) { // Note this covers two important cases: // 1. the associated InstructionStream object did not move, and // 2. `holder` is an embedded builtin and has no InstructionStream. return; } DCHECK(visited_holder->has_instruction_stream()); Tagged<InstructionStream> istream = InstructionStream::unchecked_cast(visited_istream); const Address new_pc = istream->instruction_start() + pc_offset_from_start; // TODO(v8:10026): avoid replacing a signed pointer. PointerAuthentication::ReplacePC(pc_address, new_pc, kSystemPointerSize); if (V8_EMBEDDED_CONSTANT_POOL_BOOL && constant_pool_address != nullptr) { *constant_pool_address = visited_holder->constant_pool(istream); } } void StackFrame::SetReturnAddressLocationResolver( ReturnAddressLocationResolver resolver) { DCHECK_NULL(return_address_location_resolver_); return_address_location_resolver_ = resolver; } namespace { StackFrame::Type ComputeBuiltinFrameType(Tagged<GcSafeCode> code) { if (code->is_interpreter_trampoline_builtin() || code->is_baseline_trampoline_builtin()) { // Frames for baseline entry trampolines on the stack are still interpreted // frames. return StackFrame::INTERPRETED; } else if (code->is_baseline_leave_frame_builtin()) { return StackFrame::BASELINE; } else if (code->is_turbofanned()) { // TODO(bmeurer): We treat frames for BUILTIN Code objects as // OptimizedFrame for now (all the builtins with JavaScript linkage are // actually generated with TurboFan currently, so this is sound). return StackFrame::TURBOFAN; } return StackFrame::BUILTIN; } StackFrame::Type SafeStackFrameType(StackFrame::Type candidate) { DCHECK_LE(static_cast<uintptr_t>(candidate), StackFrame::NUMBER_OF_TYPES); switch (candidate) { case StackFrame::API_CALLBACK_EXIT: case StackFrame::BUILTIN_CONTINUATION: case StackFrame::BUILTIN_EXIT: case StackFrame::CONSTRUCT: case StackFrame::FAST_CONSTRUCT: case StackFrame::CONSTRUCT_ENTRY: case StackFrame::ENTRY: case StackFrame::EXIT: case StackFrame::INTERNAL: case StackFrame::IRREGEXP: case StackFrame::JAVA_SCRIPT_BUILTIN_CONTINUATION: case StackFrame::JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH: case StackFrame::STUB: return candidate; #if V8_ENABLE_WEBASSEMBLY case StackFrame::JS_TO_WASM: case StackFrame::STACK_SWITCH: case StackFrame::WASM: case StackFrame::WASM_DEBUG_BREAK: case StackFrame::WASM_EXIT: case StackFrame::WASM_LIFTOFF_SETUP: case StackFrame::WASM_TO_JS: return candidate; #endif // V8_ENABLE_WEBASSEMBLY // Any other marker value is likely to be a bogus stack frame when being // called from the profiler (in particular, JavaScript frames, including // interpreted frames, should never have a StackFrame::Type marker). // Consider these frames "native". // TODO(jgruber): For the StackFrameIterator, I'm not sure this fallback // makes sense. Shouldn't we know how to handle all frames we encounter // there? case StackFrame::BASELINE: case StackFrame::BUILTIN: case StackFrame::INTERPRETED: case StackFrame::MAGLEV: case StackFrame::MANUAL: case StackFrame::NATIVE: case StackFrame::NO_FRAME_TYPE: case StackFrame::NUMBER_OF_TYPES: case StackFrame::TURBOFAN: case StackFrame::TURBOFAN_STUB_WITH_CONTEXT: #if V8_ENABLE_WEBASSEMBLY case StackFrame::C_WASM_ENTRY: case StackFrame::WASM_TO_JS_FUNCTION: #endif // V8_ENABLE_WEBASSEMBLY return StackFrame::NATIVE; } UNREACHABLE(); } } // namespace StackFrame::Type StackFrameIterator::ComputeStackFrameType( StackFrame::State* state) const { #if V8_ENABLE_WEBASSEMBLY if (state->fp == kNullAddress) { DCHECK(v8_flags.experimental_wasm_stack_switching); return StackFrame::NO_FRAME_TYPE; } #endif const Address pc = StackFrame::ReadPC(state->pc_address); #if V8_ENABLE_WEBASSEMBLY // If the {pc} does not point into WebAssembly code we can rely on the // returned {wasm_code} to be null and fall back to {GetContainingCode}. wasm::WasmCodeRefScope code_ref_scope; if (wasm::WasmCode* wasm_code = wasm::GetWasmCodeManager()->LookupCode(pc)) { switch (wasm_code->kind()) { case wasm::WasmCode::kWasmFunction: return StackFrame::WASM; case wasm::WasmCode::kWasmToCapiWrapper: return StackFrame::WASM_EXIT; case wasm::WasmCode::kWasmToJsWrapper: return StackFrame::WASM_TO_JS; default: UNREACHABLE(); } } #endif // V8_ENABLE_WEBASSEMBLY // Look up the code object to figure out the type of the stack frame. base::Optional<Tagged<GcSafeCode>> lookup_result = GetContainingCode(isolate(), pc); if (!lookup_result.has_value()) return StackFrame::NATIVE; MSAN_MEMORY_IS_INITIALIZED( state->fp + CommonFrameConstants::kContextOrFrameTypeOffset, kSystemPointerSize); const intptr_t marker = Memory<intptr_t>( state->fp + CommonFrameConstants::kContextOrFrameTypeOffset); switch (lookup_result.value()->kind()) { case CodeKind::BUILTIN: { if (StackFrame::IsTypeMarker(marker)) break; return ComputeBuiltinFrameType(lookup_result.value()); } case CodeKind::BASELINE: return StackFrame::BASELINE; case CodeKind::MAGLEV: if (StackFrame::IsTypeMarker(marker)) { // An INTERNAL frame can be set up with an associated Maglev code // object when calling into runtime to handle tiering. In this case, // all stack slots are tagged pointers and should be visited through // the usual logic. DCHECK_EQ(StackFrame::MarkerToType(marker), StackFrame::INTERNAL); return StackFrame::INTERNAL; } return StackFrame::MAGLEV; case CodeKind::TURBOFAN: return StackFrame::TURBOFAN; #if V8_ENABLE_WEBASSEMBLY case CodeKind::JS_TO_WASM_FUNCTION: if (lookup_result.value()->builtin_id() == Builtin::kJSToWasmWrapperAsm) { return StackFrame::JS_TO_WASM; } return StackFrame::TURBOFAN_STUB_WITH_CONTEXT; case CodeKind::JS_TO_JS_FUNCTION: return StackFrame::TURBOFAN_STUB_WITH_CONTEXT; case CodeKind::C_WASM_ENTRY: return StackFrame::C_WASM_ENTRY; case CodeKind::WASM_TO_JS_FUNCTION: return StackFrame::WASM_TO_JS_FUNCTION; case CodeKind::WASM_FUNCTION: case CodeKind::WASM_TO_CAPI_FUNCTION: // These never appear as on-heap Code objects. UNREACHABLE(); #else case CodeKind::C_WASM_ENTRY: case CodeKind::JS_TO_JS_FUNCTION: case CodeKind::JS_TO_WASM_FUNCTION: case CodeKind::WASM_FUNCTION: case CodeKind::WASM_TO_CAPI_FUNCTION: case CodeKind::WASM_TO_JS_FUNCTION: UNREACHABLE(); #endif // V8_ENABLE_WEBASSEMBLY case CodeKind::BYTECODE_HANDLER: case CodeKind::FOR_TESTING: case CodeKind::REGEXP: case CodeKind::INTERPRETED_FUNCTION: // Fall back to the marker. break; } return SafeStackFrameType(StackFrame::MarkerToType(marker)); } StackFrame::Type StackFrameIteratorForProfiler::ComputeStackFrameType( StackFrame::State* state) const { #if V8_ENABLE_WEBASSEMBLY if (state->fp == kNullAddress) { DCHECK(v8_flags.experimental_wasm_stack_switching); return StackFrame::NO_FRAME_TYPE; } #endif // We use unauthenticated_pc because it may come from // fast_c_call_caller_pc_address, for which authentication does not work. const Address pc = StackFrame::unauthenticated_pc(state->pc_address); #if V8_ENABLE_WEBASSEMBLY Tagged<Code> wrapper = isolate()->builtins()->code(Builtin::kWasmToJsWrapperCSA); if (pc >= wrapper->instruction_start() && pc <= wrapper->instruction_end()) { return StackFrame::WASM_TO_JS; } #endif // V8_ENABLE_WEBASSEMBLY MSAN_MEMORY_IS_INITIALIZED( state->fp + CommonFrameConstants::kContextOrFrameTypeOffset, kSystemPointerSize); const intptr_t marker = Memory<intptr_t>( state->fp + CommonFrameConstants::kContextOrFrameTypeOffset); if (StackFrame::IsTypeMarker(marker)) { if (static_cast<uintptr_t>(marker) > StackFrame::NUMBER_OF_TYPES) { // We've read some bogus value from the stack. return StackFrame::NATIVE; } return SafeStackFrameType(StackFrame::MarkerToType(marker)); } MSAN_MEMORY_IS_INITIALIZED( state->fp + StandardFrameConstants::kFunctionOffset, kSystemPointerSize); Tagged<Object> maybe_function = Tagged<Object>( Memory<Address>(state->fp + StandardFrameConstants::kFunctionOffset)); if (IsSmi(maybe_function)) { return StackFrame::NATIVE; } base::Optional<bool> is_interpreter_frame = IsInterpreterFramePc(isolate(), pc, state); // We might not be able to lookup the frame type since we're inside a signal // handler and the required locks are taken. if (!is_interpreter_frame.has_value()) { return StackFrame::NO_FRAME_TYPE; } if (is_interpreter_frame.value()) { return StackFrame::INTERPRETED; } return StackFrame::TURBOFAN; } StackFrame::Type StackFrame::GetCallerState(State* state) const { ComputeCallerState(state); return iterator_->ComputeStackFrameType(state); } Address CommonFrame::GetCallerStackPointer() const { return fp() + CommonFrameConstants::kCallerSPOffset; } void NativeFrame::ComputeCallerState(State* state) const { state->sp = caller_sp(); state->fp = Memory<Address>(fp() + CommonFrameConstants::kCallerFPOffset); state->pc_address = ResolveReturnAddressLocation( reinterpret_cast<Address*>(fp() + CommonFrameConstants::kCallerPCOffset)); state->callee_pc_address = nullptr; state->constant_pool_address = nullptr; } Tagged<HeapObject> EntryFrame::unchecked_code() const { return isolate()->builtins()->code(Builtin::kJSEntry); } void EntryFrame::ComputeCallerState(State* state) const { GetCallerState(state); } StackFrame::Type EntryFrame::GetCallerState(State* state) const { Address next_exit_frame_fp = Memory<Address>(fp() + EntryFrameConstants::kNextExitFrameFPOffset); return ExitFrame::GetStateForFramePointer(next_exit_frame_fp, state); } #if V8_ENABLE_WEBASSEMBLY StackFrame::Type CWasmEntryFrame::GetCallerState(State* state) const { const int offset = CWasmEntryFrameConstants::kCEntryFPOffset; Address fp = Memory<Address>(this->fp() + offset); return ExitFrame::GetStateForFramePointer(fp, state); } #endif // V8_ENABLE_WEBASSEMBLY Tagged<HeapObject> ConstructEntryFrame::unchecked_code() const { return isolate()->builtins()->code(Builtin::kJSConstructEntry); } void ExitFrame::ComputeCallerState(State* state) const { // Set up the caller state. state->sp = caller_sp(); state->fp = Memory<Address>(fp() + ExitFrameConstants::kCallerFPOffset); state->pc_address = ResolveReturnAddressLocation( reinterpret_cast<Address*>(fp() + ExitFrameConstants::kCallerPCOffset)); state->callee_pc_address = nullptr; if (V8_EMBEDDED_CONSTANT_POOL_BOOL) { state->constant_pool_address = reinterpret_cast<Address*>( fp() + ExitFrameConstants::kConstantPoolOffset); } } void ExitFrame::Iterate(RootVisitor* v) const { // The arguments are traversed as part of the expression stack of // the calling frame. IteratePc(v, pc_address(), constant_pool_address(), GcSafeLookupCode()); } StackFrame::Type ExitFrame::GetStateForFramePointer(Address fp, State* state) { if (fp == 0) return NO_FRAME_TYPE; StackFrame::Type type = ComputeFrameType(fp); #if V8_ENABLE_WEBASSEMBLY Address sp = type == WASM_EXIT ? WasmExitFrame::ComputeStackPointer(fp) : ExitFrame::ComputeStackPointer(fp); #else Address sp = ExitFrame::ComputeStackPointer(fp); #endif // V8_ENABLE_WEBASSEMBLY FillState(fp, sp, state); DCHECK_NE(*state->pc_address, kNullAddress); return type; } StackFrame::Type ExitFrame::ComputeFrameType(Address fp) { // Distinguish between different exit frame types. // Default to EXIT in all hairy cases (e.g., when called from profiler). const int offset = ExitFrameConstants::kFrameTypeOffset; Tagged<Object> marker(Memory<Address>(fp + offset)); if (!IsSmi(marker)) { return EXIT; } intptr_t marker_int = base::bit_cast<intptr_t>(marker); StackFrame::Type frame_type = static_cast<StackFrame::Type>(marker_int >> 1); switch (frame_type) { case BUILTIN_EXIT: case API_CALLBACK_EXIT: #if V8_ENABLE_WEBASSEMBLY case WASM_EXIT: case STACK_SWITCH: #endif // V8_ENABLE_WEBASSEMBLY return frame_type; default: return EXIT; } } Address ExitFrame::ComputeStackPointer(Address fp) { MSAN_MEMORY_IS_INITIALIZED(fp + ExitFrameConstants::kSPOffset, kSystemPointerSize); return Memory<Address>(fp + ExitFrameConstants::kSPOffset); } #if V8_ENABLE_WEBASSEMBLY Address WasmExitFrame::ComputeStackPointer(Address fp) { // For WASM_EXIT frames, {sp} is only needed for finding the PC slot, // everything else is handled via safepoint information. Address sp = fp + WasmExitFrameConstants::kWasmInstanceOffset; DCHECK_EQ(sp - 1 * kPCOnStackSize, fp + WasmExitFrameConstants::kCallingPCOffset); return sp; } #endif // V8_ENABLE_WEBASSEMBLY void ExitFrame::FillState(Address fp, Address sp, State* state) { state->sp = sp; state->fp = fp; state->pc_address = ResolveReturnAddressLocation( reinterpret_cast<Address*>(sp - 1 * kPCOnStackSize)); state->callee_pc_address = nullptr; // The constant pool recorded in the exit frame is not associated // with the pc in this state (the return address into a C entry // stub). ComputeCallerState will retrieve the constant pool // together with the associated caller pc. state->constant_pool_address = nullptr; } void BuiltinExitFrame::Summarize(std::vector<FrameSummary>* frames) const { DCHECK(frames->empty()); Handle<FixedArray> parameters = GetParameters(); DisallowGarbageCollection no_gc; Tagged<Code> code = LookupCode(); int code_offset = code->GetOffsetFromInstructionStart(isolate(), pc()); FrameSummary::JavaScriptFrameSummary summary( isolate(), receiver(), function(), AbstractCode::cast(code), code_offset, IsConstructor(), *parameters); frames->push_back(summary); } Tagged<JSFunction> BuiltinExitFrame::function() const { return JSFunction::cast(target_slot_object()); } Tagged<Object> BuiltinExitFrame::receiver() const { return receiver_slot_object(); } Tagged<Object> BuiltinExitFrame::GetParameter(int i) const { DCHECK(i >= 0 && i < ComputeParametersCount()); int offset = BuiltinExitFrameConstants::kFirstArgumentOffset + i * kSystemPointerSize; return Tagged<Object>(Memory<Address>(fp() + offset)); } int BuiltinExitFrame::ComputeParametersCount() const { Tagged<Object> argc_slot = argc_slot_object(); DCHECK(IsSmi(argc_slot)); // Argc also counts the receiver, target, new target, and argc itself as args, // therefore the real argument count is argc - 4. int argc = Smi::ToInt(argc_slot) - 4; DCHECK_GE(argc, 0); return argc; } Handle<FixedArray> BuiltinExitFrame::GetParameters() const { if (V8_LIKELY(!v8_flags.detailed_error_stack_trace)) { return isolate()->factory()->empty_fixed_array(); } int param_count = ComputeParametersCount(); auto parameters = isolate()->factory()->NewFixedArray(param_count); for (int i = 0; i < param_count; i++) { parameters->set(i, GetParameter(i)); } return parameters; } bool BuiltinExitFrame::IsConstructor() const { return !IsUndefined(new_target_slot_object(), isolate()); } // Ensure layout of v8::FunctionCallbackInfo is in sync with // ApiCallbackExitFrameConstants. static_assert( ApiCallbackExitFrameConstants::kFunctionCallbackInfoNewTargetIndex == FunctionCallbackArguments::kNewTargetIndex); static_assert(ApiCallbackExitFrameConstants::kFunctionCallbackInfoArgsLength == FunctionCallbackArguments::kArgsLength); Tagged<HeapObject> ApiCallbackExitFrame::target() const { Tagged<Object> function = *target_slot(); DCHECK(IsJSFunction(function) || IsFunctionTemplateInfo(function)); return HeapObject::cast(function); } void ApiCallbackExitFrame::set_target(Tagged<HeapObject> function) const { DCHECK(IsJSFunction(function) || IsFunctionTemplateInfo(function)); target_slot().store(function); } Handle<JSFunction> ApiCallbackExitFrame::GetFunction() const { Tagged<HeapObject> maybe_function = target(); if (IsJSFunction(maybe_function)) { return Handle<JSFunction>(target_slot().location()); } DCHECK(IsFunctionTemplateInfo(maybe_function)); Handle<FunctionTemplateInfo> function_template_info( FunctionTemplateInfo::cast(maybe_function), isolate()); // Instantiate function for the correct context. DCHECK(IsContext(*context_slot())); Handle<NativeContext> native_context( Context::cast(*context_slot())->native_context(), isolate()); Handle<JSFunction> function = ApiNatives::InstantiateFunction(isolate(), native_context, function_template_info) .ToHandleChecked(); set_target(*function); return function; } Tagged<Object> ApiCallbackExitFrame::receiver() const { return *receiver_slot(); } Tagged<Object> ApiCallbackExitFrame::GetParameter(int i) const { DCHECK(i >= 0 && i < ComputeParametersCount()); int offset = ApiCallbackExitFrameConstants::kFirstArgumentOffset + i * kSystemPointerSize; return Tagged<Object>(Memory<Address>(fp() + offset)); } int ApiCallbackExitFrame::ComputeParametersCount() const { Tagged<Object> argc_value = *argc_slot(); DCHECK(IsSmi(argc_value)); int argc = Smi::ToInt(argc_value); DCHECK_GE(argc, 0); return argc; } Handle<FixedArray> ApiCallbackExitFrame::GetParameters() const { if (V8_LIKELY(!v8_flags.detailed_error_stack_trace)) { return isolate()->factory()->empty_fixed_array(); } int param_count = ComputeParametersCount(); auto parameters = isolate()->factory()->NewFixedArray(param_count); for (int i = 0; i < param_count; i++) { parameters->set(i, GetParameter(i)); } return parameters; } bool ApiCallbackExitFrame::IsConstructor() const { return !IsUndefined(*new_target_slot(), isolate()); } void ApiCallbackExitFrame::Summarize(std::vector<FrameSummary>* frames) const { DCHECK(frames->empty()); Handle<FixedArray> parameters = GetParameters(); Handle<JSFunction> function = GetFunction(); DisallowGarbageCollection no_gc; Tagged<Code> code = LookupCode(); int code_offset = code->GetOffsetFromInstructionStart(isolate(), pc()); FrameSummary::JavaScriptFrameSummary summary( isolate(), receiver(), *function, AbstractCode::cast(code), code_offset, IsConstructor(), *parameters); frames->push_back(summary); } namespace { void PrintIndex(StringStream* accumulator, StackFrame::PrintMode mode, int index) { accumulator->Add((mode == StackFrame::OVERVIEW) ? "%5d: " : "[%d]: ", index); } const char* StringForStackFrameType(StackFrame::Type type) { switch (type) { #define CASE(value, name) \ case StackFrame::value: \ return #name; STACK_FRAME_TYPE_LIST(CASE) #undef CASE default: UNREACHABLE(); } } } // namespace void StackFrame::Print(StringStream* accumulator, PrintMode mode, int index) const { DisallowGarbageCollection no_gc; PrintIndex(accumulator, mode, index); accumulator->Add(StringForStackFrameType(type())); accumulator->Add(" [pc: %p]\n", reinterpret_cast<void*>(pc())); } void BuiltinExitFrame::Print(StringStream* accumulator, PrintMode mode, int index) const { DisallowGarbageCollection no_gc; Tagged<Object> receiver = this->receiver(); Tagged<JSFunction> function = this->function(); accumulator->PrintSecurityTokenIfChanged(function); PrintIndex(accumulator, mode, index); accumulator->Add("builtin exit frame: "); if (IsConstructor()) accumulator->Add("new "); accumulator->PrintFunction(function, receiver); accumulator->Add("(this=%o", receiver); // Print the parameters. int parameters_count = ComputeParametersCount(); for (int i = 0; i < parameters_count; i++) { accumulator->Add(",%o", GetParameter(i)); } accumulator->Add(")\n\n"); } void ApiCallbackExitFrame::Print(StringStream* accumulator, PrintMode mode, int index) const { Handle<JSFunction> function = GetFunction(); DisallowGarbageCollection no_gc; Tagged<Object> receiver = this->receiver(); accumulator->PrintSecurityTokenIfChanged(*function); PrintIndex(accumulator, mode, index); accumulator->Add("api callback exit frame: "); if (IsConstructor()) accumulator->Add("new "); accumulator->PrintFunction(*function, receiver); accumulator->Add("(this=%o", receiver); // Print the parameters. int parameters_count = ComputeParametersCount(); for (int i = 0; i < parameters_count; i++) { accumulator->Add(",%o", GetParameter(i)); } accumulator->Add(")\n\n"); } Address CommonFrame::GetExpressionAddress(int n) const { const int offset = StandardFrameConstants::kExpressionsOffset; return fp() + offset - n * kSystemPointerSize; } Address UnoptimizedFrame::GetExpressionAddress(int n) const { const int offset = UnoptimizedFrameConstants::kExpressionsOffset; return fp() + offset - n * kSystemPointerSize; } Tagged<Object> CommonFrame::context() const { return ReadOnlyRoots(isolate()).undefined_value(); } int CommonFrame::position() const { Tagged<Code> code = LookupCode(); int code_offset = code->GetOffsetFromInstructionStart(isolate(), pc()); return AbstractCode::cast(code)->SourcePosition(isolate(), code_offset); } int CommonFrame::ComputeExpressionsCount() const { Address base = GetExpressionAddress(0); Address limit = sp() - kSystemPointerSize; DCHECK(base >= limit); // stack grows downwards // Include register-allocated locals in number of expressions. return static_cast<int>((base - limit) / kSystemPointerSize); } void CommonFrame::ComputeCallerState(State* state) const { state->fp = caller_fp(); #if V8_ENABLE_WEBASSEMBLY if (state->fp == kNullAddress) { // An empty FP signals the first frame of a stack segment. The caller is // on a different stack, or is unbound (suspended stack). DCHECK(v8_flags.experimental_wasm_stack_switching); return; } #endif state->sp = caller_sp(); state->pc_address = ResolveReturnAddressLocation(reinterpret_cast<Address*>( fp() + StandardFrameConstants::kCallerPCOffset)); state->callee_fp = fp(); state->callee_pc_address = pc_address(); state->constant_pool_address = reinterpret_cast<Address*>( fp() + StandardFrameConstants::kConstantPoolOffset); } void CommonFrame::Summarize(std::vector<FrameSummary>* functions) const { // This should only be called on frames which override this method. UNREACHABLE(); } namespace { void VisitSpillSlot(Isolate* isolate, RootVisitor* v, FullObjectSlot spill_slot) { #ifdef V8_COMPRESS_POINTERS PtrComprCageBase cage_base(isolate); bool was_compressed = false; // Spill slots may contain compressed values in which case the upper // 32-bits will contain zeros. In order to simplify handling of such // slots in GC we ensure that the slot always contains full value. // The spill slot may actually contain weak references so we load/store // values using spill_slot.location() in order to avoid dealing with // FullMaybeObjectSlots here. if (V8_EXTERNAL_CODE_SPACE_BOOL) { // When external code space is enabled the spill slot could contain both // InstructionStream and non-InstructionStream references, which have // different cage bases. So unconditional decompression of the value might // corrupt InstructionStream pointers. However, given that 1) the // InstructionStream pointers are never compressed by design (because // otherwise we wouldn't know which cage base to apply for // decompression, see respective DCHECKs in // RelocInfo::target_object()), // 2) there's no need to update the upper part of the full pointer // because if it was there then it'll stay the same, // we can avoid updating upper part of the spill slot if it already // contains full value. // TODO(v8:11880): Remove this special handling by enforcing builtins // to use CodeTs instead of InstructionStream objects. Address value = *spill_slot.location(); if (!HAS_SMI_TAG(value) && value <= 0xffffffff) { // We don't need to update smi values or full pointers. was_compressed = true; *spill_slot.location() = V8HeapCompressionScheme::DecompressTagged( cage_base, static_cast<Tagged_t>(value)); if (DEBUG_BOOL) { // Ensure that the spill slot contains correct heap object. Tagged<HeapObject> raw = HeapObject::cast(Tagged<Object>(*spill_slot.location())); MapWord map_word = raw->map_word(cage_base, kRelaxedLoad); Tagged<HeapObject> forwarded = map_word.IsForwardingAddress() ? map_word.ToForwardingAddress(raw) : raw; bool is_self_forwarded = forwarded->map_word(cage_base, kRelaxedLoad) == MapWord::FromForwardingAddress(forwarded, forwarded); if (is_self_forwarded) { // The object might be in a self-forwarding state if it's located // in new large object space. GC will fix this at a later stage. CHECK(BasicMemoryChunk::FromHeapObject(forwarded) ->InNewLargeObjectSpace()); } else { Tagged<HeapObject> forwarded_map = forwarded->map(cage_base); // The map might be forwarded as well. MapWord fwd_map_map_word = forwarded_map->map_word(cage_base, kRelaxedLoad); if (fwd_map_map_word.IsForwardingAddress()) { forwarded_map = fwd_map_map_word.ToForwardingAddress(forwarded_map); } CHECK(IsMap(forwarded_map, cage_base)); } } } } else { Address slot_contents = *spill_slot.location(); Tagged_t compressed_value = static_cast<Tagged_t>(slot_contents); if (!HAS_SMI_TAG(compressed_value)) { was_compressed = slot_contents <= 0xFFFFFFFF; // We don't need to update smi values. *spill_slot.location() = V8HeapCompressionScheme::DecompressTagged( cage_base, compressed_value); } } #endif v->VisitRootPointer(Root::kStackRoots, nullptr, spill_slot); #if V8_COMPRESS_POINTERS if (was_compressed) { // Restore compression. Generated code should be able to trust that // compressed spill slots remain compressed. *spill_slot.location() = V8HeapCompressionScheme::CompressObject(*spill_slot.location()); } #endif } void VisitSpillSlots(Isolate* isolate, RootVisitor* v, FullObjectSlot first_slot_offset, base::Vector<const uint8_t> tagged_slots) { FullObjectSlot slot_offset = first_slot_offset; for (uint8_t bits : tagged_slots) { while (bits) { const int bit = base::bits::CountTrailingZeros(bits); bits &= ~(1 << bit); FullObjectSlot spill_slot = slot_offset + bit; VisitSpillSlot(isolate, v, spill_slot); } slot_offset += kBitsPerByte; } } SafepointEntry GetSafepointEntryFromCodeCache( Isolate* isolate, Address inner_pointer, InnerPointerToCodeCache::InnerPointerToCodeCacheEntry* entry) { if (!entry->safepoint_entry.is_initialized()) { entry->safepoint_entry = SafepointTable::FindEntry(isolate, entry->code.value(), inner_pointer); DCHECK(entry->safepoint_entry.is_initialized()); } else { DCHECK_EQ( entry->safepoint_entry, SafepointTable::FindEntry(isolate, entry->code.value(), inner_pointer)); } return entry->safepoint_entry; } MaglevSafepointEntry GetMaglevSafepointEntryFromCodeCache( Isolate* isolate, Address inner_pointer, InnerPointerToCodeCache::InnerPointerToCodeCacheEntry* entry) { if (!entry->maglev_safepoint_entry.is_initialized()) { entry->maglev_safepoint_entry = MaglevSafepointTable::FindEntry( isolate, entry->code.value(), inner_pointer); DCHECK(entry->maglev_safepoint_entry.is_initialized()); } else { DCHECK_EQ(entry->maglev_safepoint_entry, MaglevSafepointTable::FindEntry(isolate, entry->code.value(), inner_pointer)); } return entry->maglev_safepoint_entry; } } // namespace #ifdef V8_ENABLE_WEBASSEMBLY void WasmFrame::Iterate(RootVisitor* v) const { DCHECK(!iterator_->IsStackFrameIteratorForProfiler()); // === WasmFrame === // +-----------------+----------------------------------------- // | out_param n | <-- parameters_base / sp // | ... | // | out_param 0 | (these can be tagged or untagged) // +-----------------+----------------------------------------- // | spill_slot n | <-- parameters_limit ^ // | ... | spill_slot_space // | spill_slot 0 | v // +-----------------+----------------------------------------- // | WasmFeedback(*) | <-- frame_header_base ^ // |- - - - - - - - -| | // | WasmInstance | | // |- - - - - - - - -| | // | Type Marker | | // |- - - - - - - - -| frame_header_size // | [Constant Pool] | | // |- - - - - - - - -| | // | saved frame ptr | <-- fp | // |- - - - - - - - -| | // | return addr | <- tagged_parameter_limit v // +-----------------+----------------------------------------- // | in_param n | // | ... | // | in_param 0 | <-- first_tagged_parameter_slot // +-----------------+----------------------------------------- // // (*) Only if compiled by Liftoff and with --experimental-wasm-inlining. auto* wasm_code = wasm::GetWasmCodeManager()->LookupCode(pc()); DCHECK(wasm_code); SafepointTable table(wasm_code); SafepointEntry safepoint_entry = table.FindEntry(pc()); #ifdef DEBUG intptr_t marker = Memory<intptr_t>(fp() + CommonFrameConstants::kContextOrFrameTypeOffset); DCHECK(StackFrame::IsTypeMarker(marker)); StackFrame::Type type = StackFrame::MarkerToType(marker); DCHECK(type == WASM_TO_JS || type == WASM || type == WASM_EXIT); #endif // Determine the fixed header and spill slot area size. // The last value in the frame header is the calling PC, which should // not be visited. static_assert(WasmExitFrameConstants::kFixedSlotCountFromFp == WasmFrameConstants::kFixedSlotCountFromFp + 1, "WasmExitFrame has one slot more than WasmFrame"); int frame_header_size = WasmFrameConstants::kFixedFrameSizeFromFp; if (wasm_code->is_liftoff() && wasm_code->frame_has_feedback_slot()) { // Frame has Wasm feedback slot. frame_header_size += kSystemPointerSize; } int spill_slot_space = wasm_code->stack_slots() * kSystemPointerSize - (frame_header_size + StandardFrameConstants::kFixedFrameSizeAboveFp); // Fixed frame slots. FullObjectSlot frame_header_base(&Memory<Address>(fp() - frame_header_size)); FullObjectSlot frame_header_limit( &Memory<Address>(fp() - StandardFrameConstants::kCPSlotSize)); // Parameters passed to the callee. FullObjectSlot parameters_base(&Memory<Address>(sp())); FullObjectSlot parameters_limit(frame_header_base.address() - spill_slot_space); // Visit the rest of the parameters if they are tagged. bool has_tagged_outgoing_params = wasm_code->kind() != wasm::WasmCode::kWasmFunction && wasm_code->kind() != wasm::WasmCode::kWasmToCapiWrapper; if (has_tagged_outgoing_params) { v->VisitRootPointers(Root::kStackRoots, nullptr, parameters_base, parameters_limit); } // Visit pointer spill slots and locals. DCHECK_GE((wasm_code->stack_slots() + kBitsPerByte) / kBitsPerByte, safepoint_entry.tagged_slots().size()); VisitSpillSlots(isolate(), v, parameters_limit, safepoint_entry.tagged_slots()); // Visit tagged parameters that have been passed to the function of this // frame. Conceptionally these parameters belong to the parent frame. However, // the exact count is only known by this frame (in the presence of tail calls, // this information cannot be derived from the call site). if (wasm_code->num_tagged_parameter_slots() > 0) { FullObjectSlot tagged_parameter_base(&Memory<Address>(caller_sp())); tagged_parameter_base += wasm_code->first_tagged_parameter_slot(); FullObjectSlot tagged_parameter_limit = tagged_parameter_base + wasm_code->num_tagged_parameter_slots(); v->VisitRootPointers(Root::kStackRoots, nullptr, tagged_parameter_base, tagged_parameter_limit); } // Visit the instance object. v->VisitRootPointers(Root::kStackRoots, nullptr, frame_header_base, frame_header_limit); } void TypedFrame::IterateParamsOfWasmToJSWrapper(RootVisitor* v) const { Tagged<Object> maybe_signature = Tagged<Object>( Memory<Address>(fp() + WasmToJSWrapperConstants::kSignatureOffset)); if (IsSmi(maybe_signature)) { // The signature slot contains a Smi and not a signature. This means all // incoming parameters have been processed, and we don't have to keep them // alive anymore. return; } FullObjectSlot sig_slot(fp() + WasmToJSWrapperConstants::kSignatureOffset); VisitSpillSlot(isolate(), v, sig_slot); // Load the signature, considering forward pointers. PtrComprCageBase cage_base(isolate()); Tagged<HeapObject> raw = HeapObject::cast(maybe_signature); MapWord map_word = raw->map_word(cage_base, kRelaxedLoad); Tagged<HeapObject> forwarded = map_word.IsForwardingAddress() ? map_word.ToForwardingAddress(raw) : raw; Tagged<PodArray<wasm::ValueType>> sig = PodArray<wasm::ValueType>::cast(forwarded); size_t parameter_count = wasm::SerializedSignatureHelper::ParamCount(sig); wasm::LinkageLocationAllocator allocator(wasm::kGpParamRegisters, wasm::kFpParamRegisters, 0); // The first parameter is the instance, which we don't have to scan. We have // to tell the LinkageLocationAllocator about it though. allocator.Next(MachineRepresentation::kTaggedPointer); // Parameters are separated into two groups (first all untagged, then all // tagged parameters). Therefore we first have to iterate over the signature // first to process all untagged parameters, and afterwards we can scan the // tagged parameters. bool has_tagged_param = false; for (size_t i = 0; i < parameter_count; i++) { wasm::ValueType type = wasm::SerializedSignatureHelper::GetParam(sig, i); MachineRepresentation param = type.machine_representation(); // Skip tagged parameters (e.g. any-ref). if (IsAnyTagged(param)) { has_tagged_param = true; continue; } if (kSystemPointerSize == 8 || param != MachineRepresentation::kWord64) { allocator.Next(param); } else { allocator.Next(MachineRepresentation::kWord32); allocator.Next(MachineRepresentation::kWord32); } } // End the untagged area, so tagged slots come after. This means, especially, // that tagged parameters should not fill holes in the untagged area. allocator.EndSlotArea(); if (!has_tagged_param) return; #if V8_TARGET_ARCH_ARM64 constexpr size_t size_of_sig = 2; #else constexpr size_t size_of_sig = 1; #endif for (size_t i = 0; i < parameter_count; i++) { wasm::ValueType type = wasm::SerializedSignatureHelper::GetParam(sig, i); MachineRepresentation param = type.machine_representation(); // Skip untagged parameters. if (!IsAnyTagged(param)) continue; LinkageLocation l = allocator.Next(param); if (l.IsRegister()) { // Calculate the slot offset. int slot_offset = 0; // We have to do a reverse lookup in the kGPParamRegisters array. This // can be optimized if necessary. for (size_t i = 1; i < arraysize(wasm::kGpParamRegisters); ++i) { if (wasm::kGpParamRegisters[i].code() == l.AsRegister()) { // The first register (the instance) does not get spilled. slot_offset = static_cast<int>(i) - 1; break; } } // Caller FP + return address + signature. size_t param_start_offset = 2 + size_of_sig; FullObjectSlot param_start(fp() + param_start_offset * kSystemPointerSize); FullObjectSlot tagged_slot = param_start + slot_offset; VisitSpillSlot(isolate(), v, tagged_slot); } else { // Caller frame slots have negative indices and start at -1. Flip it // back to a positive offset (to be added to the frame's FP to find the // slot). int slot_offset = -l.GetLocation() - 1; // Caller FP + return address + signature + spilled registers (without // the instance register). size_t slots_per_float64 = kDoubleSize / kSystemPointerSize; size_t param_start_offset = arraysize(wasm::kGpParamRegisters) - 1 + (arraysize(wasm::kFpParamRegisters) * slots_per_float64) + 2 + size_of_sig; // The wasm-to-js wrapper pushes all but the first gp parameter register // on the stack, so if the number of gp parameter registers is even, this // means that the wrapper pushed an odd number. In that case, and when the // size of a double on the stack is two words, then there is an alignment // word between the pushed gp registers and the pushed fp registers, so // that the whole spill area is double-size aligned. if (arraysize(wasm::kGpParamRegisters) % 2 == (0) && kSystemPointerSize != kDoubleSize) { param_start_offset++; } FullObjectSlot param_start(fp() + param_start_offset * kSystemPointerSize); FullObjectSlot tagged_slot = param_start + slot_offset; VisitSpillSlot(isolate(), v, tagged_slot); } } } #endif // V8_ENABLE_WEBASSEMBLY void TypedFrame::Iterate(RootVisitor* v) const { DCHECK(!iterator_->IsStackFrameIteratorForProfiler()); // === TypedFrame === // +-----------------+----------------------------------------- // | out_param n | <-- parameters_base / sp // | ... | // | out_param 0 | // +-----------------+----------------------------------------- // | spill_slot n | <-- parameters_limit ^ // | ... | spill_slot_count // | spill_slot 0 | v // +-----------------+----------------------------------------- // | Type Marker | <-- frame_header_base ^ // |- - - - - - - - -| | // | [Constant Pool] | | // |- - - - - - - - -| kFixedSlotCount // | saved frame ptr | <-- fp | // |- - - - - - - - -| | // | return addr | v // +-----------------+----------------------------------------- // Find the code and compute the safepoint information. Address inner_pointer = pc(); InnerPointerToCodeCache::InnerPointerToCodeCacheEntry* entry = isolate()->inner_pointer_to_code_cache()->GetCacheEntry(inner_pointer); CHECK(entry->code.has_value()); Tagged<GcSafeCode> code = entry->code.value(); #if V8_ENABLE_WEBASSEMBLY if (code->is_builtin() && code->builtin_id() == Builtin::kWasmToJsWrapperCSA) { IterateParamsOfWasmToJSWrapper(v); } #endif // V8_ENABLE_WEBASSEMBLY DCHECK(code->is_turbofanned()); SafepointEntry safepoint_entry = GetSafepointEntryFromCodeCache(isolate(), inner_pointer, entry); #ifdef DEBUG intptr_t marker = Memory<intptr_t>(fp() + CommonFrameConstants::kContextOrFrameTypeOffset); DCHECK(StackFrame::IsTypeMarker(marker)); #endif // DEBUG // Determine the fixed header and spill slot area size. int frame_header_size = TypedFrameConstants::kFixedFrameSizeFromFp; int spill_slots_size = code->stack_slots() * kSystemPointerSize - (frame_header_size + StandardFrameConstants::kFixedFrameSizeAboveFp); // Fixed frame slots. FullObjectSlot frame_header_base(&Memory<Address>(fp() - frame_header_size)); FullObjectSlot frame_header_limit( &Memory<Address>(fp() - StandardFrameConstants::kCPSlotSize)); // Parameters passed to the callee. FullObjectSlot parameters_base(&Memory<Address>(sp())); FullObjectSlot parameters_limit(frame_header_base.address() - spill_slots_size); // Visit the rest of the parameters. if (HasTaggedOutgoingParams(code)) { v->VisitRootPointers(Root::kStackRoots, nullptr, parameters_base, parameters_limit); } // Visit pointer spill slots and locals. DCHECK_GE((code->stack_slots() + kBitsPerByte) / kBitsPerByte, safepoint_entry.tagged_slots().size()); VisitSpillSlots(isolate(), v, parameters_limit, safepoint_entry.tagged_slots()); // Visit fixed header region. v->VisitRootPointers(Root::kStackRoots, nullptr, frame_header_base, frame_header_limit); // Visit the return address in the callee and incoming arguments. IteratePc(v, pc_address(), constant_pool_address(), code); } void MaglevFrame::Iterate(RootVisitor* v) const { DCHECK(!iterator_->IsStackFrameIteratorForProfiler()); // === MaglevFrame === // +-----------------+----------------------------------------- // | out_param n | <-- parameters_base / sp // | ... | // | out_param 0 | // +-----------------+----------------------------------------- // | pushed_double n | <-- parameters_limit ^ // | ... | | // | pushed_double 0 | | // +- - - - - - - - -+ num_extra_spill_slots // | pushed_reg n | | // | ... | | // | pushed_reg 0 | <-- pushed_register_base v // +-----------------+----------------------------------------- // | untagged_slot n | ^ // | ... | | // | untagged_slot 0 | | // +- - - - - - - - -+ spill_slot_count // | tagged_slot n | | // | ... | | // | tagged_slot 0 | v // +-----------------+----------------------------------------- // | argc | <-- frame_header_base ^ // |- - - - - - - - -| | // | JSFunction | | // |- - - - - - - - -| | // | Context | | // |- - - - - - - - -| kFixedSlotCount // | [Constant Pool] | | // |- - - - - - - - -| | // | saved frame ptr | <-- fp | // |- - - - - - - - -| | // | return addr | v // +-----------------+----------------------------------------- // Find the code and compute the safepoint information. Address inner_pointer = pc(); InnerPointerToCodeCache::InnerPointerToCodeCacheEntry* entry = isolate()->inner_pointer_to_code_cache()->GetCacheEntry(inner_pointer); CHECK(entry->code.has_value()); Tagged<GcSafeCode> code = entry->code.value(); DCHECK(code->is_maglevved()); MaglevSafepointEntry maglev_safepoint_entry = GetMaglevSafepointEntryFromCodeCache(isolate(), inner_pointer, entry); #ifdef DEBUG // Assert that it is a JS frame and it has a context. intptr_t marker = Memory<intptr_t>(fp() + CommonFrameConstants::kContextOrFrameTypeOffset); DCHECK(!StackFrame::IsTypeMarker(marker)); #endif // DEBUG // Fixed frame slots. FullObjectSlot frame_header_base( &Memory<Address>(fp() - StandardFrameConstants::kFixedFrameSizeFromFp)); FullObjectSlot frame_header_limit( &Memory<Address>(fp() - StandardFrameConstants::kCPSlotSize)); // Determine spill slot area count. uint32_t tagged_slot_count = maglev_safepoint_entry.num_tagged_slots(); uint32_t spill_slot_count = tagged_slot_count + maglev_safepoint_entry.num_untagged_slots(); DCHECK_EQ(code->stack_slots(), StandardFrameConstants::kFixedSlotCount + maglev_safepoint_entry.num_tagged_slots() + maglev_safepoint_entry.num_untagged_slots()); // Visit the outgoing parameters if they are tagged. DCHECK(code->has_tagged_outgoing_params()); FullObjectSlot parameters_base(&Memory<Address>(sp())); FullObjectSlot parameters_limit = frame_header_base - spill_slot_count - maglev_safepoint_entry.num_extra_spill_slots(); v->VisitRootPointers(Root::kStackRoots, nullptr, parameters_base, parameters_limit); // Maglev can also spill registers, tagged and untagged, just before making // a call. These are distinct from normal spill slots and live between the // normal spill slots and the pushed parameters. Some of these are tagged, // as indicated by the tagged register indexes, and should be visited too. if (maglev_safepoint_entry.num_extra_spill_slots() > 0) { FullObjectSlot pushed_register_base = frame_header_base - spill_slot_count - 1; uint32_t tagged_register_indexes = maglev_safepoint_entry.tagged_register_indexes(); while (tagged_register_indexes != 0) { int index = base::bits::CountTrailingZeros(tagged_register_indexes); tagged_register_indexes &= ~(1 << index); FullObjectSlot spill_slot = pushed_register_base - index; VisitSpillSlot(isolate(), v, spill_slot); } } // Visit tagged spill slots. for (uint32_t i = 0; i < tagged_slot_count; ++i) { FullObjectSlot spill_slot = frame_header_base - 1 - i; VisitSpillSlot(isolate(), v, spill_slot); } // Visit fixed header region (the context and JSFunction), skipping the // argument count since it is stored untagged. v->VisitRootPointers(Root::kStackRoots, nullptr, frame_header_base + 1, frame_header_limit); // Visit the return address in the callee and incoming arguments. IteratePc(v, pc_address(), constant_pool_address(), code); } Handle<JSFunction> MaglevFrame::GetInnermostFunction() const { std::vector<FrameSummary> frames; Summarize(&frames); return frames.back().AsJavaScript().function(); } BytecodeOffset MaglevFrame::GetBytecodeOffsetForOSR() const { int deopt_index = SafepointEntry::kNoDeoptIndex; const Tagged<DeoptimizationData> data = GetDeoptimizationData(&deopt_index); if (deopt_index == SafepointEntry::kNoDeoptIndex) { CHECK(data.is_null()); FATAL("Missing deoptimization information for OptimizedFrame::Summarize."); } DeoptimizationFrameTranslation::Iterator it( data->FrameTranslation(), data->TranslationIndex(deopt_index).value()); // Search the innermost interpreter frame and get its bailout id. The // translation stores frames bottom up. int js_frames = it.EnterBeginOpcode().js_frame_count; DCHECK_GT(js_frames, 0); BytecodeOffset offset = BytecodeOffset::None(); while (js_frames > 0) { TranslationOpcode frame = it.SeekNextJSFrame(); --js_frames; if (IsTranslationInterpreterFrameOpcode(frame)) { offset = BytecodeOffset(it.NextOperand()); it.SkipOperands(TranslationOpcodeOperandCount(frame) - 1); } else { it.SkipOperands(TranslationOpcodeOperandCount(frame)); } } return offset; } bool CommonFrame::HasTaggedOutgoingParams( Tagged<GcSafeCode> code_lookup) const { #if V8_ENABLE_WEBASSEMBLY // With inlined JS-to-Wasm calls, we can be in an OptimizedFrame and // directly call a Wasm function from JavaScript. In this case the Wasm frame // is responsible for visiting incoming potentially tagged parameters. // (This is required for tail-call support: If the direct callee tail-called // another function which then caused a GC, the caller would not be able to // determine where there might be tagged parameters.) wasm::WasmCode* wasm_callee = wasm::GetWasmCodeManager()->LookupCode(callee_pc()); if (wasm_callee) return false; Tagged<Code> wrapper = isolate()->builtins()->code(Builtin::kWasmToJsWrapperCSA); if (callee_pc() >= wrapper->instruction_start() && callee_pc() <= wrapper->instruction_end()) { return false; } return code_lookup->has_tagged_outgoing_params(); #else return code_lookup->has_tagged_outgoing_params(); #endif // V8_ENABLE_WEBASSEMBLY } Tagged<HeapObject> TurbofanStubWithContextFrame::unchecked_code() const { base::Optional<Tagged<GcSafeCode>> code_lookup = isolate()->heap()->GcSafeTryFindCodeForInnerPointer(pc()); if (!code_lookup.has_value()) return {}; return code_lookup.value(); } void CommonFrame::IterateTurbofanOptimizedFrame(RootVisitor* v) const { DCHECK(!iterator_->IsStackFrameIteratorForProfiler()); // === TurbofanFrame === // +-----------------+----------------------------------------- // | out_param n | <-- parameters_base / sp // | ... | // | out_param 0 | // +-----------------+----------------------------------------- // | spill_slot n | <-- parameters_limit ^ // | ... | spill_slot_count // | spill_slot 0 | v // +-----------------+----------------------------------------- // | argc | <-- frame_header_base ^ // |- - - - - - - - -| | // | JSFunction | | // |- - - - - - - - -| | // | Context | | // |- - - - - - - - -| kFixedSlotCount // | [Constant Pool] | | // |- - - - - - - - -| | // | saved frame ptr | <-- fp | // |- - - - - - - - -| | // | return addr | v // +-----------------+----------------------------------------- // Find the code and compute the safepoint information. Address inner_pointer = pc(); InnerPointerToCodeCache::InnerPointerToCodeCacheEntry* entry = isolate()->inner_pointer_to_code_cache()->GetCacheEntry(inner_pointer); CHECK(entry->code.has_value()); Tagged<GcSafeCode> code = entry->code.value(); DCHECK(code->is_turbofanned()); SafepointEntry safepoint_entry = GetSafepointEntryFromCodeCache(isolate(), inner_pointer, entry); #ifdef DEBUG // Assert that it is a JS frame and it has a context. intptr_t marker = Memory<intptr_t>(fp() + CommonFrameConstants::kContextOrFrameTypeOffset); DCHECK(!StackFrame::IsTypeMarker(marker)); #endif // DEBUG // Determine the fixed header and spill slot area size. int frame_header_size = StandardFrameConstants::kFixedFrameSizeFromFp; int spill_slot_count = code->stack_slots() - StandardFrameConstants::kFixedSlotCount; // Fixed frame slots. FullObjectSlot frame_header_base(&Memory<Address>(fp() - frame_header_size)); FullObjectSlot frame_header_limit( &Memory<Address>(fp() - StandardFrameConstants::kCPSlotSize)); // Parameters passed to the callee. FullObjectSlot parameters_base(&Memory<Address>(sp())); FullObjectSlot parameters_limit = frame_header_base - spill_slot_count; // Visit the outgoing parameters if they are tagged. if (HasTaggedOutgoingParams(code)) { v->VisitRootPointers(Root::kStackRoots, nullptr, parameters_base, parameters_limit); } // Spill slots are in the region ]frame_header_base, parameters_limit]; // Visit pointer spill slots and locals. DCHECK_GE((code->stack_slots() + kBitsPerByte) / kBitsPerByte, safepoint_entry.tagged_slots().size()); VisitSpillSlots(isolate(), v, parameters_limit, safepoint_entry.tagged_slots()); // Visit fixed header region (the context and JSFunction), skipping the // argument count since it is stored untagged. v->VisitRootPointers(Root::kStackRoots, nullptr, frame_header_base + 1, frame_header_limit); // Visit the return address in the callee and incoming arguments. IteratePc(v, pc_address(), constant_pool_address(), code); } void TurbofanStubWithContextFrame::Iterate(RootVisitor* v) const { return IterateTurbofanOptimizedFrame(v); } void TurbofanFrame::Iterate(RootVisitor* v) const { return IterateTurbofanOptimizedFrame(v); } Tagged<HeapObject> StubFrame::unchecked_code() const { base::Optional<Tagged<GcSafeCode>> code_lookup = isolate()->heap()->GcSafeTryFindCodeForInnerPointer(pc()); if (!code_lookup.has_value()) return {}; return code_lookup.value(); } int StubFrame::LookupExceptionHandlerInTable() { Tagged<Code> code = LookupCode(); DCHECK(code->is_turbofanned()); DCHECK(code->has_handler_table()); HandlerTable table(code); int pc_offset = code->GetOffsetFromInstructionStart(isolate(), pc()); return table.LookupReturn(pc_offset); } void StubFrame::Summarize(std::vector<FrameSummary>* frames) const { #if V8_ENABLE_WEBASSEMBLY Tagged<Code> code = LookupCode(); if (code->kind() != CodeKind::BUILTIN) return; // We skip most stub frames from stack traces, but a few builtins // specifically exist to pretend to be another builtin throwing an // exception. switch (code->builtin_id()) { case Builtin::kThrowDataViewGetInt32DetachedError: case Builtin::kThrowDataViewGetInt32OutOfBounds: case Builtin::kThrowDataViewGetInt32TypeError: case Builtin::kThrowIndexOfCalledOnNull: case Builtin::kThrowToLowerCaseCalledOnNull: case Builtin::kWasmIntToString: { // When adding builtins here, also implement naming support for them. DCHECK_NE(nullptr, Builtins::NameForStackTrace(code->builtin_id())); FrameSummary::BuiltinFrameSummary summary(isolate(), code->builtin_id()); frames->push_back(summary); break; } default: break; } #endif // V8_ENABLE_WEBASSEMBLY } void JavaScriptFrame::SetParameterValue(int index, Tagged<Object> value) const { Memory<Address>(GetParameterSlot(index)) = value.ptr(); } bool JavaScriptFrame::IsConstructor() const { return IsConstructFrame(caller_fp()); } Tagged<HeapObject> CommonFrameWithJSLinkage::unchecked_code() const { return function()->code(); } int TurbofanFrame::ComputeParametersCount() const { if (GcSafeLookupCode()->kind() == CodeKind::BUILTIN) { return static_cast<int>( Memory<intptr_t>(fp() + StandardFrameConstants::kArgCOffset)) - kJSArgcReceiverSlots; } else { return JavaScriptFrame::ComputeParametersCount(); } } Address JavaScriptFrame::GetCallerStackPointer() const { return fp() + StandardFrameConstants::kCallerSPOffset; } void JavaScriptFrame::GetFunctions( std::vector<Tagged<SharedFunctionInfo>>* functions) const { DCHECK(functions->empty()); functions->push_back(function()->shared()); } void JavaScriptFrame::GetFunctions( std::vector<Handle<SharedFunctionInfo>>* functions) const { DCHECK(functions->empty()); std::vector<Tagged<SharedFunctionInfo>> raw_functions; GetFunctions(&raw_functions); for (const auto& raw_function : raw_functions) { functions->push_back( Handle<SharedFunctionInfo>(raw_function, function()->GetIsolate())); } } bool CommonFrameWithJSLinkage::IsConstructor() const { return IsConstructFrame(caller_fp()); } void CommonFrameWithJSLinkage::Summarize( std::vector<FrameSummary>* functions) const { DCHECK(functions->empty()); Tagged<GcSafeCode> code = GcSafeLookupCode(); int offset = code->GetOffsetFromInstructionStart(isolate(), pc()); Handle<AbstractCode> abstract_code( AbstractCode::cast(code->UnsafeCastToCode()), isolate()); Handle<FixedArray> params = GetParameters(); FrameSummary::JavaScriptFrameSummary summary( isolate(), receiver(), function(), *abstract_code, offset, IsConstructor(), *params); functions->push_back(summary); } Tagged<JSFunction> JavaScriptFrame::function() const { return JSFunction::cast(function_slot_object()); } Tagged<Object> JavaScriptFrame::unchecked_function() const { // During deoptimization of an optimized function, we may have yet to // materialize some closures on the stack. The arguments marker object // marks this case. DCHECK(IsJSFunction(function_slot_object()) || ReadOnlyRoots(isolate()).arguments_marker() == function_slot_object()); return function_slot_object(); } Tagged<Object> CommonFrameWithJSLinkage::receiver() const { // TODO(cbruni): document this better return GetParameter(-1); } Tagged<Object> JavaScriptFrame::context() const { const int offset = StandardFrameConstants::kContextOffset; Tagged<Object> maybe_result(Memory<Address>(fp() + offset)); DCHECK(!IsSmi(maybe_result)); return maybe_result; } Tagged<Script> JavaScriptFrame::script() const { return Script::cast(function()->shared()->script()); } int CommonFrameWithJSLinkage::LookupExceptionHandlerInTable( int* stack_depth, HandlerTable::CatchPrediction* prediction) { if (DEBUG_BOOL) { Tagged<Code> code_lookup_result = LookupCode(); CHECK(!code_lookup_result->has_handler_table()); CHECK(!code_lookup_result->is_optimized_code() || code_lookup_result->kind() == CodeKind::BASELINE); } return -1; } void JavaScriptFrame::PrintFunctionAndOffset(Tagged<JSFunction> function, Tagged<AbstractCode> code, int code_offset, FILE* file, bool print_line_number) { PtrComprCageBase cage_base = GetPtrComprCageBase(function); PrintF(file, "%s", CodeKindToMarker(code->kind(cage_base))); function->PrintName(file); PrintF(file, "+%d", code_offset); if (print_line_number) { Tagged<SharedFunctionInfo> shared = function->shared(); int source_pos = code->SourcePosition(cage_base, code_offset); Tagged<Object> maybe_script = shared->script(); if (IsScript(maybe_script)) { Tagged<Script> script = Script::cast(maybe_script); int line = script->GetLineNumber(source_pos) + 1; Tagged<Object> script_name_raw = script->name(); if (IsString(script_name_raw)) { Tagged<String> script_name = String::cast(script->name()); std::unique_ptr<char[]> c_script_name = script_name->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL); PrintF(file, " at %s:%d", c_script_name.get(), line); } else { PrintF(file, " at <unknown>:%d", line); } } else { PrintF(file, " at <unknown>:<unknown>"); } } } void JavaScriptFrame::PrintTop(Isolate* isolate, FILE* file, bool print_args, bool print_line_number) { // constructor calls DisallowGarbageCollection no_gc; JavaScriptStackFrameIterator it(isolate); while (!it.done()) { if (it.frame()->is_java_script()) { JavaScriptFrame* frame = it.frame(); if (frame->IsConstructor()) PrintF(file, "new "); Tagged<JSFunction> function = frame->function(); int code_offset = 0; Tagged<AbstractCode> abstract_code = function->abstract_code(isolate); if (frame->is_interpreted()) { InterpretedFrame* iframe = reinterpret_cast<InterpretedFrame*>(frame); code_offset = iframe->GetBytecodeOffset(); } else if (frame->is_baseline()) { // TODO(pthier): AbstractCode should fully support Baseline code. BaselineFrame* baseline_frame = BaselineFrame::cast(frame); code_offset = baseline_frame->GetBytecodeOffset(); abstract_code = AbstractCode::cast(baseline_frame->GetBytecodeArray()); } else { code_offset = frame->LookupCode()->GetOffsetFromInstructionStart( isolate, frame->pc()); } PrintFunctionAndOffset(function, abstract_code, code_offset, file, print_line_number); if (print_args) { // function arguments // (we are intentionally only printing the actually // supplied parameters, not all parameters required) PrintF(file, "(this="); ShortPrint(frame->receiver(), file); const int length = frame->ComputeParametersCount(); for (int i = 0; i < length; i++) { PrintF(file, ", "); ShortPrint(frame->GetParameter(i), file); } PrintF(file, ")"); } break; } it.Advance(); } } // static void JavaScriptFrame::CollectFunctionAndOffsetForICStats( Tagged<JSFunction> function, Tagged<AbstractCode> code, int code_offset) { auto ic_stats = ICStats::instance(); ICInfo& ic_info = ic_stats->Current(); PtrComprCageBase cage_base = GetPtrComprCageBase(function); Tagged<SharedFunctionInfo> shared = function->shared(cage_base); ic_info.function_name = ic_stats->GetOrCacheFunctionName(function); ic_info.script_offset = code_offset; int source_pos = code->SourcePosition(cage_base, code_offset); Tagged<Object> maybe_script = shared->script(cage_base, kAcquireLoad); if (IsScript(maybe_script, cage_base)) { Tagged<Script> script = Script::cast(maybe_script); Script::PositionInfo info; script->GetPositionInfo(source_pos, &info); ic_info.line_num = info.line + 1; ic_info.column_num = info.column + 1; ic_info.script_name = ic_stats->GetOrCacheScriptName(script); } } Tagged<Object> CommonFrameWithJSLinkage::GetParameter(int index) const { return Tagged<Object>(Memory<Address>(GetParameterSlot(index))); } int CommonFrameWithJSLinkage::ComputeParametersCount() const { DCHECK(!iterator_->IsStackFrameIteratorForProfiler() && isolate()->heap()->gc_state() == Heap::NOT_IN_GC); return function() ->shared() ->internal_formal_parameter_count_without_receiver(); } int JavaScriptFrame::GetActualArgumentCount() const { return static_cast<int>( Memory<intptr_t>(fp() + StandardFrameConstants::kArgCOffset)) - kJSArgcReceiverSlots; } Handle<FixedArray> CommonFrameWithJSLinkage::GetParameters() const { if (V8_LIKELY(!v8_flags.detailed_error_stack_trace)) { return isolate()->factory()->empty_fixed_array(); } int param_count = ComputeParametersCount(); Handle<FixedArray> parameters = isolate()->factory()->NewFixedArray(param_count); for (int i = 0; i < param_count; i++) { parameters->set(i, GetParameter(i)); } return parameters; } Tagged<JSFunction> JavaScriptBuiltinContinuationFrame::function() const { const int offset = BuiltinContinuationFrameConstants::kFunctionOffset; return JSFunction::cast(Tagged<Object>(base::Memory<Address>(fp() + offset))); } int JavaScriptBuiltinContinuationFrame::ComputeParametersCount() const { // Assert that the first allocatable register is also the argument count // register. DCHECK_EQ(RegisterConfiguration::Default()->GetAllocatableGeneralCode(0), kJavaScriptCallArgCountRegister.code()); Tagged<Object> argc_object( Memory<Address>(fp() + BuiltinContinuationFrameConstants::kArgCOffset)); return Smi::ToInt(argc_object) - kJSArgcReceiverSlots; } intptr_t JavaScriptBuiltinContinuationFrame::GetSPToFPDelta() const { Address height_slot = fp() + BuiltinContinuationFrameConstants::kFrameSPtoFPDeltaAtDeoptimize; intptr_t height = Smi::ToInt(Tagged<Smi>(Memory<Address>(height_slot))); return height; } Tagged<Object> JavaScriptBuiltinContinuationFrame::context() const { return Tagged<Object>(Memory<Address>( fp() + BuiltinContinuationFrameConstants::kBuiltinContextOffset)); } void JavaScriptBuiltinContinuationWithCatchFrame::SetException( Tagged<Object> exception) { int argc = ComputeParametersCount(); Address exception_argument_slot = fp() + BuiltinContinuationFrameConstants::kFixedFrameSizeAboveFp + (argc - 1) * kSystemPointerSize; // Only allow setting exception if previous value was the hole. CHECK_EQ(ReadOnlyRoots(isolate()).the_hole_value(), Tagged<Object>(Memory<Address>(exception_argument_slot))); Memory<Address>(exception_argument_slot) = exception.ptr(); } FrameSummary::JavaScriptFrameSummary::JavaScriptFrameSummary( Isolate* isolate, Tagged<Object> receiver, Tagged<JSFunction> function, Tagged<AbstractCode> abstract_code, int code_offset, bool is_constructor, Tagged<FixedArray> parameters) : FrameSummaryBase(isolate, FrameSummary::JAVA_SCRIPT), receiver_(receiver, isolate), function_(function, isolate), abstract_code_(abstract_code, isolate), code_offset_(code_offset), is_constructor_(is_constructor), parameters_(parameters, isolate) { DCHECK(!CodeKindIsOptimizedJSFunction(abstract_code->kind(isolate))); } void FrameSummary::EnsureSourcePositionsAvailable() { if (IsJavaScript()) { java_script_summary_.EnsureSourcePositionsAvailable(); } } bool FrameSummary::AreSourcePositionsAvailable() const { if (IsJavaScript()) { return java_script_summary_.AreSourcePositionsAvailable(); } return true; } void FrameSummary::JavaScriptFrameSummary::EnsureSourcePositionsAvailable() { Handle<SharedFunctionInfo> shared(function()->shared(), isolate()); SharedFunctionInfo::EnsureSourcePositionsAvailable(isolate(), shared); } bool FrameSummary::JavaScriptFrameSummary::AreSourcePositionsAvailable() const { return !v8_flags.enable_lazy_source_positions || function() ->shared() ->GetBytecodeArray(isolate()) ->HasSourcePositionTable(); } bool FrameSummary::JavaScriptFrameSummary::is_subject_to_debugging() const { return function()->shared()->IsSubjectToDebugging(); } int FrameSummary::JavaScriptFrameSummary::SourcePosition() const { return abstract_code()->SourcePosition(isolate(), code_offset()); } int FrameSummary::JavaScriptFrameSummary::SourceStatementPosition() const { return abstract_code()->SourceStatementPosition(isolate(), code_offset()); } Handle<Object> FrameSummary::JavaScriptFrameSummary::script() const { return handle(function_->shared()->script(), isolate()); } Handle<Context> FrameSummary::JavaScriptFrameSummary::native_context() const { return handle(function_->native_context(), isolate()); } Handle<StackFrameInfo> FrameSummary::JavaScriptFrameSummary::CreateStackFrameInfo() const { Handle<SharedFunctionInfo> shared(function_->shared(), isolate()); Handle<Script> script(Script::cast(shared->script()), isolate()); Handle<String> function_name = JSFunction::GetDebugName(function_); if (function_name->length() == 0 && script->compilation_type() == Script::CompilationType::kEval) { function_name = isolate()->factory()->eval_string(); } int bytecode_offset = code_offset(); if (bytecode_offset == kFunctionEntryBytecodeOffset) { // For the special function entry bytecode offset (-1), which signals // that the stack trace was captured while the function entry was // executing (i.e. during the interrupt check), we cannot store this // sentinel in the bit field, so we just eagerly lookup the source // position within the script. SharedFunctionInfo::EnsureSourcePositionsAvailable(isolate(), shared); int source_position = abstract_code()->SourcePosition(isolate(), bytecode_offset); return isolate()->factory()->NewStackFrameInfo( script, source_position, function_name, is_constructor()); } return isolate()->factory()->NewStackFrameInfo( shared, bytecode_offset, function_name, is_constructor()); } #if V8_ENABLE_WEBASSEMBLY FrameSummary::WasmFrameSummary::WasmFrameSummary( Isolate* isolate, Handle<WasmInstanceObject> instance, wasm::WasmCode* code, int byte_offset, int function_index, bool at_to_number_conversion) : FrameSummaryBase(isolate, WASM), wasm_instance_(instance), at_to_number_conversion_(at_to_number_conversion), code_(code), byte_offset_(byte_offset), function_index_(function_index) {} Handle<Object> FrameSummary::WasmFrameSummary::receiver() const { return wasm_instance_->GetIsolate()->global_proxy(); } uint32_t FrameSummary::WasmFrameSummary::function_index() const { return function_index_; } int FrameSummary::WasmFrameSummary::SourcePosition() const { const wasm::WasmModule* module = wasm_instance()->module_object()->module(); return GetSourcePosition(module, function_index(), code_offset(), at_to_number_conversion()); } Handle<Script> FrameSummary::WasmFrameSummary::script() const { return handle(wasm_instance()->module_object()->script(), wasm_instance()->GetIsolate()); } Handle<Context> FrameSummary::WasmFrameSummary::native_context() const { return handle(wasm_instance()->native_context(), isolate()); } Handle<StackFrameInfo> FrameSummary::WasmFrameSummary::CreateStackFrameInfo() const { Handle<String> function_name = GetWasmFunctionDebugName(isolate(), wasm_instance(), function_index()); return isolate()->factory()->NewStackFrameInfo(script(), SourcePosition(), function_name, false); } FrameSummary::WasmInlinedFrameSummary::WasmInlinedFrameSummary( Isolate* isolate, Handle<WasmInstanceObject> instance, int function_index, int op_wire_bytes_offset) : FrameSummaryBase(isolate, WASM_INLINED), wasm_instance_(instance), function_index_(function_index), op_wire_bytes_offset_(op_wire_bytes_offset) {} Handle<Object> FrameSummary::WasmInlinedFrameSummary::receiver() const { return wasm_instance_->GetIsolate()->global_proxy(); } uint32_t FrameSummary::WasmInlinedFrameSummary::function_index() const { return function_index_; } int FrameSummary::WasmInlinedFrameSummary::SourcePosition() const { const wasm::WasmModule* module = wasm_instance()->module_object()->module(); return GetSourcePosition(module, function_index(), code_offset(), false); } Handle<Script> FrameSummary::WasmInlinedFrameSummary::script() const { return handle(wasm_instance()->module_object()->script(), wasm_instance()->GetIsolate()); } Handle<Context> FrameSummary::WasmInlinedFrameSummary::native_context() const { return handle(wasm_instance()->native_context(), isolate()); } Handle<StackFrameInfo> FrameSummary::WasmInlinedFrameSummary::CreateStackFrameInfo() const { Handle<String> function_name = GetWasmFunctionDebugName(isolate(), wasm_instance(), function_index()); return isolate()->factory()->NewStackFrameInfo(script(), SourcePosition(), function_name, false); } FrameSummary::BuiltinFrameSummary::BuiltinFrameSummary(Isolate* isolate, Builtin builtin) : FrameSummaryBase(isolate, FrameSummary::BUILTIN), builtin_(builtin) {} Handle<Object> FrameSummary::BuiltinFrameSummary::receiver() const { return isolate()->factory()->undefined_value(); } Handle<Object> FrameSummary::BuiltinFrameSummary::script() const { return isolate()->factory()->undefined_value(); } Handle<Context> FrameSummary::BuiltinFrameSummary::native_context() const { return isolate()->native_context(); } Handle<StackFrameInfo> FrameSummary::BuiltinFrameSummary::CreateStackFrameInfo() const { Handle<String> name_str = isolate()->factory()->NewStringFromAsciiChecked( Builtins::NameForStackTrace(builtin_)); return isolate()->factory()->NewStackFrameInfo( Handle<HeapObject>::cast(script()), SourcePosition(), name_str, false); } #endif // V8_ENABLE_WEBASSEMBLY FrameSummary::~FrameSummary() { #define FRAME_SUMMARY_DESTR(kind, type, field, desc) \ case kind: \ field.~type(); \ break; switch (base_.kind()) { FRAME_SUMMARY_VARIANTS(FRAME_SUMMARY_DESTR) default: UNREACHABLE(); } #undef FRAME_SUMMARY_DESTR } FrameSummary FrameSummary::GetTop(const CommonFrame* frame) { std::vector<FrameSummary> frames; frame->Summarize(&frames); DCHECK_LT(0, frames.size()); return frames.back(); } FrameSummary FrameSummary::GetBottom(const CommonFrame* frame) { return Get(frame, 0); } FrameSummary FrameSummary::GetSingle(const CommonFrame* frame) { std::vector<FrameSummary> frames; frame->Summarize(&frames); DCHECK_EQ(1, frames.size()); return frames.front(); } FrameSummary FrameSummary::Get(const CommonFrame* frame, int index) { DCHECK_LE(0, index); std::vector<FrameSummary> frames; frame->Summarize(&frames); DCHECK_GT(frames.size(), index); return frames[index]; } #if V8_ENABLE_WEBASSEMBLY #define FRAME_SUMMARY_DISPATCH(ret, name) \ ret FrameSummary::name() const { \ switch (base_.kind()) { \ case JAVA_SCRIPT: \ return java_script_summary_.name(); \ case WASM: \ return wasm_summary_.name(); \ case WASM_INLINED: \ return wasm_inlined_summary_.name(); \ case BUILTIN: \ return builtin_summary_.name(); \ default: \ UNREACHABLE(); \ } \ } #else #define FRAME_SUMMARY_DISPATCH(ret, name) \ ret FrameSummary::name() const { \ DCHECK_EQ(JAVA_SCRIPT, base_.kind()); \ return java_script_summary_.name(); \ } #endif // V8_ENABLE_WEBASSEMBLY FRAME_SUMMARY_DISPATCH(Handle<Object>, receiver) FRAME_SUMMARY_DISPATCH(int, code_offset) FRAME_SUMMARY_DISPATCH(bool, is_constructor) FRAME_SUMMARY_DISPATCH(bool, is_subject_to_debugging) FRAME_SUMMARY_DISPATCH(Handle<Object>, script) FRAME_SUMMARY_DISPATCH(int, SourcePosition) FRAME_SUMMARY_DISPATCH(int, SourceStatementPosition) FRAME_SUMMARY_DISPATCH(Handle<Context>, native_context) FRAME_SUMMARY_DISPATCH(Handle<StackFrameInfo>, CreateStackFrameInfo) #undef FRAME_SUMMARY_DISPATCH void OptimizedFrame::Summarize(std::vector<FrameSummary>* frames) const { DCHECK(frames->empty()); DCHECK(is_optimized()); // Delegate to JS frame in absence of deoptimization info. // TODO(turbofan): Revisit once we support deoptimization across the board. Handle<GcSafeCode> code(GcSafeLookupCode(), isolate()); if (code->kind() == CodeKind::BUILTIN) { return JavaScriptFrame::Summarize(frames); } int deopt_index = SafepointEntry::kNoDeoptIndex; Tagged<DeoptimizationData> const data = GetDeoptimizationData(&deopt_index); if (deopt_index == SafepointEntry::kNoDeoptIndex) { // Hack: For maglevved function entry, we don't emit lazy deopt information, // so create an extra special summary here. // // TODO(leszeks): Remove this hack, by having a maglev-specific frame // summary which is a bit more aware of maglev behaviour and can e.g. handle // more compact safepointed frame information for both function entry and // loop stack checks. if (code->is_maglevved()) { DCHECK(frames->empty()); Handle<AbstractCode> abstract_code( AbstractCode::cast(function()->shared()->GetBytecodeArray(isolate())), isolate()); Handle<FixedArray> params = GetParameters(); FrameSummary::JavaScriptFrameSummary summary( isolate(), receiver(), function(), *abstract_code, kFunctionEntryBytecodeOffset, IsConstructor(), *params); frames->push_back(summary); return; } CHECK(data.is_null()); FATAL("Missing deoptimization information for OptimizedFrame::Summarize."); } // Prepare iteration over translation. We must not materialize values here // because we do not deoptimize the function. TranslatedState translated(this); translated.Prepare(fp()); // We create the summary in reverse order because the frames // in the deoptimization translation are ordered bottom-to-top. bool is_constructor = IsConstructor(); for (auto it = translated.begin(); it != translated.end(); it++) { if (it->kind() == TranslatedFrame::kUnoptimizedFunction || it->kind() == TranslatedFrame::kJavaScriptBuiltinContinuation || it->kind() == TranslatedFrame::kJavaScriptBuiltinContinuationWithCatch) { Handle<SharedFunctionInfo> shared_info = it->shared_info(); // The translation commands are ordered and the function is always // at the first position, and the receiver is next. TranslatedFrame::iterator translated_values = it->begin(); // Get the correct function in the optimized frame. CHECK(!translated_values->IsMaterializedObject()); Handle<JSFunction> function = Handle<JSFunction>::cast(translated_values->GetValue()); translated_values++; // Get the correct receiver in the optimized frame. CHECK(!translated_values->IsMaterializedObject()); Handle<Object> receiver = translated_values->GetValue(); translated_values++; // Determine the underlying code object and the position within it from // the translation corresponding to the frame type in question. Handle<AbstractCode> abstract_code; unsigned code_offset; if (it->kind() == TranslatedFrame::kJavaScriptBuiltinContinuation || it->kind() == TranslatedFrame::kJavaScriptBuiltinContinuationWithCatch) { code_offset = 0; abstract_code = Handle<AbstractCode>::cast(isolate()->builtins()->code_handle( Builtins::GetBuiltinFromBytecodeOffset(it->bytecode_offset()))); } else { DCHECK_EQ(it->kind(), TranslatedFrame::kUnoptimizedFunction); code_offset = it->bytecode_offset().ToInt(); abstract_code = handle(shared_info->abstract_code(isolate()), isolate()); } // Append full summary of the encountered JS frame. Handle<FixedArray> params = GetParameters(); FrameSummary::JavaScriptFrameSummary summary( isolate(), *receiver, *function, *abstract_code, code_offset, is_constructor, *params); frames->push_back(summary); is_constructor = false; } else if (it->kind() == TranslatedFrame::kConstructCreateStub || it->kind() == TranslatedFrame::kConstructInvokeStub) { // The next encountered JS frame will be marked as a constructor call. DCHECK(!is_constructor); is_constructor = true; #if V8_ENABLE_WEBASSEMBLY } else if (it->kind() == TranslatedFrame::kWasmInlinedIntoJS) { Handle<SharedFunctionInfo> shared_info = it->shared_info(); DCHECK_NE(isolate()->heap()->gc_state(), Heap::MARK_COMPACT); Tagged<WasmExportedFunctionData> function_data = shared_info->wasm_exported_function_data(); Handle<WasmInstanceObject> instance = handle(function_data->instance(), isolate()); int func_index = function_data->function_index(); FrameSummary::WasmInlinedFrameSummary summary( isolate(), instance, func_index, it->bytecode_offset().ToInt()); frames->push_back(summary); #endif // V8_ENABLE_WEBASSEMBLY } } } int OptimizedFrame::LookupExceptionHandlerInTable( int* data, HandlerTable::CatchPrediction* prediction) { // We cannot perform exception prediction on optimized code. Instead, we need // to use FrameSummary to find the corresponding code offset in unoptimized // code to perform prediction there. DCHECK_NULL(prediction); Tagged<Code> code = LookupCode(); HandlerTable table(code); if (table.NumberOfReturnEntries() == 0) return -1; int pc_offset = code->GetOffsetFromInstructionStart(isolate(), pc()); DCHECK_NULL(data); // Data is not used and will not return a value. // When the return pc has been replaced by a trampoline there won't be // a handler for this trampoline. Thus we need to use the return pc that // _used to be_ on the stack to get the right ExceptionHandler. if (CodeKindCanDeoptimize(code->kind()) && code->marked_for_deoptimization()) { pc_offset = FindReturnPCForTrampoline(code, pc_offset); } return table.LookupReturn(pc_offset); } int MaglevFrame::FindReturnPCForTrampoline(Tagged<Code> code, int trampoline_pc) const { DCHECK_EQ(code->kind(), CodeKind::MAGLEV); DCHECK(code->marked_for_deoptimization()); MaglevSafepointTable safepoints(isolate(), pc(), code); return safepoints.find_return_pc(trampoline_pc); } int TurbofanFrame::FindReturnPCForTrampoline(Tagged<Code> code, int trampoline_pc) const { DCHECK_EQ(code->kind(), CodeKind::TURBOFAN); DCHECK(code->marked_for_deoptimization()); SafepointTable safepoints(isolate(), pc(), code); return safepoints.find_return_pc(trampoline_pc); } Tagged<DeoptimizationData> OptimizedFrame::GetDeoptimizationData( int* deopt_index) const { DCHECK(is_optimized()); Tagged<JSFunction> opt_function = function(); Tagged<Code> code = opt_function->code(); // The code object may have been replaced by lazy deoptimization. Fall back // to a slow search in this case to find the original optimized code object. if (!code->contains(isolate(), pc())) { code = isolate() ->heap() ->GcSafeFindCodeForInnerPointer(pc()) ->UnsafeCastToCode(); } DCHECK(!code.is_null()); DCHECK(CodeKindCanDeoptimize(code->kind())); if (code->is_maglevved()) { MaglevSafepointEntry safepoint_entry = code->GetMaglevSafepointEntry(isolate(), pc()); if (safepoint_entry.has_deoptimization_index()) { *deopt_index = safepoint_entry.deoptimization_index(); return DeoptimizationData::cast(code->deoptimization_data()); } } else { SafepointEntry safepoint_entry = code->GetSafepointEntry(isolate(), pc()); if (safepoint_entry.has_deoptimization_index()) { *deopt_index = safepoint_entry.deoptimization_index(); return DeoptimizationData::cast(code->deoptimization_data()); } } *deopt_index = SafepointEntry::kNoDeoptIndex; return DeoptimizationData(); } void OptimizedFrame::GetFunctions( std::vector<Tagged<SharedFunctionInfo>>* functions) const { DCHECK(functions->empty()); DCHECK(is_optimized()); // Delegate to JS frame in absence of turbofan deoptimization. // TODO(turbofan): Revisit once we support deoptimization across the board. Tagged<Code> code = LookupCode(); if (code->kind() == CodeKind::BUILTIN) { return JavaScriptFrame::GetFunctions(functions); } DisallowGarbageCollection no_gc; int deopt_index = SafepointEntry::kNoDeoptIndex; Tagged<DeoptimizationData> const data = GetDeoptimizationData(&deopt_index); DCHECK(!data.is_null()); DCHECK_NE(SafepointEntry::kNoDeoptIndex, deopt_index); Tagged<DeoptimizationLiteralArray> const literal_array = data->LiteralArray(); DeoptimizationFrameTranslation::Iterator it( data->FrameTranslation(), data->TranslationIndex(deopt_index).value()); int jsframe_count = it.EnterBeginOpcode().js_frame_count; // We insert the frames in reverse order because the frames // in the deoptimization translation are ordered bottom-to-top. while (jsframe_count != 0) { TranslationOpcode opcode = it.SeekNextJSFrame(); it.NextOperand(); // Skip bailout id. jsframe_count--; // The second operand of the frame points to the function. Tagged<Object> shared = literal_array->get(it.NextOperand()); functions->push_back(SharedFunctionInfo::cast(shared)); // Skip over remaining operands to advance to the next opcode. it.SkipOperands(TranslationOpcodeOperandCount(opcode) - 2); } } int OptimizedFrame::StackSlotOffsetRelativeToFp(int slot_index) { return StandardFrameConstants::kCallerSPOffset - ((slot_index + 1) * kSystemPointerSize); } int UnoptimizedFrame::position() const { Tagged<AbstractCode> code = AbstractCode::cast(GetBytecodeArray()); int code_offset = GetBytecodeOffset(); return code->SourcePosition(isolate(), code_offset); } int UnoptimizedFrame::LookupExceptionHandlerInTable( int* context_register, HandlerTable::CatchPrediction* prediction) { HandlerTable table(GetBytecodeArray()); return table.LookupRange(GetBytecodeOffset(), context_register, prediction); } Tagged<BytecodeArray> UnoptimizedFrame::GetBytecodeArray() const { const int index = UnoptimizedFrameConstants::kBytecodeArrayExpressionIndex; DCHECK_EQ(UnoptimizedFrameConstants::kBytecodeArrayFromFp, UnoptimizedFrameConstants::kExpressionsOffset - index * kSystemPointerSize); return BytecodeArray::cast(GetExpression(index)); } Tagged<Object> UnoptimizedFrame::ReadInterpreterRegister( int register_index) const { const int index = UnoptimizedFrameConstants::kRegisterFileExpressionIndex; DCHECK_EQ(UnoptimizedFrameConstants::kRegisterFileFromFp, UnoptimizedFrameConstants::kExpressionsOffset - index * kSystemPointerSize); return GetExpression(index + register_index); } void UnoptimizedFrame::Summarize(std::vector<FrameSummary>* functions) const { DCHECK(functions->empty()); Handle<AbstractCode> abstract_code(AbstractCode::cast(GetBytecodeArray()), isolate()); Handle<FixedArray> params = GetParameters(); FrameSummary::JavaScriptFrameSummary summary( isolate(), receiver(), function(), *abstract_code, GetBytecodeOffset(), IsConstructor(), *params); functions->push_back(summary); } int InterpretedFrame::GetBytecodeOffset() const { const int index = InterpreterFrameConstants::kBytecodeOffsetExpressionIndex; DCHECK_EQ(InterpreterFrameConstants::kBytecodeOffsetFromFp, InterpreterFrameConstants::kExpressionsOffset - index * kSystemPointerSize); int raw_offset = Smi::ToInt(GetExpression(index)); return raw_offset - BytecodeArray::kHeaderSize + kHeapObjectTag; } // static int InterpretedFrame::GetBytecodeOffset(Address fp) { const int offset = InterpreterFrameConstants::kExpressionsOffset; const int index = InterpreterFrameConstants::kBytecodeOffsetExpressionIndex; DCHECK_EQ(InterpreterFrameConstants::kBytecodeOffsetFromFp, InterpreterFrameConstants::kExpressionsOffset - index * kSystemPointerSize); Address expression_offset = fp + offset - index * kSystemPointerSize; int raw_offset = Smi::ToInt(Tagged<Object>(Memory<Address>(expression_offset))); return raw_offset - BytecodeArray::kHeaderSize + kHeapObjectTag; } void InterpretedFrame::PatchBytecodeOffset(int new_offset) { const int index = InterpreterFrameConstants::kBytecodeOffsetExpressionIndex; DCHECK_EQ(InterpreterFrameConstants::kBytecodeOffsetFromFp, InterpreterFrameConstants::kExpressionsOffset - index * kSystemPointerSize); int raw_offset = BytecodeArray::kHeaderSize - kHeapObjectTag + new_offset; SetExpression(index, Smi::FromInt(raw_offset)); } void InterpretedFrame::PatchBytecodeArray( Tagged<BytecodeArray> bytecode_array) { const int index = InterpreterFrameConstants::kBytecodeArrayExpressionIndex; DCHECK_EQ(InterpreterFrameConstants::kBytecodeArrayFromFp, InterpreterFrameConstants::kExpressionsOffset - index * kSystemPointerSize); SetExpression(index, bytecode_array); } int BaselineFrame::GetBytecodeOffset() const { Tagged<Code> code = LookupCode(); return code->GetBytecodeOffsetForBaselinePC(this->pc(), GetBytecodeArray()); } intptr_t BaselineFrame::GetPCForBytecodeOffset(int bytecode_offset) const { Tagged<Code> code = LookupCode(); return code->GetBaselineStartPCForBytecodeOffset(bytecode_offset, GetBytecodeArray()); } void BaselineFrame::PatchContext(Tagged<Context> value) { base::Memory<Address>(fp() + BaselineFrameConstants::kContextOffset) = value.ptr(); } Tagged<JSFunction> BuiltinFrame::function() const { const int offset = BuiltinFrameConstants::kFunctionOffset; return JSFunction::cast(Tagged<Object>(base::Memory<Address>(fp() + offset))); } int BuiltinFrame::ComputeParametersCount() const { const int offset = BuiltinFrameConstants::kLengthOffset; return Smi::ToInt(Tagged<Object>(base::Memory<Address>(fp() + offset))) - kJSArgcReceiverSlots; } #if V8_ENABLE_WEBASSEMBLY void WasmFrame::Print(StringStream* accumulator, PrintMode mode, int index) const { PrintIndex(accumulator, mode, index); if (function_index() == wasm::kAnonymousFuncIndex) { accumulator->Add("Anonymous wasm wrapper [pc: %p]\n", reinterpret_cast<void*>(pc())); return; } wasm::WasmCodeRefScope code_ref_scope; accumulator->Add(is_wasm_to_js() ? "Wasm-to-JS [" : "Wasm ["); accumulator->PrintName(script()->name()); Address instruction_start = wasm_code()->instruction_start(); base::Vector<const uint8_t> raw_func_name = module_object()->GetRawFunctionName(function_index()); const int kMaxPrintedFunctionName = 64; char func_name[kMaxPrintedFunctionName + 1]; int func_name_len = std::min(kMaxPrintedFunctionName, raw_func_name.length()); memcpy(func_name, raw_func_name.begin(), func_name_len); func_name[func_name_len] = '\0'; int pos = position(); const wasm::WasmModule* module = wasm_instance()->module_object()->module(); int func_index = function_index(); int func_code_offset = module->functions[func_index].code.offset(); accumulator->Add("], function #%u ('%s'), pc=%p (+0x%x), pos=%d (+%d)\n", func_index, func_name, reinterpret_cast<void*>(pc()), static_cast<int>(pc() - instruction_start), pos, pos - func_code_offset); if (mode != OVERVIEW) accumulator->Add("\n"); } wasm::WasmCode* WasmFrame::wasm_code() const { return wasm::GetWasmCodeManager()->LookupCode(pc()); } Tagged<WasmInstanceObject> WasmFrame::wasm_instance() const { const int offset = WasmFrameConstants::kWasmInstanceOffset; Tagged<Object> instance(Memory<Address>(fp() + offset)); return WasmInstanceObject::cast(instance); } wasm::NativeModule* WasmFrame::native_module() const { return module_object()->native_module(); } Tagged<WasmModuleObject> WasmFrame::module_object() const { return wasm_instance()->module_object(); } int WasmFrame::function_index() const { wasm::WasmCodeRefScope code_ref_scope; return wasm_code()->index(); } Tagged<Script> WasmFrame::script() const { return module_object()->script(); } int WasmFrame::position() const { wasm::WasmCodeRefScope code_ref_scope; const wasm::WasmModule* module = wasm_instance()->module_object()->module(); return GetSourcePosition(module, function_index(), generated_code_offset(), at_to_number_conversion()); } int WasmFrame::generated_code_offset() const { wasm::WasmCode* code = wasm_code(); int offset = static_cast<int>(pc() - code->instruction_start()); return code->GetSourceOffsetBefore(offset); } bool WasmFrame::is_inspectable() const { wasm::WasmCodeRefScope code_ref_scope; return wasm_code()->is_inspectable(); } Tagged<Object> WasmFrame::context() const { return wasm_instance()->native_context(); } void WasmFrame::Summarize(std::vector<FrameSummary>* functions) const { DCHECK(functions->empty()); // The {WasmCode*} escapes this scope via the {FrameSummary}, which is fine, // since this code object is part of our stack. wasm::WasmCodeRefScope code_ref_scope; wasm::WasmCode* code = wasm_code(); int offset = static_cast<int>(pc() - code->instruction_start()); Handle<WasmInstanceObject> instance(wasm_instance(), isolate()); // Push regular non-inlined summary. SourcePosition pos = code->GetSourcePositionBefore(offset); bool at_conversion = at_to_number_conversion(); // Add summaries for each inlined function at the current location. while (pos.isInlined()) { // Use current pc offset as the code offset for inlined functions. // This is not fully correct but there isn't a real code offset of a stack // frame for an inlined function as the inlined function is not a true // function with a defined start and end in the generated code. // const auto [func_index, caller_pos] = code->GetInliningPosition(pos.InliningId()); FrameSummary::WasmFrameSummary summary(isolate(), instance, code, pos.ScriptOffset(), func_index, at_conversion); functions->push_back(summary); pos = caller_pos; at_conversion = false; } int func_index = code->index(); FrameSummary::WasmFrameSummary summary( isolate(), instance, code, pos.ScriptOffset(), func_index, at_conversion); functions->push_back(summary); // The caller has to be on top. std::reverse(functions->begin(), functions->end()); } bool WasmFrame::at_to_number_conversion() const { if (callee_pc() == kNullAddress) return false; // Check whether our callee is a WASM_TO_JS frame, and this frame is at the // ToNumber conversion call. wasm::WasmCode* wasm_code = wasm::GetWasmCodeManager()->LookupCode(callee_pc()); if (wasm_code) { if (wasm_code->kind() != wasm::WasmCode::kWasmToJsWrapper) return false; int offset = static_cast<int>(callee_pc() - wasm_code->instruction_start()); int pos = wasm_code->GetSourceOffsetBefore(offset); // The imported call has position 0, ToNumber has position 1. // If there is no source position available, this is also not a ToNumber // call. DCHECK(pos == wasm::kNoCodePosition || pos == 0 || pos == 1); return pos == 1; } InnerPointerToCodeCache::InnerPointerToCodeCacheEntry* entry = isolate()->inner_pointer_to_code_cache()->GetCacheEntry(callee_pc()); CHECK(entry->code.has_value()); Tagged<GcSafeCode> code = entry->code.value(); if (!code->is_builtin() || code->builtin_id() != Builtin::kWasmToJsWrapperCSA) { return false; } // The generic wasm-to-js wrapper maintains a slot on the stack to indicate // its state. Initially this slot contains the signature, so that incoming // parameters can be scanned. After all parameters have been processed, the // number of parameters gets stored in the stack slot, so that outgoing // parameters can be scanned. After returning from JavaScript, Smi(-1) is // stored in the slot to indicate that any call from now on is a ToNumber // conversion. Tagged<Object> maybe_sig = Tagged<Object>(Memory<Address>( callee_fp() + WasmToJSWrapperConstants::kSignatureOffset)); return IsSmi(maybe_sig) && Smi::ToInt(maybe_sig) < 0; } int WasmFrame::LookupExceptionHandlerInTable() { wasm::WasmCode* code = wasm::GetWasmCodeManager()->LookupCode(pc()); if (!code->IsAnonymous() && code->handler_table_size() > 0) { HandlerTable table(code); int pc_offset = static_cast<int>(pc() - code->instruction_start()); return table.LookupReturn(pc_offset); } return -1; } void WasmDebugBreakFrame::Iterate(RootVisitor* v) const { DCHECK(caller_pc()); wasm::WasmCode* code = wasm::GetWasmCodeManager()->LookupCode(caller_pc()); DCHECK(code); SafepointTable table(code); SafepointEntry safepoint_entry = table.FindEntry(caller_pc()); uint32_t tagged_register_indexes = safepoint_entry.tagged_register_indexes(); while (tagged_register_indexes != 0) { int reg_code = base::bits::CountTrailingZeros(tagged_register_indexes); tagged_register_indexes &= ~(1 << reg_code); FullObjectSlot spill_slot(&Memory<Address>( fp() + WasmDebugBreakFrameConstants::GetPushedGpRegisterOffset(reg_code))); v->VisitRootPointer(Root::kStackRoots, nullptr, spill_slot); } } void WasmDebugBreakFrame::Print(StringStream* accumulator, PrintMode mode, int index) const { PrintIndex(accumulator, mode, index); accumulator->Add("WasmDebugBreak"); if (mode != OVERVIEW) accumulator->Add("\n"); } Tagged<WasmInstanceObject> WasmToJsFrame::wasm_instance() const { // WasmToJsFrames hold the {WasmApiFunctionRef} object in the instance slot. // Load the instance from there. const int offset = WasmFrameConstants::kWasmInstanceOffset; Tagged<Object> func_ref_obj(Memory<Address>(fp() + offset)); Tagged<WasmApiFunctionRef> func_ref = WasmApiFunctionRef::cast(func_ref_obj); return WasmInstanceObject::cast(func_ref->instance()); } void JsToWasmFrame::Iterate(RootVisitor* v) const { // WrapperBuffer slot is RawPtr pointing to a stack. // Wasm instance and JS result array are passed as stack params. // So there is no need to visit them. } void StackSwitchFrame::Iterate(RootVisitor* v) const { // See JsToWasmFrame layout. // We cannot DCHECK that the pc matches the expected builtin code here, // because the return address is on a different stack. // The [fp + BuiltinFrameConstants::kGCScanSlotCountOffset] on the stack is a // value indicating how many values should be scanned from the top. intptr_t scan_count = *reinterpret_cast<intptr_t*>( fp() + StackSwitchFrameConstants::kGCScanSlotCountOffset); FullObjectSlot spill_slot_base(&Memory<Address>(sp())); FullObjectSlot spill_slot_limit( &Memory<Address>(sp() + scan_count * kSystemPointerSize)); v->VisitRootPointers(Root::kStackRoots, nullptr, spill_slot_base, spill_slot_limit); // Also visit fixed spill slots that contain references. FullObjectSlot instance_slot( &Memory<Address>(fp() + StackSwitchFrameConstants::kInstanceOffset)); v->VisitRootPointer(Root::kStackRoots, nullptr, instance_slot); FullObjectSlot result_array_slot( &Memory<Address>(fp() + StackSwitchFrameConstants::kResultArrayOffset)); v->VisitRootPointer(Root::kStackRoots, nullptr, result_array_slot); } // static void StackSwitchFrame::GetStateForJumpBuffer(wasm::JumpBuffer* jmpbuf, State* state) { DCHECK_NE(jmpbuf->fp, kNullAddress); DCHECK_EQ(ComputeFrameType(jmpbuf->fp), STACK_SWITCH); FillState(jmpbuf->fp, jmpbuf->sp, state); DCHECK_NE(*state->pc_address, kNullAddress); } int WasmLiftoffSetupFrame::GetDeclaredFunctionIndex() const { Tagged<Object> func_index(Memory<Address>( sp() + WasmLiftoffSetupFrameConstants::kDeclaredFunctionIndexOffset)); return Smi::ToInt(func_index); } wasm::NativeModule* WasmLiftoffSetupFrame::GetNativeModule() const { return *reinterpret_cast<wasm::NativeModule**>( sp() + WasmLiftoffSetupFrameConstants::kNativeModuleOffset); } FullObjectSlot WasmLiftoffSetupFrame::wasm_instance_slot() const { return FullObjectSlot(&Memory<Address>( sp() + WasmLiftoffSetupFrameConstants::kWasmInstanceOffset)); } void WasmLiftoffSetupFrame::Iterate(RootVisitor* v) const { FullObjectSlot spilled_instance_slot(&Memory<Address>( fp() + WasmLiftoffSetupFrameConstants::kInstanceSpillOffset)); v->VisitRootPointer(Root::kStackRoots, "spilled wasm instance", spilled_instance_slot); v->VisitRootPointer(Root::kStackRoots, "wasm instance parameter", wasm_instance_slot()); wasm::NativeModule* native_module = GetNativeModule(); int func_index = GetDeclaredFunctionIndex() + native_module->module()->num_imported_functions; // Scan the spill slots of the parameter registers. Parameters in WebAssembly // get reordered such that first all value parameters get put into registers. // If there are more registers than value parameters, the remaining registers // are used for reference parameters. Therefore we can determine which // registers get used for which parameters by counting the number of value // parameters and the number of reference parameters. int num_int_params = 0; int num_ref_params = 0; const wasm::FunctionSig* sig = native_module->module()->functions[func_index].sig; for (auto param : sig->parameters()) { if (param == wasm::kWasmI32) { num_int_params++; } else if (param == wasm::kWasmI64) { num_int_params += kSystemPointerSize == 8 ? 1 : 2; } else if (param.is_reference()) { num_ref_params++; } } // There are no reference parameters, there is nothing to scan. if (num_ref_params == 0) return; int num_int_params_in_registers = std::min(num_int_params, WasmLiftoffSetupFrameConstants::kNumberOfSavedGpParamRegs); int num_ref_params_in_registers = std::min(num_ref_params, WasmLiftoffSetupFrameConstants::kNumberOfSavedGpParamRegs - num_int_params_in_registers); for (int i = 0; i < num_ref_params_in_registers; ++i) { FullObjectSlot spill_slot( fp() + WasmLiftoffSetupFrameConstants::kParameterSpillsOffset [num_int_params_in_registers + i]); v->VisitRootPointer(Root::kStackRoots, "register parameter", spill_slot); } // Next we scan the slots of stack parameters. wasm::WasmCode* wasm_code = native_module->GetCode(func_index); uint32_t first_tagged_stack_slot = wasm_code->first_tagged_parameter_slot(); uint32_t num_tagged_stack_slots = wasm_code->num_tagged_parameter_slots(); // Visit tagged parameters that have been passed to the function of this // frame. Conceptionally these parameters belong to the parent frame. // However, the exact count is only known by this frame (in the presence of // tail calls, this information cannot be derived from the call site). if (num_tagged_stack_slots > 0) { FullObjectSlot tagged_parameter_base(&Memory<Address>(caller_sp())); tagged_parameter_base += first_tagged_stack_slot; FullObjectSlot tagged_parameter_limit = tagged_parameter_base + num_tagged_stack_slots; v->VisitRootPointers(Root::kStackRoots, "stack parameter", tagged_parameter_base, tagged_parameter_limit); } } #endif // V8_ENABLE_WEBASSEMBLY namespace { void PrintFunctionSource(StringStream* accumulator, Tagged<SharedFunctionInfo> shared) { if (v8_flags.max_stack_trace_source_length != 0) { std::ostringstream os; os << "--------- s o u r c e c o d e ---------\n" << SourceCodeOf(shared, v8_flags.max_stack_trace_source_length) << "\n-----------------------------------------\n"; accumulator->Add(os.str().c_str()); } } } // namespace void JavaScriptFrame::Print(StringStream* accumulator, PrintMode mode, int index) const { Handle<SharedFunctionInfo> shared = handle(function()->shared(), isolate()); SharedFunctionInfo::EnsureSourcePositionsAvailable(isolate(), shared); DisallowGarbageCollection no_gc; Tagged<Object> receiver = this->receiver(); Tagged<JSFunction> function = this->function(); accumulator->PrintSecurityTokenIfChanged(function); PrintIndex(accumulator, mode, index); PrintFrameKind(accumulator); if (IsConstructor()) accumulator->Add("new "); accumulator->PrintFunction(function, receiver); accumulator->Add(" [%p]", function); // Get scope information for nicer output, if possible. If code is nullptr, or // doesn't contain scope info, scope_info will return 0 for the number of // parameters, stack local variables, context local variables, stack slots, // or context slots. Tagged<ScopeInfo> scope_info = shared->scope_info(); Tagged<Object> script_obj = shared->script(); if (IsScript(script_obj)) { Tagged<Script> script = Script::cast(script_obj); accumulator->Add(" ["); accumulator->PrintName(script->name()); if (is_interpreted()) { const InterpretedFrame* iframe = InterpretedFrame::cast(this); Tagged<BytecodeArray> bytecodes = iframe->GetBytecodeArray(); int offset = iframe->GetBytecodeOffset(); int source_pos = AbstractCode::cast(bytecodes)->SourcePosition(isolate(), offset); int line = script->GetLineNumber(source_pos) + 1; accumulator->Add(":%d] [bytecode=%p offset=%d]", line, reinterpret_cast<void*>(bytecodes.ptr()), offset); } else { int function_start_pos = shared->StartPosition(); int line = script->GetLineNumber(function_start_pos) + 1; accumulator->Add(":~%d] [pc=%p]", line, reinterpret_cast<void*>(pc())); } } accumulator->Add("(this=%o", receiver); // Print the parameters. int parameters_count = ComputeParametersCount(); for (int i = 0; i < parameters_count; i++) { accumulator->Add(","); accumulator->Add("%o", GetParameter(i)); } accumulator->Add(")"); if (mode == OVERVIEW) { accumulator->Add("\n"); return; } if (is_optimized()) { accumulator->Add(" {\n// optimized frame\n"); PrintFunctionSource(accumulator, *shared); accumulator->Add("}\n"); return; } accumulator->Add(" {\n"); // Compute the number of locals and expression stack elements. int heap_locals_count = scope_info->ContextLocalCount(); int expressions_count = ComputeExpressionsCount(); // Try to get hold of the context of this frame. Tagged<Context> context; if (IsContext(this->context())) { context = Context::cast(this->context()); while (context->IsWithContext()) { context = context->previous(); DCHECK(!context.is_null()); } } // Print heap-allocated local variables. if (heap_locals_count > 0) { accumulator->Add(" // heap-allocated locals\n"); } for (auto it : ScopeInfo::IterateLocalNames(scope_info, no_gc)) { accumulator->Add(" var "); accumulator->PrintName(it->name()); accumulator->Add(" = "); if (!context.is_null()) { int slot_index = Context::MIN_CONTEXT_SLOTS + it->index(); if (slot_index < context->length()) { accumulator->Add("%o", context->get(slot_index)); } else { accumulator->Add( "// warning: missing context slot - inconsistent frame?"); } } else { accumulator->Add("// warning: no context found - inconsistent frame?"); } accumulator->Add("\n"); } // Print the expression stack. if (0 < expressions_count) { accumulator->Add(" // expression stack (top to bottom)\n"); } for (int i = expressions_count - 1; i >= 0; i--) { accumulator->Add(" [%02d] : %o\n", i, GetExpression(i)); } PrintFunctionSource(accumulator, *shared); accumulator->Add("}\n\n"); } void EntryFrame::Iterate(RootVisitor* v) const { IteratePc(v, pc_address(), constant_pool_address(), GcSafeLookupCode()); } void CommonFrame::IterateExpressions(RootVisitor* v) const { const int last_object_offset = StandardFrameConstants::kLastObjectOffset; intptr_t marker = Memory<intptr_t>(fp() + CommonFrameConstants::kContextOrFrameTypeOffset); FullObjectSlot base(&Memory<Address>(sp())); FullObjectSlot limit(&Memory<Address>(fp() + last_object_offset) + 1); if (StackFrame::IsTypeMarker(marker)) { v->VisitRootPointers(Root::kStackRoots, nullptr, base, limit); } else { // The frame contains the actual argument count (intptr) that should not be // visited. FullObjectSlot argc( &Memory<Address>(fp() + StandardFrameConstants::kArgCOffset)); v->VisitRootPointers(Root::kStackRoots, nullptr, base, argc); v->VisitRootPointers(Root::kStackRoots, nullptr, argc + 1, limit); } } void JavaScriptFrame::Iterate(RootVisitor* v) const { IterateExpressions(v); IteratePc(v, pc_address(), constant_pool_address(), GcSafeLookupCode()); } void InternalFrame::Iterate(RootVisitor* v) const { Tagged<GcSafeCode> code = GcSafeLookupCode(); IteratePc(v, pc_address(), constant_pool_address(), code); // Internal frames typically do not receive any arguments, hence their stack // only contains tagged pointers. // We are misusing the has_tagged_outgoing_params flag here to tell us whether // the full stack frame contains only tagged pointers or only raw values. // This is used for the WasmCompileLazy builtin, where we actually pass // untagged arguments and also store untagged values on the stack. if (code->has_tagged_outgoing_params()) IterateExpressions(v); } // ------------------------------------------------------------------------- namespace { // Predictably converts PC to uint32 by calculating offset of the PC in // from the embedded builtins start or from respective MemoryChunk. uint32_t PcAddressForHashing(Isolate* isolate, Address address) { uint32_t hashable_address; if (OffHeapInstructionStream::TryGetAddressForHashing(isolate, address, &hashable_address)) { return hashable_address; } return ObjectAddressForHashing(address); } } // namespace InnerPointerToCodeCache::InnerPointerToCodeCacheEntry* InnerPointerToCodeCache::GetCacheEntry(Address inner_pointer) { DCHECK(base::bits::IsPowerOfTwo(kInnerPointerToCodeCacheSize)); uint32_t hash = ComputeUnseededHash(PcAddressForHashing(isolate_, inner_pointer)); uint32_t index = hash & (kInnerPointerToCodeCacheSize - 1); InnerPointerToCodeCacheEntry* entry = cache(index); if (entry->inner_pointer == inner_pointer) { // Why this DCHECK holds is nontrivial: // // - the cache is filled lazily on calls to this function. // - this function may be called while GC, and in particular // MarkCompactCollector::UpdatePointersAfterEvacuation, is in progress. // - the cache is cleared at the end of UpdatePointersAfterEvacuation. // - now, why does pointer equality hold even during moving GC? // - .. because GcSafeFindCodeForInnerPointer does not follow forwarding // pointers and always returns the old object (which is still valid, // *except* for the map_word). DCHECK_EQ(entry->code, isolate_->heap()->GcSafeFindCodeForInnerPointer(inner_pointer)); } else { // Because this code may be interrupted by a profiling signal that // also queries the cache, we cannot update inner_pointer before the code // has been set. Otherwise, we risk trying to use a cache entry before // the code has been computed. entry->code = isolate_->heap()->GcSafeFindCodeForInnerPointer(inner_pointer); if (entry->code.value()->is_maglevved()) { entry->maglev_safepoint_entry.Reset(); } else { entry->safepoint_entry.Reset(); } entry->inner_pointer = inner_pointer; } return entry; } // Frame layout helper class implementation. // ------------------------------------------------------------------------- namespace { // Some architectures need to push padding together with the TOS register // in order to maintain stack alignment. constexpr int TopOfStackRegisterPaddingSlots() { return ArgumentPaddingSlots(1); } bool BuiltinContinuationModeIsWithCatch(BuiltinContinuationMode mode) { switch (mode) { case BuiltinContinuationMode::STUB: case BuiltinContinuationMode::JAVASCRIPT: return false; case BuiltinContinuationMode::JAVASCRIPT_WITH_CATCH: case BuiltinContinuationMode::JAVASCRIPT_HANDLE_EXCEPTION: return true; } UNREACHABLE(); } } // namespace UnoptimizedFrameInfo::UnoptimizedFrameInfo(int parameters_count_with_receiver, int translation_height, bool is_topmost, bool pad_arguments, FrameInfoKind frame_info_kind) { const int locals_count = translation_height; register_stack_slot_count_ = UnoptimizedFrameConstants::RegisterStackSlotCount(locals_count); static constexpr int kTheAccumulator = 1; static constexpr int kTopOfStackPadding = TopOfStackRegisterPaddingSlots(); int maybe_additional_slots = (is_topmost || frame_info_kind == FrameInfoKind::kConservative) ? (kTheAccumulator + kTopOfStackPadding) : 0; frame_size_in_bytes_without_fixed_ = (register_stack_slot_count_ + maybe_additional_slots) * kSystemPointerSize; // The 'fixed' part of the frame consists of the incoming parameters and // the part described by InterpreterFrameConstants. This will include // argument padding, when needed. const int parameter_padding_slots = pad_arguments ? ArgumentPaddingSlots(parameters_count_with_receiver) : 0; const int fixed_frame_size = InterpreterFrameConstants::kFixedFrameSize + (parameters_count_with_receiver + parameter_padding_slots) * kSystemPointerSize; frame_size_in_bytes_ = frame_size_in_bytes_without_fixed_ + fixed_frame_size; } // static uint32_t UnoptimizedFrameInfo::GetStackSizeForAdditionalArguments( int parameters_count) { return (parameters_count + ArgumentPaddingSlots(parameters_count)) * kSystemPointerSize; } ConstructStubFrameInfo::ConstructStubFrameInfo(int translation_height, bool is_topmost, FrameInfoKind frame_info_kind) { // Note: This is according to the Translation's notion of 'parameters' which // differs to that of the SharedFunctionInfo, e.g. by including the receiver. const int parameters_count = translation_height; // If the construct frame appears to be topmost we should ensure that the // value of result register is preserved during continuation execution. // We do this here by "pushing" the result of the constructor function to // the top of the reconstructed stack and popping it in // {Builtin::kNotifyDeoptimized}. static constexpr int kTopOfStackPadding = TopOfStackRegisterPaddingSlots(); static constexpr int kTheResult = 1; const int argument_padding = ArgumentPaddingSlots(parameters_count); const int adjusted_height = (is_topmost || frame_info_kind == FrameInfoKind::kConservative) ? parameters_count + argument_padding + kTheResult + kTopOfStackPadding : parameters_count + argument_padding; frame_size_in_bytes_without_fixed_ = adjusted_height * kSystemPointerSize; frame_size_in_bytes_ = frame_size_in_bytes_without_fixed_ + ConstructFrameConstants::kFixedFrameSize; } FastConstructStubFrameInfo::FastConstructStubFrameInfo(bool is_topmost) { // If the construct frame appears to be topmost we should ensure that the // value of result register is preserved during continuation execution. // We do this here by "pushing" the result of the constructor function to // the top of the reconstructed stack and popping it in // {Builtin::kNotifyDeoptimized}. static constexpr int kTopOfStackPadding = TopOfStackRegisterPaddingSlots(); static constexpr int kTheResult = 1; const int adjusted_height = ArgumentPaddingSlots(1) + (is_topmost ? kTheResult + kTopOfStackPadding : 0); frame_size_in_bytes_without_fixed_ = adjusted_height * kSystemPointerSize; frame_size_in_bytes_ = frame_size_in_bytes_without_fixed_ + FastConstructFrameConstants::kFixedFrameSize; } BuiltinContinuationFrameInfo::BuiltinContinuationFrameInfo( int translation_height, const CallInterfaceDescriptor& continuation_descriptor, const RegisterConfiguration* register_config, bool is_topmost, DeoptimizeKind deopt_kind, BuiltinContinuationMode continuation_mode, FrameInfoKind frame_info_kind) { const bool is_conservative = frame_info_kind == FrameInfoKind::kConservative; // Note: This is according to the Translation's notion of 'parameters' which // differs to that of the SharedFunctionInfo, e.g. by including the receiver. const int parameters_count = translation_height; frame_has_result_stack_slot_ = !is_topmost || deopt_kind == DeoptimizeKind::kLazy; const int result_slot_count = (frame_has_result_stack_slot_ || is_conservative) ? 1 : 0; const int exception_slot_count = (BuiltinContinuationModeIsWithCatch(continuation_mode) || is_conservative) ? 1 : 0; const int allocatable_register_count = register_config->num_allocatable_general_registers(); const int padding_slot_count = BuiltinContinuationFrameConstants::PaddingSlotCount( allocatable_register_count); const int register_parameter_count = continuation_descriptor.GetRegisterParameterCount(); translated_stack_parameter_count_ = parameters_count - register_parameter_count; stack_parameter_count_ = translated_stack_parameter_count_ + result_slot_count + exception_slot_count; const int stack_param_pad_count = ArgumentPaddingSlots(stack_parameter_count_); // If the builtins frame appears to be topmost we should ensure that the // value of result register is preserved during continuation execution. // We do this here by "pushing" the result of callback function to the // top of the reconstructed stack and popping it in // {Builtin::kNotifyDeoptimized}. static constexpr int kTopOfStackPadding = TopOfStackRegisterPaddingSlots(); static constexpr int kTheResult = 1; const int push_result_count = (is_topmost || is_conservative) ? kTheResult + kTopOfStackPadding : 0; frame_size_in_bytes_ = kSystemPointerSize * (stack_parameter_count_ + stack_param_pad_count + allocatable_register_count + padding_slot_count + push_result_count) + BuiltinContinuationFrameConstants::kFixedFrameSize; frame_size_in_bytes_above_fp_ = kSystemPointerSize * (allocatable_register_count + padding_slot_count + push_result_count) + (BuiltinContinuationFrameConstants::kFixedFrameSize - BuiltinContinuationFrameConstants::kFixedFrameSizeAboveFp); } } // namespace internal } // namespace v8