%PDF- %PDF-
Direktori : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/execution/ |
Current File : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/execution/isolate.h |
// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_EXECUTION_ISOLATE_H_ #define V8_EXECUTION_ISOLATE_H_ #include <atomic> #include <cstddef> #include <functional> #include <memory> #include <queue> #include <unordered_map> #include <vector> #include "include/v8-context.h" #include "include/v8-internal.h" #include "include/v8-isolate.h" #include "include/v8-metrics.h" #include "include/v8-snapshot.h" #include "src/base/macros.h" #include "src/base/platform/mutex.h" #include "src/base/platform/platform-posix.h" #include "src/builtins/builtins.h" #include "src/common/globals.h" #include "src/debug/interface-types.h" #include "src/execution/execution.h" #include "src/execution/futex-emulation.h" #include "src/execution/isolate-data.h" #include "src/execution/messages.h" #include "src/execution/shared-mutex-guard-if-off-thread.h" #include "src/execution/stack-guard.h" #include "src/handles/handles.h" #include "src/handles/traced-handles.h" #include "src/heap/base/stack.h" #include "src/heap/factory.h" #include "src/heap/heap.h" #include "src/heap/read-only-heap.h" #include "src/init/isolate-allocator.h" #include "src/objects/code.h" #include "src/objects/contexts.h" #include "src/objects/debug-objects.h" #include "src/objects/js-objects.h" #include "src/objects/tagged.h" #include "src/runtime/runtime.h" #include "src/sandbox/code-pointer-table.h" #include "src/sandbox/external-pointer-table.h" #include "src/sandbox/indirect-pointer-table.h" #include "src/utils/allocation.h" #ifdef DEBUG #include "src/runtime/runtime-utils.h" #endif #ifdef V8_INTL_SUPPORT #include "unicode/uversion.h" // Define U_ICU_NAMESPACE. namespace U_ICU_NAMESPACE { class UMemory; } // namespace U_ICU_NAMESPACE #endif // V8_INTL_SUPPORT #if USE_SIMULATOR #include "src/execution/encoded-c-signature.h" namespace v8 { namespace internal { class SimulatorData; } } // namespace v8 #endif namespace v8_inspector { class V8Inspector; } // namespace v8_inspector namespace v8 { class EmbedderState; namespace base { class RandomNumberGenerator; } // namespace base namespace bigint { class Processor; } namespace debug { class ConsoleDelegate; class AsyncEventDelegate; } // namespace debug namespace internal { void DefaultWasmAsyncResolvePromiseCallback( v8::Isolate* isolate, v8::Local<v8::Context> context, v8::Local<v8::Promise::Resolver> resolver, v8::Local<v8::Value> compilation_result, WasmAsyncSuccess success); namespace heap { class HeapTester; } // namespace heap namespace maglev { class MaglevConcurrentDispatcher; } // namespace maglev class AddressToIndexHashMap; class AstStringConstants; class Bootstrapper; class BuiltinsConstantsTableBuilder; class CancelableTaskManager; class Logger; class CodeTracer; class CommonFrame; class CompilationCache; class CompilationStatistics; class Counters; class Debug; class Deoptimizer; class DescriptorLookupCache; class EmbeddedFileWriterInterface; class EternalHandles; class GlobalHandles; class GlobalSafepoint; class HandleScopeImplementer; class HeapObjectToIndexHashMap; class HeapProfiler; class InnerPointerToCodeCache; class LazyCompileDispatcher; class LocalIsolate; class V8FileLogger; class MaterializedObjectStore; class Microtask; class MicrotaskQueue; class OptimizingCompileDispatcher; class PersistentHandles; class PersistentHandlesList; class ReadOnlyArtifacts; class RegExpStack; class RootVisitor; class SetupIsolateDelegate; class Simulator; class SnapshotData; class StringForwardingTable; class StringTable; class StubCache; class ThreadManager; class ThreadState; class ThreadVisitor; // Defined in v8threads.h class TieringManager; class TracingCpuProfilerImpl; class UnicodeCache; struct ManagedPtrDestructor; template <StateTag Tag> class VMState; namespace baseline { class BaselineBatchCompiler; } // namespace baseline namespace interpreter { class Interpreter; } // namespace interpreter namespace compiler { class NodeObserver; class PerIsolateCompilerCache; } // namespace compiler namespace win64_unwindinfo { class BuiltinUnwindInfo; } // namespace win64_unwindinfo namespace metrics { class Recorder; } // namespace metrics namespace wasm { class StackMemory; } #define RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate) \ do { \ Isolate* __isolate__ = (isolate); \ DCHECK(!__isolate__->has_pending_exception()); \ if (__isolate__->has_scheduled_exception()) { \ return __isolate__->PromoteScheduledException(); \ } \ } while (false) #define RETURN_FAILURE_IF_SCHEDULED_EXCEPTION_DETECTOR(isolate, detector) \ do { \ Isolate* __isolate__ = (isolate); \ DCHECK(!__isolate__->has_pending_exception()); \ if (__isolate__->has_scheduled_exception()) { \ detector.AcceptSideEffects(); \ return __isolate__->PromoteScheduledException(); \ } \ } while (false) // Macros for MaybeHandle. #define RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, value) \ do { \ Isolate* __isolate__ = (isolate); \ DCHECK(!__isolate__->has_pending_exception()); \ if (__isolate__->has_scheduled_exception()) { \ __isolate__->PromoteScheduledException(); \ return value; \ } \ } while (false) #define RETURN_VALUE_IF_SCHEDULED_EXCEPTION_DETECTOR(isolate, detector, value) \ RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, \ (detector.AcceptSideEffects(), value)) #define RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, T) \ RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, MaybeHandle<T>()) #define ASSIGN_RETURN_ON_SCHEDULED_EXCEPTION_VALUE(isolate, dst, call, value) \ do { \ Isolate* __isolate__ = (isolate); \ if (!(call).ToLocal(&dst)) { \ DCHECK(__isolate__->has_scheduled_exception()); \ __isolate__->PromoteScheduledException(); \ return value; \ } \ } while (false) #define RETURN_ON_SCHEDULED_EXCEPTION_VALUE(isolate, call, value) \ do { \ Isolate* __isolate__ = (isolate); \ if ((call).IsNothing()) { \ DCHECK(__isolate__->has_scheduled_exception()); \ __isolate__->PromoteScheduledException(); \ return value; \ } \ } while (false) /** * RETURN_RESULT_OR_FAILURE is used in functions with return type Object (such * as "RUNTIME_FUNCTION(...) {...}" or "BUILTIN(...) {...}" ) to return either * the contents of a MaybeHandle<X>, or the "exception" sentinel value. * Example usage: * * RUNTIME_FUNCTION(Runtime_Func) { * ... * RETURN_RESULT_OR_FAILURE( * isolate, * FunctionWithReturnTypeMaybeHandleX(...)); * } * * If inside a function with return type MaybeHandle<X> use RETURN_ON_EXCEPTION * instead. * If inside a function with return type Handle<X>, or Maybe<X> use * RETURN_ON_EXCEPTION_VALUE instead. */ #define RETURN_RESULT_OR_FAILURE(isolate, call) \ do { \ Handle<Object> __result__; \ Isolate* __isolate__ = (isolate); \ if (!(call).ToHandle(&__result__)) { \ DCHECK(__isolate__->has_pending_exception()); \ return ReadOnlyRoots(__isolate__).exception(); \ } \ DCHECK(!__isolate__->has_pending_exception()); \ return *__result__; \ } while (false) #define ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, dst, call, value) \ do { \ if (!(call).ToHandle(&dst)) { \ DCHECK((isolate)->has_pending_exception()); \ return value; \ } \ } while (false) #define ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, dst, call) \ do { \ auto* __isolate__ = (isolate); \ ASSIGN_RETURN_ON_EXCEPTION_VALUE(__isolate__, dst, call, \ ReadOnlyRoots(__isolate__).exception()); \ } while (false) #define ASSIGN_RETURN_ON_EXCEPTION(isolate, dst, call, T) \ ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, dst, call, MaybeHandle<T>()) #define THROW_NEW_ERROR(isolate, call, T) \ do { \ auto* __isolate__ = (isolate); \ return __isolate__->template Throw<T>(__isolate__->factory()->call); \ } while (false) #define THROW_NEW_ERROR_RETURN_FAILURE(isolate, call) \ do { \ auto* __isolate__ = (isolate); \ return __isolate__->Throw(*__isolate__->factory()->call); \ } while (false) #define THROW_NEW_ERROR_RETURN_VALUE(isolate, call, value) \ do { \ auto* __isolate__ = (isolate); \ __isolate__->Throw(*__isolate__->factory()->call); \ return value; \ } while (false) /** * RETURN_ON_EXCEPTION_VALUE conditionally returns the given value when the * given MaybeHandle is empty. It is typically used in functions with return * type Maybe<X> or Handle<X>. Example usage: * * Handle<X> Func() { * ... * RETURN_ON_EXCEPTION_VALUE( * isolate, * FunctionWithReturnTypeMaybeHandleX(...), * Handle<X>()); * // code to handle non exception * ... * } * * Maybe<bool> Func() { * .. * RETURN_ON_EXCEPTION_VALUE( * isolate, * FunctionWithReturnTypeMaybeHandleX(...), * Nothing<bool>); * // code to handle non exception * return Just(true); * } * * If inside a function with return type MaybeHandle<X>, use RETURN_ON_EXCEPTION * instead. * If inside a function with return type Object, use * RETURN_FAILURE_ON_EXCEPTION instead. */ #define RETURN_ON_EXCEPTION_VALUE(isolate, call, value) \ do { \ if ((call).is_null()) { \ DCHECK((isolate)->has_pending_exception()); \ return value; \ } \ } while (false) /** * RETURN_FAILURE_ON_EXCEPTION conditionally returns the "exception" sentinel if * the given MaybeHandle is empty; so it can only be used in functions with * return type Object, such as RUNTIME_FUNCTION(...) {...} or BUILTIN(...) * {...}. Example usage: * * RUNTIME_FUNCTION(Runtime_Func) { * ... * RETURN_FAILURE_ON_EXCEPTION( * isolate, * FunctionWithReturnTypeMaybeHandleX(...)); * // code to handle non exception * ... * } * * If inside a function with return type MaybeHandle<X>, use RETURN_ON_EXCEPTION * instead. * If inside a function with return type Maybe<X> or Handle<X>, use * RETURN_ON_EXCEPTION_VALUE instead. */ #define RETURN_FAILURE_ON_EXCEPTION(isolate, call) \ do { \ Isolate* __isolate__ = (isolate); \ RETURN_ON_EXCEPTION_VALUE(__isolate__, call, \ ReadOnlyRoots(__isolate__).exception()); \ } while (false); /** * RETURN_ON_EXCEPTION conditionally returns an empty MaybeHandle<T> if the * given MaybeHandle is empty. Use it to return immediately from a function with * return type MaybeHandle when an exception was thrown. Example usage: * * MaybeHandle<X> Func() { * ... * RETURN_ON_EXCEPTION( * isolate, * FunctionWithReturnTypeMaybeHandleY(...), * X); * // code to handle non exception * ... * } * * If inside a function with return type Object, use * RETURN_FAILURE_ON_EXCEPTION instead. * If inside a function with return type * Maybe<X> or Handle<X>, use RETURN_ON_EXCEPTION_VALUE instead. */ #define RETURN_ON_EXCEPTION(isolate, call, T) \ RETURN_ON_EXCEPTION_VALUE(isolate, call, MaybeHandle<T>()) #define RETURN_FAILURE(isolate, should_throw, call) \ do { \ if ((should_throw) == kDontThrow) { \ return Just(false); \ } else { \ isolate->Throw(*isolate->factory()->call); \ return Nothing<bool>(); \ } \ } while (false) #define MAYBE_RETURN(call, value) \ do { \ if ((call).IsNothing()) return value; \ } while (false) #define MAYBE_RETURN_NULL(call) MAYBE_RETURN(call, MaybeHandle<Object>()) #define MAYBE_RETURN_ON_EXCEPTION_VALUE(isolate, call, value) \ do { \ if ((call).IsNothing()) { \ DCHECK((isolate)->has_pending_exception()); \ return value; \ } \ } while (false) #define MAYBE_ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, dst, call, value) \ do { \ if (!(call).To(&dst)) { \ DCHECK((isolate)->has_pending_exception()); \ return value; \ } \ } while (false) #define MAYBE_ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, dst, call) \ do { \ Isolate* __isolate__ = (isolate); \ if (!(call).To(&dst)) { \ DCHECK(__isolate__->has_pending_exception()); \ return ReadOnlyRoots(__isolate__).exception(); \ } \ } while (false) #define FOR_WITH_HANDLE_SCOPE(isolate, loop_var_type, init, loop_var, \ limit_check, increment, body) \ do { \ loop_var_type init; \ loop_var_type for_with_handle_limit = loop_var; \ Isolate* for_with_handle_isolate = isolate; \ while (limit_check) { \ for_with_handle_limit += 1024; \ HandleScope loop_scope(for_with_handle_isolate); \ for (; limit_check && loop_var < for_with_handle_limit; increment) { \ body \ } \ } \ } while (false) #define WHILE_WITH_HANDLE_SCOPE(isolate, limit_check, body) \ do { \ Isolate* for_with_handle_isolate = isolate; \ while (limit_check) { \ HandleScope loop_scope(for_with_handle_isolate); \ for (int for_with_handle_it = 0; \ limit_check && for_with_handle_it < 1024; ++for_with_handle_it) { \ body \ } \ } \ } while (false) #define FIELD_ACCESSOR(type, name) \ inline void set_##name(type v) { name##_ = v; } \ inline type name() const { return name##_; } // Controls for manual embedded blob lifecycle management, used by tests and // mksnapshot. V8_EXPORT_PRIVATE void DisableEmbeddedBlobRefcounting(); V8_EXPORT_PRIVATE void FreeCurrentEmbeddedBlob(); #ifdef DEBUG #define ISOLATE_INIT_DEBUG_ARRAY_LIST(V) \ V(CommentStatistic, paged_space_comments_statistics, \ CommentStatistic::kMaxComments + 1) \ V(int, code_kind_statistics, kCodeKindCount) #else #define ISOLATE_INIT_DEBUG_ARRAY_LIST(V) #endif #define ISOLATE_INIT_ARRAY_LIST(V) \ /* SerializerDeserializer state. */ \ V(int32_t, jsregexp_static_offsets_vector, kJSRegexpStaticOffsetsVectorSize) \ V(int, bad_char_shift_table, kUC16AlphabetSize) \ V(int, good_suffix_shift_table, (kBMMaxShift + 1)) \ V(int, suffix_table, (kBMMaxShift + 1)) \ ISOLATE_INIT_DEBUG_ARRAY_LIST(V) using DebugObjectCache = std::vector<Handle<HeapObject>>; #define ISOLATE_INIT_LIST(V) \ /* Assembler state. */ \ V(FatalErrorCallback, exception_behavior, nullptr) \ V(OOMErrorCallback, oom_behavior, nullptr) \ V(LogEventCallback, event_logger, nullptr) \ V(AllowCodeGenerationFromStringsCallback, allow_code_gen_callback, nullptr) \ V(ModifyCodeGenerationFromStringsCallback, modify_code_gen_callback, \ nullptr) \ V(ModifyCodeGenerationFromStringsCallback2, modify_code_gen_callback2, \ nullptr) \ V(AllowWasmCodeGenerationCallback, allow_wasm_code_gen_callback, nullptr) \ V(ExtensionCallback, wasm_module_callback, &NoExtension) \ V(ExtensionCallback, wasm_instance_callback, &NoExtension) \ V(SharedArrayBufferConstructorEnabledCallback, \ sharedarraybuffer_constructor_enabled_callback, nullptr) \ V(WasmStreamingCallback, wasm_streaming_callback, nullptr) \ V(WasmAsyncResolvePromiseCallback, wasm_async_resolve_promise_callback, \ DefaultWasmAsyncResolvePromiseCallback) \ V(WasmLoadSourceMapCallback, wasm_load_source_map_callback, nullptr) \ V(WasmGCEnabledCallback, wasm_gc_enabled_callback, nullptr) \ V(WasmImportedStringsEnabledCallback, \ wasm_imported_strings_enabled_callback, nullptr) \ V(JavaScriptCompileHintsMagicEnabledCallback, \ compile_hints_magic_enabled_callback, nullptr) \ /* State for Relocatable. */ \ V(Relocatable*, relocatable_top, nullptr) \ V(DebugObjectCache*, string_stream_debug_object_cache, nullptr) \ V(Tagged<Object>, string_stream_current_security_token, Tagged<Object>()) \ V(const intptr_t*, api_external_references, nullptr) \ V(AddressToIndexHashMap*, external_reference_map, nullptr) \ V(HeapObjectToIndexHashMap*, root_index_map, nullptr) \ V(MicrotaskQueue*, default_microtask_queue, nullptr) \ V(CodeTracer*, code_tracer, nullptr) \ V(PromiseRejectCallback, promise_reject_callback, nullptr) \ V(const v8::StartupData*, snapshot_blob, nullptr) \ V(int, code_and_metadata_size, 0) \ V(int, bytecode_and_metadata_size, 0) \ V(int, external_script_source_size, 0) \ /* Number of CPU profilers running on the isolate. */ \ V(size_t, num_cpu_profilers, 0) \ /* true if a trace is being formatted through Error.prepareStackTrace. */ \ V(bool, formatting_stack_trace, false) \ V(bool, disable_bytecode_flushing, false) \ V(int, last_console_context_id, 0) \ V(v8_inspector::V8Inspector*, inspector, nullptr) \ V(bool, next_v8_call_is_safe_for_termination, false) \ V(bool, only_terminate_in_safe_scope, false) \ V(int, embedder_wrapper_type_index, -1) \ V(int, embedder_wrapper_object_index, -1) \ V(compiler::NodeObserver*, node_observer, nullptr) \ V(bool, javascript_execution_assert, true) \ V(bool, javascript_execution_throws, true) \ V(bool, javascript_execution_dump, true) \ V(uint32_t, javascript_execution_counter, 0) \ V(bool, deoptimization_assert, true) \ V(bool, compilation_assert, true) \ V(bool, no_exception_assert, true) \ V(uint32_t, wasm_switch_to_the_central_stack_counter, 0) #define THREAD_LOCAL_TOP_ACCESSOR(type, name) \ inline void set_##name(type v) { thread_local_top()->name##_ = v; } \ inline type name() const { return thread_local_top()->name##_; } #define THREAD_LOCAL_TOP_ADDRESS(type, name) \ inline type* name##_address() { return &thread_local_top()->name##_; } // HiddenFactory exists so Isolate can privately inherit from it without making // Factory's members available to Isolate directly. class V8_EXPORT_PRIVATE HiddenFactory : private Factory {}; class V8_EXPORT_PRIVATE Isolate final : private HiddenFactory { // These forward declarations are required to make the friend declarations in // PerIsolateThreadData work on some older versions of gcc. class ThreadDataTable; class EntryStackItem; public: Isolate(const Isolate&) = delete; Isolate& operator=(const Isolate&) = delete; using HandleScopeType = HandleScope; void* operator new(size_t) = delete; void operator delete(void*) = delete; // A thread has a PerIsolateThreadData instance for each isolate that it has // entered. That instance is allocated when the isolate is initially entered // and reused on subsequent entries. class PerIsolateThreadData { public: PerIsolateThreadData(Isolate* isolate, ThreadId thread_id) : isolate_(isolate), thread_id_(thread_id), stack_limit_(0), thread_state_(nullptr) #if USE_SIMULATOR , simulator_(nullptr) #endif { } ~PerIsolateThreadData(); PerIsolateThreadData(const PerIsolateThreadData&) = delete; PerIsolateThreadData& operator=(const PerIsolateThreadData&) = delete; Isolate* isolate() const { return isolate_; } ThreadId thread_id() const { return thread_id_; } FIELD_ACCESSOR(uintptr_t, stack_limit) FIELD_ACCESSOR(ThreadState*, thread_state) #if USE_SIMULATOR FIELD_ACCESSOR(Simulator*, simulator) #endif bool Matches(Isolate* isolate, ThreadId thread_id) const { return isolate_ == isolate && thread_id_ == thread_id; } private: Isolate* isolate_; ThreadId thread_id_; uintptr_t stack_limit_; ThreadState* thread_state_; #if USE_SIMULATOR Simulator* simulator_; #endif friend class Isolate; friend class ThreadDataTable; friend class EntryStackItem; }; static void InitializeOncePerProcess(); // Creates Isolate object. Must be used instead of constructing Isolate with // new operator. static Isolate* New(); // Deletes Isolate object. Must be used instead of delete operator. // Destroys the non-default isolates. // Sets default isolate into "has_been_disposed" state rather then destroying, // for legacy API reasons. static void Delete(Isolate* isolate); void SetUpFromReadOnlyArtifacts(std::shared_ptr<ReadOnlyArtifacts> artifacts, ReadOnlyHeap* ro_heap); void set_read_only_heap(ReadOnlyHeap* ro_heap) { read_only_heap_ = ro_heap; } // Page allocator that must be used for allocating V8 heap pages. v8::PageAllocator* page_allocator() const; // Returns the PerIsolateThreadData for the current thread (or nullptr if one // is not currently set). V8_INLINE static PerIsolateThreadData* CurrentPerIsolateThreadData(); // Returns the isolate inside which the current thread is running or nullptr. V8_INLINE static Isolate* TryGetCurrent(); // Returns the isolate inside which the current thread is running. V8_INLINE static Isolate* Current(); inline bool IsCurrent() const; // Usually called by Init(), but can be called early e.g. to allow // testing components that require logging but not the whole // isolate. // // Safe to call more than once. void InitializeLoggingAndCounters(); bool InitializeCounters(); // Returns false if already initialized. bool InitWithoutSnapshot(); bool InitWithSnapshot(SnapshotData* startup_snapshot_data, SnapshotData* read_only_snapshot_data, SnapshotData* shared_heap_snapshot_data, bool can_rehash); // True if at least one thread Enter'ed this isolate. bool IsInUse() { return entry_stack_ != nullptr; } void ReleaseSharedPtrs(); void ClearSerializerData(); void UpdateLogObjectRelocation(); // Initializes the current thread to run this Isolate. // Not thread-safe. Multiple threads should not Enter/Exit the same isolate // at the same time, this should be prevented using external locking. void Enter(); // Exits the current thread. The previously entered Isolate is restored // for the thread. // Not thread-safe. Multiple threads should not Enter/Exit the same isolate // at the same time, this should be prevented using external locking. void Exit(); // Find the PerThread for this particular (isolate, thread) combination. // If one does not yet exist, allocate a new one. PerIsolateThreadData* FindOrAllocatePerThreadDataForThisThread(); // Find the PerThread for this particular (isolate, thread) combination // If one does not yet exist, return null. PerIsolateThreadData* FindPerThreadDataForThisThread(); // Find the PerThread for given (isolate, thread) combination // If one does not yet exist, return null. PerIsolateThreadData* FindPerThreadDataForThread(ThreadId thread_id); // Discard the PerThread for this particular (isolate, thread) combination // If one does not yet exist, no-op. void DiscardPerThreadDataForThisThread(); // Mutex for serializing access to break control structures. base::RecursiveMutex* break_access() { return &break_access_; } // Shared mutex for allowing thread-safe concurrent reads of FeedbackVectors. base::SharedMutex* feedback_vector_access() { return &feedback_vector_access_; } // Shared mutex for allowing thread-safe concurrent reads of // InternalizedStrings. base::SharedMutex* internalized_string_access() { return &internalized_string_access_; } // Shared mutex for allowing thread-safe concurrent reads of TransitionArrays // of kind kFullTransitionArray. base::SharedMutex* full_transition_array_access() { return &full_transition_array_access_; } // Shared mutex for allowing thread-safe concurrent reads of // SharedFunctionInfos. base::SharedMutex* shared_function_info_access() { return &shared_function_info_access_; } // Protects (most) map update operations, see also MapUpdater. base::SharedMutex* map_updater_access() { return &map_updater_access_; } // Protects JSObject boilerplate migrations (i.e. calls to MigrateInstance on // boilerplate objects; elements kind transitions are *not* protected). // Note this lock interacts with `map_updater_access` as follows // // - boilerplate migrations may trigger map updates. // - if so, `boilerplate_migration_access` is locked before // `map_updater_access`. // - backgrounds threads must use the same lock order to avoid deadlocks. base::SharedMutex* boilerplate_migration_access() { return &boilerplate_migration_access_; } ReadOnlyArtifacts* read_only_artifacts() const { ReadOnlyArtifacts* artifacts = artifacts_.get(); DCHECK_IMPLIES(ReadOnlyHeap::IsReadOnlySpaceShared(), artifacts != nullptr); return artifacts; } // The isolate's string table. StringTable* string_table() const { return string_table_.get(); } StringForwardingTable* string_forwarding_table() const { return string_forwarding_table_.get(); } Address get_address_from_id(IsolateAddressId id); // Access to top context (where the current function object was created). Tagged<Context> context() const { return thread_local_top()->context_; } inline void set_context(Tagged<Context> context); Tagged<Context>* context_address() { return &thread_local_top()->context_; } // Access to current thread id. inline void set_thread_id(ThreadId id) { thread_local_top()->thread_id_.store(id, std::memory_order_relaxed); } inline ThreadId thread_id() const { return thread_local_top()->thread_id_.load(std::memory_order_relaxed); } void InstallConditionalFeatures(Handle<NativeContext> context); bool IsSharedArrayBufferConstructorEnabled(Handle<NativeContext> context); bool IsWasmGCEnabled(Handle<NativeContext> context); bool IsWasmStringRefEnabled(Handle<NativeContext> context); bool IsWasmInliningEnabled(Handle<NativeContext> context); bool IsWasmInliningIntoJSEnabled(Handle<NativeContext> context); bool IsWasmImportedStringsEnabled(Handle<NativeContext> context); bool IsCompileHintsMagicEnabled(Handle<NativeContext> context); THREAD_LOCAL_TOP_ADDRESS(Tagged<Context>, pending_handler_context) THREAD_LOCAL_TOP_ADDRESS(Address, pending_handler_entrypoint) THREAD_LOCAL_TOP_ADDRESS(Address, pending_handler_constant_pool) THREAD_LOCAL_TOP_ADDRESS(Address, pending_handler_fp) THREAD_LOCAL_TOP_ADDRESS(Address, pending_handler_sp) THREAD_LOCAL_TOP_ADDRESS(uintptr_t, num_frames_above_pending_handler) THREAD_LOCAL_TOP_ACCESSOR(bool, external_caught_exception) v8::TryCatch* try_catch_handler() { return thread_local_top()->try_catch_handler_; } THREAD_LOCAL_TOP_ADDRESS(bool, external_caught_exception) // Interface to pending exception. THREAD_LOCAL_TOP_ADDRESS(Tagged<Object>, pending_exception) inline Tagged<Object> pending_exception(); inline void set_pending_exception(Tagged<Object> exception_obj); inline void clear_pending_exception(); inline bool has_pending_exception(); THREAD_LOCAL_TOP_ADDRESS(Tagged<Object>, pending_message) inline void clear_pending_message(); inline Tagged<Object> pending_message(); inline bool has_pending_message(); inline void set_pending_message(Tagged<Object> message_obj); THREAD_LOCAL_TOP_ADDRESS(Tagged<Object>, scheduled_exception) inline Tagged<Object> scheduled_exception(); inline bool has_scheduled_exception(); inline void clear_scheduled_exception(); inline void set_scheduled_exception(Tagged<Object> exception); #ifdef DEBUG inline Tagged<Object> VerifyBuiltinsResult(Tagged<Object> result); inline ObjectPair VerifyBuiltinsResult(ObjectPair pair); #endif enum class ExceptionHandlerType { kJavaScriptHandler, kExternalTryCatch, kNone }; ExceptionHandlerType TopExceptionHandlerType(Tagged<Object> exception); inline bool is_catchable_by_javascript(Tagged<Object> exception); inline bool is_catchable_by_wasm(Tagged<Object> exception); inline bool is_execution_terminating(); inline bool is_execution_termination_pending(); // JS execution stack (see frames.h). static Address c_entry_fp(ThreadLocalTop* thread) { return thread->c_entry_fp_; } static Address handler(ThreadLocalTop* thread) { return thread->handler_; } Address c_function() { return thread_local_top()->c_function_; } inline Address* c_entry_fp_address() { return &thread_local_top()->c_entry_fp_; } static uint32_t c_entry_fp_offset() { return static_cast<uint32_t>(OFFSET_OF(Isolate, isolate_data_) + OFFSET_OF(IsolateData, thread_local_top_) + OFFSET_OF(ThreadLocalTop, c_entry_fp_) - isolate_root_bias()); } inline Address* handler_address() { return &thread_local_top()->handler_; } inline Address* c_function_address() { return &thread_local_top()->c_function_; } #if defined(DEBUG) || defined(VERIFY_HEAP) // Count the number of active deserializers, so that the heap verifier knows // whether there is currently an active deserialization happening. // // This is needed as the verifier currently doesn't support verifying objects // which are partially deserialized. // // TODO(leszeks): Make the verifier a bit more deserialization compatible. void RegisterDeserializerStarted() { ++num_active_deserializers_; } void RegisterDeserializerFinished() { CHECK_GE(--num_active_deserializers_, 0); } bool has_active_deserializer() const { return num_active_deserializers_.load(std::memory_order_acquire) > 0; } #else void RegisterDeserializerStarted() {} void RegisterDeserializerFinished() {} bool has_active_deserializer() const { UNREACHABLE(); } #endif // Bottom JS entry. Address js_entry_sp() { return thread_local_top()->js_entry_sp_; } inline Address* js_entry_sp_address() { return &thread_local_top()->js_entry_sp_; } std::vector<MemoryRange>* GetCodePages() const; void SetCodePages(std::vector<MemoryRange>* new_code_pages); // Returns the global object of the current context. It could be // a builtin object, or a JS global object. inline Handle<JSGlobalObject> global_object(); // Returns the global proxy object of the current context. inline Handle<JSGlobalProxy> global_proxy(); static int ArchiveSpacePerThread() { return sizeof(ThreadLocalTop); } void FreeThreadResources() { thread_local_top()->Free(); } // This method is called by the api after operations that may throw // exceptions. If an exception was thrown and not handled by an external // handler the exception is scheduled to be rethrown when we return to running // JavaScript code. If an exception is scheduled true is returned. bool OptionalRescheduleException(bool clear_exception); // Push and pop a promise and the current try-catch handler. void PushPromise(Handle<JSObject> promise); void PopPromise(); bool IsPromiseStackEmpty() const; // Return the relevant Promise that a throw/rejection pertains to, based // on the contents of the Promise stack Handle<Object> GetPromiseOnStackOnThrow(); // Heuristically guess whether a Promise is handled by user catch handler bool PromiseHasUserDefinedRejectHandler(Handle<JSPromise> promise); class V8_NODISCARD ExceptionScope { public: // Scope currently can only be used for regular exceptions, // not termination exception. inline explicit ExceptionScope(Isolate* isolate); inline ~ExceptionScope(); private: Isolate* isolate_; Handle<Object> pending_exception_; }; void SetCaptureStackTraceForUncaughtExceptions( bool capture, int frame_limit, StackTrace::StackTraceOptions options); bool get_capture_stack_trace_for_uncaught_exceptions() const; void SetAbortOnUncaughtExceptionCallback( v8::Isolate::AbortOnUncaughtExceptionCallback callback); enum PrintStackMode { kPrintStackConcise, kPrintStackVerbose }; void PrintCurrentStackTrace(std::ostream& out); void PrintStack(StringStream* accumulator, PrintStackMode mode = kPrintStackVerbose); void PrintStack(FILE* out, PrintStackMode mode = kPrintStackVerbose); Handle<String> StackTraceString(); // Stores a stack trace in a stack-allocated temporary buffer which will // end up in the minidump for debugging purposes. V8_NOINLINE void PushStackTraceAndDie(void* ptr1 = nullptr, void* ptr2 = nullptr, void* ptr3 = nullptr, void* ptr4 = nullptr); // Similar to the above but without collecting the stack trace. V8_NOINLINE void PushParamsAndDie(void* ptr1 = nullptr, void* ptr2 = nullptr, void* ptr3 = nullptr, void* ptr4 = nullptr, void* ptr5 = nullptr, void* ptr6 = nullptr); Handle<FixedArray> CaptureDetailedStackTrace( int limit, StackTrace::StackTraceOptions options); MaybeHandle<JSObject> CaptureAndSetErrorStack(Handle<JSObject> error_object, FrameSkipMode mode, Handle<Object> caller); Handle<FixedArray> GetDetailedStackTrace(Handle<JSReceiver> error_object); Handle<FixedArray> GetSimpleStackTrace(Handle<JSReceiver> error_object); // Walks the JS stack to find the first frame with a script name or // source URL. The inspected frames are the same as for the detailed stack // trace. Handle<String> CurrentScriptNameOrSourceURL(); Address GetAbstractPC(int* line, int* column); // Returns if the given context may access the given global object. If // the result is false, the pending exception is guaranteed to be // set. bool MayAccess(Handle<NativeContext> accessing_context, Handle<JSObject> receiver); void SetFailedAccessCheckCallback(v8::FailedAccessCheckCallback callback); V8_WARN_UNUSED_RESULT MaybeHandle<Object> ReportFailedAccessCheck( Handle<JSObject> receiver); // Exception throwing support. The caller should use the result // of Throw() as its return value. Tagged<Object> Throw(Tagged<Object> exception) { return ThrowInternal(exception, nullptr); } Tagged<Object> ThrowAt(Handle<JSObject> exception, MessageLocation* location); Tagged<Object> ThrowIllegalOperation(); template <typename T> V8_WARN_UNUSED_RESULT MaybeHandle<T> Throw(Handle<Object> exception) { Throw(*exception); return MaybeHandle<T>(); } template <typename T> V8_WARN_UNUSED_RESULT MaybeHandle<T> ThrowAt(Handle<JSObject> exception, MessageLocation* location) { ThrowAt(exception, location); return MaybeHandle<T>(); } void FatalProcessOutOfHeapMemory(const char* location) { heap()->FatalProcessOutOfMemory(location); } void set_console_delegate(debug::ConsoleDelegate* delegate) { console_delegate_ = delegate; } debug::ConsoleDelegate* console_delegate() { return console_delegate_; } void set_async_event_delegate(debug::AsyncEventDelegate* delegate) { async_event_delegate_ = delegate; PromiseHookStateUpdated(); } // Async function and promise instrumentation support. void OnAsyncFunctionSuspended(Handle<JSPromise> promise, Handle<JSPromise> parent); void OnPromiseThen(Handle<JSPromise> promise); void OnPromiseBefore(Handle<JSPromise> promise); void OnPromiseAfter(Handle<JSPromise> promise); void OnTerminationDuringRunMicrotasks(); // Re-throw an exception. This involves no error reporting since error // reporting was handled when the exception was thrown originally. // The first overload doesn't set the corresponding pending message, which // has to be set separately or be guaranteed to not have changed. Tagged<Object> ReThrow(Tagged<Object> exception); Tagged<Object> ReThrow(Tagged<Object> exception, Tagged<Object> message); // Find the correct handler for the current pending exception. This also // clears and returns the current pending exception. Tagged<Object> UnwindAndFindHandler(); // Tries to predict whether an exception will be caught. Note that this can // only produce an estimate, because it is undecidable whether a finally // clause will consume or re-throw an exception. enum CatchType { NOT_CAUGHT, CAUGHT_BY_JAVASCRIPT, CAUGHT_BY_EXTERNAL, CAUGHT_BY_PROMISE, CAUGHT_BY_ASYNC_AWAIT }; CatchType PredictExceptionCatcher(); void ScheduleThrow(Tagged<Object> exception); // Re-set pending message, script and positions reported to the TryCatch // back to the TLS for re-use when rethrowing. void RestorePendingMessageFromTryCatch(v8::TryCatch* handler); // Un-schedule an exception that was caught by a TryCatch handler. void CancelScheduledExceptionFromTryCatch(v8::TryCatch* handler); void ReportPendingMessages(); // Promote a scheduled exception to pending. Asserts has_scheduled_exception. Tagged<Object> PromoteScheduledException(); // Attempts to compute the current source location, storing the // result in the target out parameter. The source location is attached to a // Message object as the location which should be shown to the user. It's // typically the top-most meaningful location on the stack. bool ComputeLocation(MessageLocation* target); bool ComputeLocationFromException(MessageLocation* target, Handle<Object> exception); bool ComputeLocationFromSimpleStackTrace(MessageLocation* target, Handle<Object> exception); bool ComputeLocationFromDetailedStackTrace(MessageLocation* target, Handle<Object> exception); Handle<JSMessageObject> CreateMessage(Handle<Object> exception, MessageLocation* location); Handle<JSMessageObject> CreateMessageOrAbort(Handle<Object> exception, MessageLocation* location); // Similar to Isolate::CreateMessage but DOESN'T inspect the JS stack and // only looks at the "detailed stack trace" as the "simple stack trace" might // have already been stringified. Handle<JSMessageObject> CreateMessageFromException(Handle<Object> exception); // Out of resource exception helpers. Tagged<Object> StackOverflow(); Tagged<Object> TerminateExecution(); void CancelTerminateExecution(); void RequestInterrupt(InterruptCallback callback, void* data); void InvokeApiInterruptCallbacks(); void RequestInvalidateNoProfilingProtector(); // Administration void Iterate(RootVisitor* v); void Iterate(RootVisitor* v, ThreadLocalTop* t); char* Iterate(RootVisitor* v, char* t); void IterateThread(ThreadVisitor* v, char* t); // Returns the current native context. inline Handle<NativeContext> native_context(); inline Tagged<NativeContext> raw_native_context(); Handle<NativeContext> GetIncumbentContext(); void RegisterTryCatchHandler(v8::TryCatch* that); void UnregisterTryCatchHandler(v8::TryCatch* that); char* ArchiveThread(char* to); char* RestoreThread(char* from); static const int kUC16AlphabetSize = 256; // See StringSearchBase. static const int kBMMaxShift = 250; // See StringSearchBase. // Accessors. #define GLOBAL_ACCESSOR(type, name, initialvalue) \ inline type name() const { \ DCHECK(OFFSET_OF(Isolate, name##_) == name##_debug_offset_); \ return name##_; \ } \ inline void set_##name(type value) { \ DCHECK(OFFSET_OF(Isolate, name##_) == name##_debug_offset_); \ name##_ = value; \ } ISOLATE_INIT_LIST(GLOBAL_ACCESSOR) #undef GLOBAL_ACCESSOR void SetDetailedSourcePositionsForProfiling(bool value) { if (value) { CollectSourcePositionsForAllBytecodeArrays(); } detailed_source_positions_for_profiling_ = value; } bool detailed_source_positions_for_profiling() const { return detailed_source_positions_for_profiling_; } #define GLOBAL_ARRAY_ACCESSOR(type, name, length) \ inline type* name() { \ DCHECK(OFFSET_OF(Isolate, name##_) == name##_debug_offset_); \ return &(name##_)[0]; \ } ISOLATE_INIT_ARRAY_LIST(GLOBAL_ARRAY_ACCESSOR) #undef GLOBAL_ARRAY_ACCESSOR #define NATIVE_CONTEXT_FIELD_ACCESSOR(index, type, name) \ inline Handle<type> name(); \ inline bool is_##name(Tagged<type> value); NATIVE_CONTEXT_FIELDS(NATIVE_CONTEXT_FIELD_ACCESSOR) #undef NATIVE_CONTEXT_FIELD_ACCESSOR Bootstrapper* bootstrapper() { return bootstrapper_; } // Use for updating counters on a foreground thread. Counters* counters() { return async_counters().get(); } // Use for updating counters on a background thread. const std::shared_ptr<Counters>& async_counters() { // Make sure InitializeCounters() has been called. DCHECK_NOT_NULL(async_counters_.get()); return async_counters_; } const std::shared_ptr<metrics::Recorder>& metrics_recorder() { return metrics_recorder_; } TieringManager* tiering_manager() { return tiering_manager_; } CompilationCache* compilation_cache() { return compilation_cache_; } V8FileLogger* v8_file_logger() const { // Call InitializeLoggingAndCounters() if logging is needed before // the isolate is fully initialized. DCHECK_NOT_NULL(v8_file_logger_); return v8_file_logger_; } StackGuard* stack_guard() { return isolate_data()->stack_guard(); } Heap* heap() { return &heap_; } const Heap* heap() const { return &heap_; } ReadOnlyHeap* read_only_heap() const { return read_only_heap_; } static Isolate* FromHeap(const Heap* heap) { return reinterpret_cast<Isolate*>(reinterpret_cast<Address>(heap) - OFFSET_OF(Isolate, heap_)); } const IsolateData* isolate_data() const { return &isolate_data_; } IsolateData* isolate_data() { return &isolate_data_; } // When pointer compression is on, this is the base address of the pointer // compression cage, and the kPtrComprCageBaseRegister is set to this // value. When pointer compression is off, this is always kNullAddress. Address cage_base() const { DCHECK_IMPLIES(!COMPRESS_POINTERS_BOOL, isolate_data()->cage_base() == kNullAddress); return isolate_data()->cage_base(); } // When pointer compression and external code space are on, this is the base // address of the cage where the code space is allocated. Otherwise, it // defaults to cage_base(). Address code_cage_base() const { #ifdef V8_EXTERNAL_CODE_SPACE return code_cage_base_; #else return cage_base(); #endif // V8_EXTERNAL_CODE_SPACE } // When pointer compression is on, the PtrComprCage used by this // Isolate. Otherwise nullptr. VirtualMemoryCage* GetPtrComprCage() { return isolate_allocator_->GetPtrComprCage(); } const VirtualMemoryCage* GetPtrComprCage() const { return isolate_allocator_->GetPtrComprCage(); } VirtualMemoryCage* GetPtrComprCodeCageForTesting(); // Generated code can embed this address to get access to the isolate-specific // data (for example, roots, external references, builtins, etc.). // The kRootRegister is set to this value. Address isolate_root() const { return isolate_data()->isolate_root(); } static size_t isolate_root_bias() { return OFFSET_OF(Isolate, isolate_data_) + IsolateData::kIsolateRootBias; } static Isolate* FromRootAddress(Address isolate_root) { return reinterpret_cast<Isolate*>(isolate_root - isolate_root_bias()); } RootsTable& roots_table() { return isolate_data()->roots(); } const RootsTable& roots_table() const { return isolate_data()->roots(); } // A sub-region of the Isolate object that has "predictable" layout which // depends only on the pointer size and therefore it's guaranteed that there // will be no compatibility issues because of different compilers used for // snapshot generator and actual V8 code. // Thus, kRootRegister may be used to address any location that falls into // this region. // See IsolateData::AssertPredictableLayout() for details. base::AddressRegion root_register_addressable_region() const { return base::AddressRegion(reinterpret_cast<Address>(&isolate_data_), sizeof(IsolateData)); } Tagged<Object> root(RootIndex index) const { return Tagged<Object>(roots_table()[index]); } Handle<Object> root_handle(RootIndex index) { return Handle<Object>(&roots_table()[index]); } ExternalReferenceTable* external_reference_table() { DCHECK(isolate_data()->external_reference_table()->is_initialized()); return isolate_data()->external_reference_table(); } ExternalReferenceTable* external_reference_table_unsafe() { // The table may only be partially initialized at this point. return isolate_data()->external_reference_table(); } Address* builtin_entry_table() { return isolate_data_.builtin_entry_table(); } V8_INLINE Address* builtin_table() { return isolate_data_.builtin_table(); } V8_INLINE Address* builtin_tier0_table() { return isolate_data_.builtin_tier0_table(); } bool IsBuiltinTableHandleLocation(Address* handle_location); StubCache* load_stub_cache() const { return load_stub_cache_; } StubCache* store_stub_cache() const { return store_stub_cache_; } Deoptimizer* GetAndClearCurrentDeoptimizer() { Deoptimizer* result = current_deoptimizer_; CHECK_NOT_NULL(result); current_deoptimizer_ = nullptr; return result; } void set_current_deoptimizer(Deoptimizer* deoptimizer) { DCHECK_NULL(current_deoptimizer_); DCHECK_NOT_NULL(deoptimizer); current_deoptimizer_ = deoptimizer; } bool deoptimizer_lazy_throw() const { return deoptimizer_lazy_throw_; } void set_deoptimizer_lazy_throw(bool value) { deoptimizer_lazy_throw_ = value; } void InitializeThreadLocal(); ThreadLocalTop* thread_local_top() { return &isolate_data_.thread_local_top_; } ThreadLocalTop const* thread_local_top() const { return &isolate_data_.thread_local_top_; } static uint32_t thread_in_wasm_flag_address_offset() { // For WebAssembly trap handlers there is a flag in thread-local storage // which indicates that the executing thread executes WebAssembly code. To // access this flag directly from generated code, we store a pointer to the // flag in ThreadLocalTop in thread_in_wasm_flag_address_. This function // here returns the offset of that member from {isolate_root()}. return static_cast<uint32_t>( OFFSET_OF(Isolate, isolate_data_) + OFFSET_OF(IsolateData, thread_local_top_) + OFFSET_OF(ThreadLocalTop, thread_in_wasm_flag_address_) - isolate_root_bias()); } THREAD_LOCAL_TOP_ADDRESS(Address, thread_in_wasm_flag_address) THREAD_LOCAL_TOP_ADDRESS(bool, is_on_central_stack_flag) MaterializedObjectStore* materialized_object_store() const { return materialized_object_store_; } DescriptorLookupCache* descriptor_lookup_cache() const { return descriptor_lookup_cache_; } V8_INLINE HandleScopeData* handle_scope_data() { return &isolate_data_.handle_scope_data_; } HandleScopeImplementer* handle_scope_implementer() const { DCHECK(handle_scope_implementer_); return handle_scope_implementer_; } UnicodeCache* unicode_cache() const { return unicode_cache_; } InnerPointerToCodeCache* inner_pointer_to_code_cache() { return inner_pointer_to_code_cache_; } GlobalHandles* global_handles() const { return global_handles_; } TracedHandles* traced_handles() { return &traced_handles_; } EternalHandles* eternal_handles() const { return eternal_handles_; } ThreadManager* thread_manager() const { return thread_manager_; } bigint::Processor* bigint_processor() { return bigint_processor_; } #ifndef V8_INTL_SUPPORT unibrow::Mapping<unibrow::Ecma262UnCanonicalize>* jsregexp_uncanonicalize() { return &jsregexp_uncanonicalize_; } unibrow::Mapping<unibrow::CanonicalizationRange>* jsregexp_canonrange() { return &jsregexp_canonrange_; } unibrow::Mapping<unibrow::Ecma262Canonicalize>* regexp_macro_assembler_canonicalize() { return ®exp_macro_assembler_canonicalize_; } #endif // !V8_INTL_SUPPORT RuntimeState* runtime_state() { return &runtime_state_; } Builtins* builtins() { return &builtins_; } RegExpStack* regexp_stack() const { return regexp_stack_; } size_t total_regexp_code_generated() const { return total_regexp_code_generated_; } void IncreaseTotalRegexpCodeGenerated(Handle<HeapObject> code); std::vector<int>* regexp_indices() { return ®exp_indices_; } Debug* debug() const { return debug_; } bool is_profiling() const { return isolate_data_.execution_mode_ & IsolateExecutionModeFlag::kIsProfiling; } void SetIsProfiling(bool enabled) { if (enabled) { CollectSourcePositionsForAllBytecodeArrays(); RequestInvalidateNoProfilingProtector(); } isolate_data_.execution_mode_.set(IsolateExecutionModeFlag::kIsProfiling, enabled); UpdateLogObjectRelocation(); } // Perform side effect checks on function calls and API callbacks. // See Debug::StartSideEffectCheckMode(). bool should_check_side_effects() const { return isolate_data_.execution_mode_ & IsolateExecutionModeFlag::kCheckSideEffects; } DebugInfo::ExecutionMode debug_execution_mode() const { return should_check_side_effects() ? DebugInfo::kSideEffects : DebugInfo::kBreakpoints; } void set_debug_execution_mode(DebugInfo::ExecutionMode debug_execution_mode) { bool check_side_effects = debug_execution_mode == DebugInfo::kSideEffects; isolate_data_.execution_mode_.set( IsolateExecutionModeFlag::kCheckSideEffects, check_side_effects); } Logger* logger() const { return logger_; } HeapProfiler* heap_profiler() const { return heap_profiler_; } #ifdef DEBUG static size_t non_disposed_isolates() { return non_disposed_isolates_; } // Turbofan's string builder optimization can introduce SlicedString that are // less than SlicedString::kMinLength characters. Their live range and scope // are pretty limitted, but they can be visible to the GC, which shouldn't // treat them as invalid. When such short SlicedString are introduced, // Turbofan will set has_turbofan_string_builders_ to true, which // SlicedString::SlicedStringVerify will check when verifying SlicedString to // decide if a too-short SlicedString is an issue or not. // See the compiler's StringBuilderOptimizer class for more details. bool has_turbofan_string_builders() { return has_turbofan_string_builders_; } void set_has_turbofan_string_builders() { has_turbofan_string_builders_ = true; } #endif v8::internal::Factory* factory() { // Upcast to the privately inherited base-class using c-style casts to avoid // undefined behavior (as static_cast cannot cast across private bases). return (v8::internal::Factory*)this; } static const int kJSRegexpStaticOffsetsVectorSize = 128; THREAD_LOCAL_TOP_ACCESSOR(ExternalCallbackScope*, external_callback_scope) THREAD_LOCAL_TOP_ACCESSOR(StateTag, current_vm_state) THREAD_LOCAL_TOP_ACCESSOR(EmbedderState*, current_embedder_state) void SetData(uint32_t slot, void* data) { DCHECK_LT(slot, Internals::kNumIsolateDataSlots); isolate_data_.embedder_data_[slot] = data; } void* GetData(uint32_t slot) const { DCHECK_LT(slot, Internals::kNumIsolateDataSlots); return isolate_data_.embedder_data_[slot]; } bool serializer_enabled() const { return serializer_enabled_; } void enable_serializer() { serializer_enabled_ = true; } bool snapshot_available() const { return snapshot_blob_ != nullptr && snapshot_blob_->raw_size != 0; } bool IsDead() const { return has_fatal_error_; } void SignalFatalError() { has_fatal_error_ = true; } bool use_optimizer(); bool initialized_from_snapshot() { return initialized_from_snapshot_; } bool NeedsSourcePositions() const; bool IsLoggingCodeCreation() const; bool AllowsCodeCompaction() const; bool NeedsDetailedOptimizedCodeLineInfo() const; bool is_best_effort_code_coverage() const { return code_coverage_mode() == debug::CoverageMode::kBestEffort; } bool is_precise_count_code_coverage() const { return code_coverage_mode() == debug::CoverageMode::kPreciseCount; } bool is_precise_binary_code_coverage() const { return code_coverage_mode() == debug::CoverageMode::kPreciseBinary; } bool is_block_count_code_coverage() const { return code_coverage_mode() == debug::CoverageMode::kBlockCount; } bool is_block_binary_code_coverage() const { return code_coverage_mode() == debug::CoverageMode::kBlockBinary; } bool is_block_code_coverage() const { return is_block_count_code_coverage() || is_block_binary_code_coverage(); } bool is_binary_code_coverage() const { return is_precise_binary_code_coverage() || is_block_binary_code_coverage(); } bool is_count_code_coverage() const { return is_precise_count_code_coverage() || is_block_count_code_coverage(); } // Collect feedback vectors with data for code coverage or type profile. // Reset the list, when both code coverage and type profile are not // needed anymore. This keeps many feedback vectors alive, but code // coverage or type profile are used for debugging only and increase in // memory usage is expected. void SetFeedbackVectorsForProfilingTools(Tagged<Object> value); void MaybeInitializeVectorListFromHeap(); double time_millis_since_init() const { return heap_.MonotonicallyIncreasingTimeInMs() - time_millis_at_init_; } DateCache* date_cache() const { return date_cache_; } void set_date_cache(DateCache* date_cache); #ifdef V8_INTL_SUPPORT const std::string& DefaultLocale(); void ResetDefaultLocale(); void set_default_locale(const std::string& locale) { DCHECK_EQ(default_locale_.length(), 0); default_locale_ = locale; } enum class ICUObjectCacheType{ kDefaultCollator, kDefaultNumberFormat, kDefaultSimpleDateFormat, kDefaultSimpleDateFormatForTime, kDefaultSimpleDateFormatForDate}; static constexpr int kICUObjectCacheTypeCount = 5; icu::UMemory* get_cached_icu_object(ICUObjectCacheType cache_type, Handle<Object> locales); void set_icu_object_in_cache(ICUObjectCacheType cache_type, Handle<Object> locales, std::shared_ptr<icu::UMemory> obj); void clear_cached_icu_object(ICUObjectCacheType cache_type); void clear_cached_icu_objects(); #endif // V8_INTL_SUPPORT enum class KnownPrototype { kNone, kObject, kArray, kString }; KnownPrototype IsArrayOrObjectOrStringPrototype(Tagged<Object> object); // On intent to set an element in object, make sure that appropriate // notifications occur if the set is on the elements of the array or // object prototype. Also ensure that changes to prototype chain between // Array and Object fire notifications. void UpdateNoElementsProtectorOnSetElement(Handle<JSObject> object); void UpdateNoElementsProtectorOnSetLength(Handle<JSObject> object) { UpdateNoElementsProtectorOnSetElement(object); } void UpdateNoElementsProtectorOnSetPrototype(Handle<JSObject> object) { UpdateNoElementsProtectorOnSetElement(object); } void UpdateTypedArraySpeciesLookupChainProtectorOnSetPrototype( Handle<JSObject> object); void UpdateNumberStringNotRegexpLikeProtectorOnSetPrototype( Handle<JSObject> object); void UpdateNoElementsProtectorOnNormalizeElements(Handle<JSObject> object) { UpdateNoElementsProtectorOnSetElement(object); } // Returns true if array is the initial array prototype in any native context. inline bool IsAnyInitialArrayPrototype(Tagged<JSArray> array); std::unique_ptr<PersistentHandles> NewPersistentHandles(); PersistentHandlesList* persistent_handles_list() const { return persistent_handles_list_.get(); } #ifdef DEBUG bool IsDeferredHandle(Address* location); #endif // DEBUG baseline::BaselineBatchCompiler* baseline_batch_compiler() const { DCHECK_NOT_NULL(baseline_batch_compiler_); return baseline_batch_compiler_; } #ifdef V8_ENABLE_MAGLEV maglev::MaglevConcurrentDispatcher* maglev_concurrent_dispatcher() { DCHECK_NOT_NULL(maglev_concurrent_dispatcher_); return maglev_concurrent_dispatcher_; } #endif // V8_ENABLE_MAGLEV bool concurrent_recompilation_enabled() { // Thread is only available with flag enabled. DCHECK(optimizing_compile_dispatcher_ == nullptr || v8_flags.concurrent_recompilation); return optimizing_compile_dispatcher_ != nullptr; } OptimizingCompileDispatcher* optimizing_compile_dispatcher() { DCHECK_NOT_NULL(optimizing_compile_dispatcher_); return optimizing_compile_dispatcher_; } // Flushes all pending concurrent optimization jobs from the optimizing // compile dispatcher's queue. void AbortConcurrentOptimization(BlockingBehavior blocking_behavior); int id() const { return id_; } bool was_locker_ever_used() const { return was_locker_ever_used_.load(std::memory_order_relaxed); } void set_was_locker_ever_used() { was_locker_ever_used_.store(true, std::memory_order_relaxed); } std::shared_ptr<CompilationStatistics> GetTurboStatistics(); #ifdef V8_ENABLE_MAGLEV std::shared_ptr<CompilationStatistics> GetMaglevStatistics(); #endif CodeTracer* GetCodeTracer(); void DumpAndResetStats(); void* stress_deopt_count_address() { return &stress_deopt_count_; } void set_force_slow_path(bool v) { force_slow_path_ = v; } bool force_slow_path() const { return force_slow_path_; } bool* force_slow_path_address() { return &force_slow_path_; } bool jitless() const { return jitless_; } base::RandomNumberGenerator* random_number_generator(); base::RandomNumberGenerator* fuzzer_rng(); // Generates a random number that is non-zero when masked // with the provided mask. int GenerateIdentityHash(uint32_t mask); int NextOptimizationId() { int id = next_optimization_id_++; if (!Smi::IsValid(next_optimization_id_)) { next_optimization_id_ = 0; } return id; } // https://github.com/tc39/proposal-top-level-await/pull/159 // TODO(syg): Update to actual spec link once merged. // // According to the spec, modules that depend on async modules (i.e. modules // with top-level await) must be evaluated in order in which their // [[AsyncEvaluating]] flags were set to true. V8 tracks this global total // order with next_module_async_evaluating_ordinal_. Each module that sets its // [[AsyncEvaluating]] to true grabs the next ordinal. unsigned NextModuleAsyncEvaluatingOrdinal() { unsigned ordinal = next_module_async_evaluating_ordinal_++; CHECK_LT(ordinal, kMaxModuleAsyncEvaluatingOrdinal); return ordinal; } inline void DidFinishModuleAsyncEvaluation(unsigned ordinal); void AddNearHeapLimitCallback(v8::NearHeapLimitCallback, void* data); void RemoveNearHeapLimitCallback(v8::NearHeapLimitCallback callback, size_t heap_limit); void AddCallCompletedCallback(CallCompletedCallback callback); void RemoveCallCompletedCallback(CallCompletedCallback callback); void FireCallCompletedCallback(MicrotaskQueue* microtask_queue) { if (!thread_local_top()->CallDepthIsZero()) return; FireCallCompletedCallbackInternal(microtask_queue); } void AddBeforeCallEnteredCallback(BeforeCallEnteredCallback callback); void RemoveBeforeCallEnteredCallback(BeforeCallEnteredCallback callback); inline void FireBeforeCallEnteredCallback(); void SetPromiseRejectCallback(PromiseRejectCallback callback); void ReportPromiseReject(Handle<JSPromise> promise, Handle<Object> value, v8::PromiseRejectEvent event); void SetTerminationOnExternalTryCatch(); Handle<Symbol> SymbolFor(RootIndex dictionary_index, Handle<String> name, bool private_symbol); void SetUseCounterCallback(v8::Isolate::UseCounterCallback callback); void CountUsage(v8::Isolate::UseCounterFeature feature); void CountUsage(v8::Isolate::UseCounterFeature feature, int count); static std::string GetTurboCfgFileName(Isolate* isolate); int GetNextScriptId(); uint32_t next_unique_sfi_id() const { return next_unique_sfi_id_.load(std::memory_order_relaxed); } uint32_t GetAndIncNextUniqueSfiId() { return next_unique_sfi_id_.fetch_add(1, std::memory_order_relaxed); } #ifdef V8_ENABLE_JAVASCRIPT_PROMISE_HOOKS void SetHasContextPromiseHooks(bool context_promise_hook) { promise_hook_flags_ = PromiseHookFields::HasContextPromiseHook::update( promise_hook_flags_, context_promise_hook); PromiseHookStateUpdated(); } #endif // V8_ENABLE_JAVASCRIPT_PROMISE_HOOKS bool HasContextPromiseHooks() const { return PromiseHookFields::HasContextPromiseHook::decode( promise_hook_flags_); } Address promise_hook_flags_address() { return reinterpret_cast<Address>(&promise_hook_flags_); } Address promise_hook_address() { return reinterpret_cast<Address>(&promise_hook_); } Address async_event_delegate_address() { return reinterpret_cast<Address>(&async_event_delegate_); } Address javascript_execution_assert_address() { return reinterpret_cast<Address>(&javascript_execution_assert_); } void IncrementJavascriptExecutionCounter() { javascript_execution_counter_++; } Address handle_scope_implementer_address() { return reinterpret_cast<Address>(&handle_scope_implementer_); } void SetAtomicsWaitCallback(v8::Isolate::AtomicsWaitCallback callback, void* data); void RunAtomicsWaitCallback(v8::Isolate::AtomicsWaitEvent event, Handle<JSArrayBuffer> array_buffer, size_t offset_in_bytes, int64_t value, double timeout_in_ms, AtomicsWaitWakeHandle* stop_handle); void SetPromiseHook(PromiseHook hook); void RunPromiseHook(PromiseHookType type, Handle<JSPromise> promise, Handle<Object> parent); void RunAllPromiseHooks(PromiseHookType type, Handle<JSPromise> promise, Handle<Object> parent); void UpdatePromiseHookProtector(); void PromiseHookStateUpdated(); void AddDetachedContext(Handle<Context> context); void CheckDetachedContextsAfterGC(); // Detach the environment from its outer global object. void DetachGlobal(Handle<Context> env); std::vector<Tagged<Object>>* startup_object_cache() { return &startup_object_cache_; } // When there is a shared space (i.e. when this is a client Isolate), the // shared heap object cache holds objects in shared among Isolates. Otherwise // this object cache is per-Isolate like the startup object cache. std::vector<Tagged<Object>>* shared_heap_object_cache() { if (has_shared_space()) { return &shared_space_isolate()->shared_heap_object_cache_; } return &shared_heap_object_cache_; } bool IsGeneratingEmbeddedBuiltins() const { return builtins_constants_table_builder() != nullptr; } BuiltinsConstantsTableBuilder* builtins_constants_table_builder() const { return builtins_constants_table_builder_; } // Hashes bits of the Isolate that are relevant for embedded builtins. In // particular, the embedded blob requires builtin InstructionStream object // layout and the builtins constants table to remain unchanged from // build-time. size_t HashIsolateForEmbeddedBlob(); static const uint8_t* CurrentEmbeddedBlobCode(); static uint32_t CurrentEmbeddedBlobCodeSize(); static const uint8_t* CurrentEmbeddedBlobData(); static uint32_t CurrentEmbeddedBlobDataSize(); static bool CurrentEmbeddedBlobIsBinaryEmbedded(); // These always return the same result as static methods above, but don't // access the global atomic variable (and thus *might be* slightly faster). const uint8_t* embedded_blob_code() const; uint32_t embedded_blob_code_size() const; const uint8_t* embedded_blob_data() const; uint32_t embedded_blob_data_size() const; // Returns true if short builtin calls optimization is enabled for the // Isolate. bool is_short_builtin_calls_enabled() const { return V8_SHORT_BUILTIN_CALLS_BOOL && is_short_builtin_calls_enabled_; } // Returns a region from which it's possible to make pc-relative (short) // calls/jumps to embedded builtins or empty region if there's no embedded // blob or if pc-relative calls are not supported. static base::AddressRegion GetShortBuiltinsCallRegion(); void set_array_buffer_allocator(v8::ArrayBuffer::Allocator* allocator) { array_buffer_allocator_ = allocator; } v8::ArrayBuffer::Allocator* array_buffer_allocator() const { return array_buffer_allocator_; } void set_array_buffer_allocator_shared( std::shared_ptr<v8::ArrayBuffer::Allocator> allocator) { array_buffer_allocator_shared_ = std::move(allocator); } std::shared_ptr<v8::ArrayBuffer::Allocator> array_buffer_allocator_shared() const { return array_buffer_allocator_shared_; } FutexWaitListNode* futex_wait_list_node() { return &futex_wait_list_node_; } CancelableTaskManager* cancelable_task_manager() { return cancelable_task_manager_; } const AstStringConstants* ast_string_constants() const { return ast_string_constants_; } interpreter::Interpreter* interpreter() const { return interpreter_; } compiler::PerIsolateCompilerCache* compiler_cache() const { return compiler_cache_; } void set_compiler_utils(compiler::PerIsolateCompilerCache* cache, Zone* zone) { compiler_cache_ = cache; compiler_zone_ = zone; } AccountingAllocator* allocator() { return allocator_; } LazyCompileDispatcher* lazy_compile_dispatcher() const { return lazy_compile_dispatcher_.get(); } bool IsInAnyContext(Tagged<Object> object, uint32_t index); void ClearKeptObjects(); void SetHostImportModuleDynamicallyCallback( HostImportModuleDynamicallyWithImportAssertionsCallback callback); void SetHostImportModuleDynamicallyCallback( HostImportModuleDynamicallyCallback callback); MaybeHandle<JSPromise> RunHostImportModuleDynamicallyCallback( MaybeHandle<Script> maybe_referrer, Handle<Object> specifier, MaybeHandle<Object> maybe_import_assertions_argument); void SetHostInitializeImportMetaObjectCallback( HostInitializeImportMetaObjectCallback callback); MaybeHandle<JSObject> RunHostInitializeImportMetaObjectCallback( Handle<SourceTextModule> module); void SetHostCreateShadowRealmContextCallback( HostCreateShadowRealmContextCallback callback); MaybeHandle<NativeContext> RunHostCreateShadowRealmContextCallback(); void RegisterEmbeddedFileWriter(EmbeddedFileWriterInterface* writer) { embedded_file_writer_ = writer; } int LookupOrAddExternallyCompiledFilename(const char* filename); const char* GetExternallyCompiledFilename(int index) const; int GetExternallyCompiledFilenameCount() const; // PrepareBuiltinSourcePositionMap is necessary in order to preserve the // builtin source positions before the corresponding code objects are // replaced with trampolines. Those source positions are used to // annotate the builtin blob with debugging information. void PrepareBuiltinSourcePositionMap(); // Store the position of the labels that will be used in the list of allowed // return addresses. void PrepareBuiltinLabelInfoMap(); #if defined(V8_OS_WIN64) void SetBuiltinUnwindData( Builtin builtin, const win64_unwindinfo::BuiltinUnwindInfo& unwinding_info); #endif // V8_OS_WIN64 void SetPrepareStackTraceCallback(PrepareStackTraceCallback callback); MaybeHandle<Object> RunPrepareStackTraceCallback(Handle<NativeContext>, Handle<JSObject> Error, Handle<JSArray> sites); bool HasPrepareStackTraceCallback() const; void SetAddCrashKeyCallback(AddCrashKeyCallback callback); void AddCrashKey(CrashKeyId id, const std::string& value) { if (add_crash_key_callback_) { add_crash_key_callback_(id, value); } } #if defined(V8_OS_WIN) && defined(V8_ENABLE_ETW_STACK_WALKING) // Specifies the callback called when an ETW tracing session starts. void SetFilterETWSessionByURLCallback(FilterETWSessionByURLCallback callback); bool RunFilterETWSessionByURLCallback(const std::string& payload); #endif // V8_OS_WIN && V8_ENABLE_ETW_STACK_WALKING void SetRAILMode(RAILMode rail_mode); RAILMode rail_mode() { return rail_mode_.load(); } void set_code_coverage_mode(debug::CoverageMode coverage_mode) { code_coverage_mode_.store(coverage_mode, std::memory_order_relaxed); } debug::CoverageMode code_coverage_mode() const { return code_coverage_mode_.load(std::memory_order_relaxed); } double LoadStartTimeMs(); void UpdateLoadStartTime(); void IsolateInForegroundNotification(); void IsolateInBackgroundNotification(); bool IsIsolateInBackground() { return is_isolate_in_background_; } PRINTF_FORMAT(2, 3) void PrintWithTimestamp(const char* format, ...); void set_allow_atomics_wait(bool set) { allow_atomics_wait_ = set; } bool allow_atomics_wait() { return allow_atomics_wait_; } // Register a finalizer to be called at isolate teardown. void RegisterManagedPtrDestructor(ManagedPtrDestructor* finalizer); // Removes a previously-registered shared object finalizer. void UnregisterManagedPtrDestructor(ManagedPtrDestructor* finalizer); size_t elements_deletion_counter() { return elements_deletion_counter_; } void set_elements_deletion_counter(size_t value) { elements_deletion_counter_ = value; } #if V8_ENABLE_WEBASSEMBLY void AddSharedWasmMemory(Handle<WasmMemoryObject> memory_object); #endif // V8_ENABLE_WEBASSEMBLY const v8::Context::BackupIncumbentScope* top_backup_incumbent_scope() const { return top_backup_incumbent_scope_; } void set_top_backup_incumbent_scope( const v8::Context::BackupIncumbentScope* top_backup_incumbent_scope) { top_backup_incumbent_scope_ = top_backup_incumbent_scope; } void SetIdle(bool is_idle); // Changing various modes can cause differences in generated bytecode which // interferes with lazy source positions, so this should be called immediately // before such a mode change to ensure that this cannot happen. void CollectSourcePositionsForAllBytecodeArrays(); void AddCodeMemoryChunk(MemoryChunk* chunk); void RemoveCodeMemoryChunk(MemoryChunk* chunk); void AddCodeRange(Address begin, size_t length_in_bytes); bool RequiresCodeRange() const; static Address load_from_stack_count_address(const char* function_name); static Address store_to_stack_count_address(const char* function_name); v8::metrics::Recorder::ContextId GetOrRegisterRecorderContextId( Handle<NativeContext> context); MaybeLocal<v8::Context> GetContextFromRecorderContextId( v8::metrics::Recorder::ContextId id); void UpdateLongTaskStats(); v8::metrics::LongTaskStats* GetCurrentLongTaskStats(); LocalIsolate* main_thread_local_isolate() { return main_thread_local_isolate_.get(); } Isolate* AsIsolate() { return this; } LocalIsolate* AsLocalIsolate() { return main_thread_local_isolate(); } Isolate* GetMainThreadIsolateUnsafe() { return this; } LocalHeap* main_thread_local_heap(); LocalHeap* CurrentLocalHeap(); #ifdef V8_COMPRESS_POINTERS ExternalPointerTable& external_pointer_table() { return isolate_data_.external_pointer_table_; } const ExternalPointerTable& external_pointer_table() const { return isolate_data_.external_pointer_table_; } Address external_pointer_table_address() { return reinterpret_cast<Address>(&isolate_data_.external_pointer_table_); } ExternalPointerTable& shared_external_pointer_table() { return *isolate_data_.shared_external_pointer_table_; } const ExternalPointerTable& shared_external_pointer_table() const { return *isolate_data_.shared_external_pointer_table_; } ExternalPointerTable::Space* shared_external_pointer_space() { return shared_external_pointer_space_; } Address shared_external_pointer_table_address_address() { return reinterpret_cast<Address>( &isolate_data_.shared_external_pointer_table_); } ExternalPointerHandle* GetWaiterQueueNodeExternalPointerHandleLocation() { return &waiter_queue_node_external_pointer_handle_; } ExternalPointerHandle GetOrCreateWaiterQueueNodeExternalPointer(); IndirectPointerTable& indirect_pointer_table() { return isolate_data_.indirect_pointer_table_; } const IndirectPointerTable& indirect_pointer_table() const { return isolate_data_.indirect_pointer_table_; } Address indirect_pointer_table_base_address() const { return isolate_data_.indirect_pointer_table_.base_address(); } #endif // V8_COMPRESS_POINTERS struct PromiseHookFields { using HasContextPromiseHook = base::BitField<bool, 0, 1>; using HasIsolatePromiseHook = HasContextPromiseHook::Next<bool, 1>; using HasAsyncEventDelegate = HasIsolatePromiseHook::Next<bool, 1>; using IsDebugActive = HasAsyncEventDelegate::Next<bool, 1>; }; // Returns true when this isolate contains the shared spaces. bool is_shared_space_isolate() const { return is_shared_space_isolate_; } // Returns the isolate that owns the shared spaces. Isolate* shared_space_isolate() const { DCHECK(has_shared_space()); Isolate* isolate = shared_space_isolate_.value(); DCHECK(has_shared_space()); return isolate; } // Returns true when this isolate supports allocation in shared spaces. bool has_shared_space() const { return shared_space_isolate_.value(); } GlobalSafepoint* global_safepoint() const { return global_safepoint_.get(); } bool owns_shareable_data() { return owns_shareable_data_; } bool log_object_relocation() const { return log_object_relocation_; } // TODO(pthier): Unify with owns_shareable_data() once the flag // --shared-string-table is removed. bool OwnsStringTables() { return !v8_flags.shared_string_table || is_shared_space_isolate(); } #if USE_SIMULATOR SimulatorData* simulator_data() { return simulator_data_; } #endif ::heap::base::Stack& stack() { return stack_; } #ifdef V8_ENABLE_WEBASSEMBLY wasm::StackMemory*& wasm_stacks() { return wasm_stacks_; } // Update the thread local's Stack object so that it is aware of the new stack // start and the inactive stacks. void RecordStackSwitchForScanning(); void SyncStackLimit(); #endif // Access to the global "locals block list cache". Caches outer-stack // allocated variables per ScopeInfo for debug-evaluate. // We also store a strong reference to the outer ScopeInfo to keep all // blocklists along a scope chain alive. void LocalsBlockListCacheSet(Handle<ScopeInfo> scope_info, Handle<ScopeInfo> outer_scope_info, Handle<StringSet> locals_blocklist); // Returns either `TheHole` or `StringSet`. Tagged<Object> LocalsBlockListCacheGet(Handle<ScopeInfo> scope_info); void VerifyStaticRoots(); bool allow_compile_hints_magic() const { return allow_compile_hints_magic_; } class EnableRoAllocationForSnapshotScope final { public: explicit EnableRoAllocationForSnapshotScope(Isolate* isolate) : isolate_(isolate) { CHECK(!isolate_->enable_ro_allocation_for_snapshot_); isolate_->enable_ro_allocation_for_snapshot_ = true; } ~EnableRoAllocationForSnapshotScope() { CHECK(isolate_->enable_ro_allocation_for_snapshot_); isolate_->enable_ro_allocation_for_snapshot_ = false; } private: Isolate* const isolate_; }; bool enable_ro_allocation_for_snapshot() const { return enable_ro_allocation_for_snapshot_; } private: explicit Isolate(std::unique_ptr<IsolateAllocator> isolate_allocator); ~Isolate(); static Isolate* Allocate(); bool Init(SnapshotData* startup_snapshot_data, SnapshotData* read_only_snapshot_data, SnapshotData* shared_heap_snapshot_data, bool can_rehash); void CheckIsolateLayout(); void InitializeCodeRanges(); void AddCodeMemoryRange(MemoryRange range); static void RemoveContextIdCallback(const v8::WeakCallbackInfo<void>& data); void FireCallCompletedCallbackInternal(MicrotaskQueue* microtask_queue); class ThreadDataTable { public: ThreadDataTable() = default; PerIsolateThreadData* Lookup(ThreadId thread_id); void Insert(PerIsolateThreadData* data); void Remove(PerIsolateThreadData* data); void RemoveAllThreads(); private: struct Hasher { std::size_t operator()(const ThreadId& t) const { return std::hash<int>()(t.ToInteger()); } }; std::unordered_map<ThreadId, PerIsolateThreadData*, Hasher> table_; }; // These items form a stack synchronously with threads Enter'ing and Exit'ing // the Isolate. The top of the stack points to a thread which is currently // running the Isolate. When the stack is empty, the Isolate is considered // not entered by any thread and can be Disposed. // If the same thread enters the Isolate more than once, the entry_count_ // is incremented rather then a new item pushed to the stack. class EntryStackItem { public: EntryStackItem(PerIsolateThreadData* previous_thread_data, Isolate* previous_isolate, EntryStackItem* previous_item) : entry_count(1), previous_thread_data(previous_thread_data), previous_isolate(previous_isolate), previous_item(previous_item) {} EntryStackItem(const EntryStackItem&) = delete; EntryStackItem& operator=(const EntryStackItem&) = delete; int entry_count; PerIsolateThreadData* previous_thread_data; Isolate* previous_isolate; EntryStackItem* previous_item; }; static Isolate* process_wide_shared_space_isolate_; void Deinit(); static void SetIsolateThreadLocals(Isolate* isolate, PerIsolateThreadData* data); void FillCache(); // Propagate pending exception message to the v8::TryCatch. // If there is no external try-catch or message was successfully propagated, // then return true. bool PropagatePendingExceptionToExternalTryCatch( ExceptionHandlerType top_handler); bool HasIsolatePromiseHooks() const { return PromiseHookFields::HasIsolatePromiseHook::decode( promise_hook_flags_); } bool HasAsyncEventDelegate() const { return PromiseHookFields::HasAsyncEventDelegate::decode( promise_hook_flags_); } const char* RAILModeName(RAILMode rail_mode) const { switch (rail_mode) { case PERFORMANCE_RESPONSE: return "RESPONSE"; case PERFORMANCE_ANIMATION: return "ANIMATION"; case PERFORMANCE_IDLE: return "IDLE"; case PERFORMANCE_LOAD: return "LOAD"; } return ""; } void AddCrashKeysForIsolateAndHeapPointers(); // Returns the Exception sentinel. Tagged<Object> ThrowInternal(Tagged<Object> exception, MessageLocation* location); // This class contains a collection of data accessible from both C++ runtime // and compiled code (including assembly stubs, builtins, interpreter bytecode // handlers and optimized code). IsolateData isolate_data_; // Set to true if this isolate is used as main isolate with a shared space. bool is_shared_space_isolate_{false}; std::unique_ptr<IsolateAllocator> isolate_allocator_; Heap heap_; ReadOnlyHeap* read_only_heap_ = nullptr; std::shared_ptr<ReadOnlyArtifacts> artifacts_; std::shared_ptr<StringTable> string_table_; std::shared_ptr<StringForwardingTable> string_forwarding_table_; const int id_; std::atomic<EntryStackItem*> entry_stack_ = nullptr; int stack_trace_nesting_level_ = 0; std::atomic<bool> was_locker_ever_used_{false}; StringStream* incomplete_message_ = nullptr; Address isolate_addresses_[kIsolateAddressCount + 1] = {}; Bootstrapper* bootstrapper_ = nullptr; TieringManager* tiering_manager_ = nullptr; CompilationCache* compilation_cache_ = nullptr; std::shared_ptr<Counters> async_counters_; base::RecursiveMutex break_access_; base::SharedMutex feedback_vector_access_; base::SharedMutex internalized_string_access_; base::SharedMutex full_transition_array_access_; base::SharedMutex shared_function_info_access_; base::SharedMutex map_updater_access_; base::SharedMutex boilerplate_migration_access_; V8FileLogger* v8_file_logger_ = nullptr; StubCache* load_stub_cache_ = nullptr; StubCache* store_stub_cache_ = nullptr; Deoptimizer* current_deoptimizer_ = nullptr; bool deoptimizer_lazy_throw_ = false; MaterializedObjectStore* materialized_object_store_ = nullptr; bool capture_stack_trace_for_uncaught_exceptions_ = false; int stack_trace_for_uncaught_exceptions_frame_limit_ = 0; StackTrace::StackTraceOptions stack_trace_for_uncaught_exceptions_options_ = StackTrace::kOverview; DescriptorLookupCache* descriptor_lookup_cache_ = nullptr; HandleScopeImplementer* handle_scope_implementer_ = nullptr; UnicodeCache* unicode_cache_ = nullptr; AccountingAllocator* allocator_ = nullptr; InnerPointerToCodeCache* inner_pointer_to_code_cache_ = nullptr; GlobalHandles* global_handles_ = nullptr; TracedHandles traced_handles_; EternalHandles* eternal_handles_ = nullptr; ThreadManager* thread_manager_ = nullptr; bigint::Processor* bigint_processor_ = nullptr; RuntimeState runtime_state_; Builtins builtins_; SetupIsolateDelegate* setup_delegate_ = nullptr; #if defined(DEBUG) || defined(VERIFY_HEAP) std::atomic<int> num_active_deserializers_; #endif #ifndef V8_INTL_SUPPORT unibrow::Mapping<unibrow::Ecma262UnCanonicalize> jsregexp_uncanonicalize_; unibrow::Mapping<unibrow::CanonicalizationRange> jsregexp_canonrange_; unibrow::Mapping<unibrow::Ecma262Canonicalize> regexp_macro_assembler_canonicalize_; #endif // !V8_INTL_SUPPORT RegExpStack* regexp_stack_ = nullptr; std::vector<int> regexp_indices_; DateCache* date_cache_ = nullptr; base::RandomNumberGenerator* random_number_generator_ = nullptr; base::RandomNumberGenerator* fuzzer_rng_ = nullptr; std::atomic<RAILMode> rail_mode_; v8::Isolate::AtomicsWaitCallback atomics_wait_callback_ = nullptr; void* atomics_wait_callback_data_ = nullptr; PromiseHook promise_hook_ = nullptr; HostImportModuleDynamicallyCallback host_import_module_dynamically_callback_ = nullptr; HostImportModuleDynamicallyWithImportAssertionsCallback host_import_module_dynamically_with_import_assertions_callback_ = nullptr; std::atomic<debug::CoverageMode> code_coverage_mode_{ debug::CoverageMode::kBestEffort}; // Helper function for RunHostImportModuleDynamicallyCallback. // Unpacks import assertions, if present, from the second argument to dynamic // import() and returns them in a FixedArray, sorted by code point order of // the keys, in the form [key1, value1, key2, value2, ...]. Returns an empty // MaybeHandle if an error was thrown. In this case, the host callback should // not be called and instead the caller should use the pending exception to // reject the import() call's Promise. MaybeHandle<FixedArray> GetImportAssertionsFromArgument( MaybeHandle<Object> maybe_import_assertions_argument); HostInitializeImportMetaObjectCallback host_initialize_import_meta_object_callback_ = nullptr; HostCreateShadowRealmContextCallback host_create_shadow_realm_context_callback_ = nullptr; base::Mutex rail_mutex_; double load_start_time_ms_ = 0; #ifdef V8_INTL_SUPPORT std::string default_locale_; // The cache stores the most recently accessed {locales,obj} pair for each // cache type. struct ICUObjectCacheEntry { std::string locales; std::shared_ptr<icu::UMemory> obj; ICUObjectCacheEntry() = default; ICUObjectCacheEntry(std::string locales, std::shared_ptr<icu::UMemory> obj) : locales(locales), obj(std::move(obj)) {} }; ICUObjectCacheEntry icu_object_cache_[kICUObjectCacheTypeCount]; #endif // V8_INTL_SUPPORT // Whether the isolate has been created for snapshotting. bool serializer_enabled_ = false; // True if fatal error has been signaled for this isolate. bool has_fatal_error_ = false; // True if this isolate was initialized from a snapshot. bool initialized_from_snapshot_ = false; // True if short builtin calls optimization is enabled. bool is_short_builtin_calls_enabled_ = false; // True if the isolate is in background. This flag is used // to prioritize between memory usage and latency. std::atomic<bool> is_isolate_in_background_ = false; // Indicates whether the isolate owns shareable data. // Only false for client isolates attached to a shared isolate. bool owns_shareable_data_ = true; bool log_object_relocation_ = false; #ifdef V8_EXTERNAL_CODE_SPACE // Base address of the pointer compression cage containing external code // space, when external code space is enabled. Address code_cage_base_ = 0; #endif // Time stamp at initialization. double time_millis_at_init_ = 0; #ifdef DEBUG static std::atomic<size_t> non_disposed_isolates_; JSObject::SpillInformation js_spill_information_; std::atomic<bool> has_turbofan_string_builders_ = false; #endif Debug* debug_ = nullptr; HeapProfiler* heap_profiler_ = nullptr; Logger* logger_ = nullptr; const AstStringConstants* ast_string_constants_ = nullptr; interpreter::Interpreter* interpreter_ = nullptr; compiler::PerIsolateCompilerCache* compiler_cache_ = nullptr; // The following zone is for compiler-related objects that should live // through all compilations (and thus all JSHeapBroker instances). Zone* compiler_zone_ = nullptr; std::unique_ptr<LazyCompileDispatcher> lazy_compile_dispatcher_; baseline::BaselineBatchCompiler* baseline_batch_compiler_ = nullptr; #ifdef V8_ENABLE_MAGLEV maglev::MaglevConcurrentDispatcher* maglev_concurrent_dispatcher_ = nullptr; #endif // V8_ENABLE_MAGLEV using InterruptEntry = std::pair<InterruptCallback, void*>; std::queue<InterruptEntry> api_interrupts_queue_; #define GLOBAL_BACKING_STORE(type, name, initialvalue) type name##_; ISOLATE_INIT_LIST(GLOBAL_BACKING_STORE) #undef GLOBAL_BACKING_STORE #define GLOBAL_ARRAY_BACKING_STORE(type, name, length) type name##_[length]; ISOLATE_INIT_ARRAY_LIST(GLOBAL_ARRAY_BACKING_STORE) #undef GLOBAL_ARRAY_BACKING_STORE #ifdef DEBUG // This class is huge and has a number of fields controlled by // preprocessor defines. Make sure the offsets of these fields agree // between compilation units. #define ISOLATE_FIELD_OFFSET(type, name, ignored) \ static const intptr_t name##_debug_offset_; ISOLATE_INIT_LIST(ISOLATE_FIELD_OFFSET) ISOLATE_INIT_ARRAY_LIST(ISOLATE_FIELD_OFFSET) #undef ISOLATE_FIELD_OFFSET #endif bool detailed_source_positions_for_profiling_; OptimizingCompileDispatcher* optimizing_compile_dispatcher_ = nullptr; std::unique_ptr<PersistentHandlesList> persistent_handles_list_; // Counts deopt points if deopt_every_n_times is enabled. unsigned int stress_deopt_count_ = 0; bool force_slow_path_ = false; // Certain objects may be allocated in RO space if suitable for the snapshot. bool enable_ro_allocation_for_snapshot_ = false; bool initialized_ = false; bool jitless_ = false; std::atomic<int> next_optimization_id_ = 0; void InitializeNextUniqueSfiId(uint32_t id) { uint32_t expected = 0; // Called at most once per Isolate on startup. bool successfully_exchanged = next_unique_sfi_id_.compare_exchange_strong( expected, id, std::memory_order_relaxed, std::memory_order_relaxed); CHECK(successfully_exchanged); } std::atomic<uint32_t> next_unique_sfi_id_; unsigned next_module_async_evaluating_ordinal_; // Vector of callbacks before a Call starts execution. std::vector<BeforeCallEnteredCallback> before_call_entered_callbacks_; // Vector of callbacks when a Call completes. std::vector<CallCompletedCallback> call_completed_callbacks_; v8::Isolate::UseCounterCallback use_counter_callback_ = nullptr; std::shared_ptr<CompilationStatistics> turbo_statistics_; #ifdef V8_ENABLE_MAGLEV std::shared_ptr<CompilationStatistics> maglev_statistics_; #endif std::shared_ptr<metrics::Recorder> metrics_recorder_; uintptr_t last_recorder_context_id_ = 0; std::unordered_map<uintptr_t, v8::Global<v8::Context>> recorder_context_id_map_; size_t last_long_task_stats_counter_ = 0; v8::metrics::LongTaskStats long_task_stats_; std::vector<Tagged<Object>> startup_object_cache_; // When sharing data among Isolates (e.g. v8_flags.shared_string_table), only // the shared Isolate populates this and client Isolates reference that copy. // // Otherwise this is populated for all Isolates. std::vector<Tagged<Object>> shared_heap_object_cache_; // Used during builtins compilation to build the builtins constants table, // which is stored on the root list prior to serialization. BuiltinsConstantsTableBuilder* builtins_constants_table_builder_ = nullptr; void InitializeDefaultEmbeddedBlob(); void CreateAndSetEmbeddedBlob(); void InitializeIsShortBuiltinCallsEnabled(); void MaybeRemapEmbeddedBuiltinsIntoCodeRange(); void TearDownEmbeddedBlob(); void SetEmbeddedBlob(const uint8_t* code, uint32_t code_size, const uint8_t* data, uint32_t data_size); void ClearEmbeddedBlob(); const uint8_t* embedded_blob_code_ = nullptr; uint32_t embedded_blob_code_size_ = 0; const uint8_t* embedded_blob_data_ = nullptr; uint32_t embedded_blob_data_size_ = 0; v8::ArrayBuffer::Allocator* array_buffer_allocator_ = nullptr; std::shared_ptr<v8::ArrayBuffer::Allocator> array_buffer_allocator_shared_; FutexWaitListNode futex_wait_list_node_; CancelableTaskManager* cancelable_task_manager_ = nullptr; debug::ConsoleDelegate* console_delegate_ = nullptr; debug::AsyncEventDelegate* async_event_delegate_ = nullptr; uint32_t promise_hook_flags_ = 0; int async_task_count_ = 0; std::unique_ptr<LocalIsolate> main_thread_local_isolate_; v8::Isolate::AbortOnUncaughtExceptionCallback abort_on_uncaught_exception_callback_ = nullptr; bool allow_atomics_wait_ = true; // Cache for the JavaScriptCompileHintsMagic origin trial. // TODO(v8:13917): Remove when the origin trial is removed. bool allow_compile_hints_magic_ = false; base::Mutex managed_ptr_destructors_mutex_; ManagedPtrDestructor* managed_ptr_destructors_head_ = nullptr; size_t total_regexp_code_generated_ = 0; size_t elements_deletion_counter_ = 0; std::unique_ptr<TracingCpuProfilerImpl> tracing_cpu_profiler_; EmbeddedFileWriterInterface* embedded_file_writer_ = nullptr; // The top entry of the v8::Context::BackupIncumbentScope stack. const v8::Context::BackupIncumbentScope* top_backup_incumbent_scope_ = nullptr; PrepareStackTraceCallback prepare_stack_trace_callback_ = nullptr; #if defined(V8_OS_WIN) && defined(V8_ENABLE_ETW_STACK_WALKING) FilterETWSessionByURLCallback filter_etw_session_by_url_callback_ = nullptr; #endif // V8_OS_WIN && V8_ENABLE_ETW_STACK_WALKING // TODO(kenton@cloudflare.com): This mutex can be removed if // thread_data_table_ is always accessed under the isolate lock. I do not // know if this is the case, so I'm preserving it for now. base::Mutex thread_data_table_mutex_; ThreadDataTable thread_data_table_; // Stores the isolate containing the shared space. base::Optional<Isolate*> shared_space_isolate_; #ifdef V8_COMPRESS_POINTERS // Stores the external pointer table space for the shared external pointer // table. ExternalPointerTable::Space* shared_external_pointer_space_ = nullptr; // The external pointer handle to the Isolate's main thread's WaiterQueueNode. // It is used to wait for JS-exposed mutex or condition variable. ExternalPointerHandle waiter_queue_node_external_pointer_handle_ = kNullExternalPointerHandle; #endif // Used to track and safepoint all client isolates attached to this shared // isolate. std::unique_ptr<GlobalSafepoint> global_safepoint_; // Client isolates list managed by GlobalSafepoint. Isolate* global_safepoint_prev_client_isolate_ = nullptr; Isolate* global_safepoint_next_client_isolate_ = nullptr; // A signal-safe vector of heap pages containing code. Used with the // v8::Unwinder API. std::atomic<std::vector<MemoryRange>*> code_pages_{nullptr}; std::vector<MemoryRange> code_pages_buffer1_; std::vector<MemoryRange> code_pages_buffer2_; // The mutex only guards adding pages, the retrieval is signal safe. base::Mutex code_pages_mutex_; // Stack information for the main thread. ::heap::base::Stack stack_; #ifdef V8_ENABLE_WEBASSEMBLY wasm::StackMemory* wasm_stacks_; #endif // Enables the host application to provide a mechanism for recording a // predefined set of data as crash keys to be used in postmortem debugging // in case of a crash. AddCrashKeyCallback add_crash_key_callback_ = nullptr; // Delete new/delete operators to ensure that Isolate::New() and // Isolate::Delete() are used for Isolate creation and deletion. void* operator new(size_t, void* ptr) { return ptr; } #if USE_SIMULATOR SimulatorData* simulator_data_ = nullptr; #endif friend class heap::HeapTester; friend class GlobalSafepoint; friend class TestSerializer; friend class SharedHeapNoClientsTest; }; // The current entered Isolate and its thread data. Do not access these // directly! Use Isolate::Current and Isolate::CurrentPerIsolateThreadData. // // These are outside the Isolate class with extern storage because in clang-cl, // thread_local is incompatible with dllexport linkage caused by // V8_EXPORT_PRIVATE being applied to Isolate. extern thread_local Isolate::PerIsolateThreadData* g_current_per_isolate_thread_data_ V8_CONSTINIT; extern thread_local Isolate* g_current_isolate_ V8_CONSTINIT; #undef FIELD_ACCESSOR #undef THREAD_LOCAL_TOP_ACCESSOR #undef THREAD_LOCAL_TOP_ADDRESS // SaveContext scopes save the current context on the Isolate on creation, and // restore it on destruction. class V8_EXPORT_PRIVATE SaveContext { public: explicit SaveContext(Isolate* isolate); ~SaveContext(); private: Isolate* const isolate_; Handle<Context> context_; }; // Like SaveContext, but also switches the Context to a new one in the // constructor. class V8_EXPORT_PRIVATE SaveAndSwitchContext : public SaveContext { public: SaveAndSwitchContext(Isolate* isolate, Tagged<Context> new_context); }; // A scope which sets the given isolate's context to null for its lifetime to // ensure that code does not make assumptions on a context being available. class V8_NODISCARD NullContextScope : public SaveAndSwitchContext { public: explicit NullContextScope(Isolate* isolate) : SaveAndSwitchContext(isolate, Context()) {} }; class AssertNoContextChange { #ifdef DEBUG public: explicit AssertNoContextChange(Isolate* isolate); ~AssertNoContextChange() { DCHECK(isolate_->context() == *context_); } private: Isolate* isolate_; Handle<Context> context_; #else public: explicit AssertNoContextChange(Isolate* isolate) {} #endif }; class ExecutionAccess { public: explicit ExecutionAccess(Isolate* isolate) : isolate_(isolate) { Lock(isolate); } ~ExecutionAccess() { Unlock(isolate_); } static void Lock(Isolate* isolate) { isolate->break_access()->Lock(); } static void Unlock(Isolate* isolate) { isolate->break_access()->Unlock(); } static bool TryLock(Isolate* isolate) { return isolate->break_access()->TryLock(); } private: Isolate* isolate_; }; // Support for checking for stack-overflows. class StackLimitCheck { public: explicit StackLimitCheck(Isolate* isolate) : isolate_(isolate) {} // Use this to check for stack-overflows in C++ code. bool HasOverflowed() const { StackGuard* stack_guard = isolate_->stack_guard(); return GetCurrentStackPosition() < stack_guard->real_climit(); } static bool HasOverflowed(LocalIsolate* local_isolate); // Use this to check for stack-overflow when entering runtime from JS code. bool JsHasOverflowed(uintptr_t gap = 0) const; // Use this to check for stack-overflow when entering runtime from Wasm code. // If it is called from the central stack, while a switch was performed, // it checks logical stack limit of a secondary stack stored in the isolate, // instead checking actual one. bool WasmHasOverflowed(uintptr_t gap = 0) const; // Use this to check for interrupt request in C++ code. V8_INLINE bool InterruptRequested() { StackGuard* stack_guard = isolate_->stack_guard(); return GetCurrentStackPosition() < stack_guard->climit(); } // Precondition: InterruptRequested == true. // Returns true if any interrupt (overflow or termination) was handled, in // which case the caller must prevent further JS execution. V8_EXPORT_PRIVATE bool HandleStackOverflowAndTerminationRequest(); private: Isolate* const isolate_; }; // This macro may be used in context that disallows JS execution. // That is why it checks only for a stack overflow and termination. #define STACK_CHECK(isolate, result_value) \ do { \ StackLimitCheck stack_check(isolate); \ if (V8_UNLIKELY(stack_check.InterruptRequested()) && \ V8_UNLIKELY(stack_check.HandleStackOverflowAndTerminationRequest())) { \ return result_value; \ } \ } while (false) class StackTraceFailureMessage { public: enum StackTraceMode { kIncludeStackTrace, kDontIncludeStackTrace }; explicit StackTraceFailureMessage(Isolate* isolate, StackTraceMode mode, void* ptr1 = nullptr, void* ptr2 = nullptr, void* ptr3 = nullptr, void* ptr4 = nullptr, void* ptr5 = nullptr, void* ptr6 = nullptr); V8_NOINLINE void Print() volatile; static const uintptr_t kStartMarker = 0xdecade30; static const uintptr_t kEndMarker = 0xdecade31; static const int kStacktraceBufferSize = 32 * KB; uintptr_t start_marker_ = kStartMarker; void* isolate_; void* ptr1_; void* ptr2_; void* ptr3_; void* ptr4_; void* ptr5_; void* ptr6_; void* code_objects_[4]; char js_stack_trace_[kStacktraceBufferSize]; uintptr_t end_marker_ = kEndMarker; }; template <base::MutexSharedType kIsShared> class V8_NODISCARD SharedMutexGuardIfOffThread<Isolate, kIsShared> final { public: SharedMutexGuardIfOffThread(base::SharedMutex* mutex, Isolate* isolate) { DCHECK_NOT_NULL(mutex); DCHECK_NOT_NULL(isolate); DCHECK_EQ(ThreadId::Current(), isolate->thread_id()); } SharedMutexGuardIfOffThread(const SharedMutexGuardIfOffThread&) = delete; SharedMutexGuardIfOffThread& operator=(const SharedMutexGuardIfOffThread&) = delete; }; } // namespace internal } // namespace v8 #endif // V8_EXECUTION_ISOLATE_H_