%PDF- %PDF-
Direktori : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/execution/ppc/ |
Current File : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/execution/ppc/simulator-ppc.cc |
// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/execution/ppc/simulator-ppc.h" #if defined(USE_SIMULATOR) #include <stdarg.h> #include <stdlib.h> #include <cmath> #include "src/base/bits.h" #include "src/base/lazy-instance.h" #include "src/base/overflowing-math.h" #include "src/base/platform/memory.h" #include "src/base/platform/platform.h" #include "src/codegen/assembler.h" #include "src/codegen/macro-assembler.h" #include "src/codegen/ppc/constants-ppc.h" #include "src/codegen/register-configuration.h" #include "src/diagnostics/disasm.h" #include "src/execution/ppc/frame-constants-ppc.h" #include "src/heap/combined-heap.h" #include "src/heap/heap-inl.h" // For CodeSpaceMemoryModificationScope. #include "src/objects/objects-inl.h" #include "src/runtime/runtime-utils.h" #include "src/utils/ostreams.h" // Only build the simulator if not compiling for real PPC hardware. namespace v8 { namespace internal { DEFINE_LAZY_LEAKY_OBJECT_GETTER(Simulator::GlobalMonitor, Simulator::GlobalMonitor::Get) // This macro provides a platform independent use of sscanf. The reason for // SScanF not being implemented in a platform independent way through // ::v8::internal::OS in the same way as SNPrintF is that the // Windows C Run-Time Library does not provide vsscanf. #define SScanF sscanf // The PPCDebugger class is used by the simulator while debugging simulated // PowerPC code. class PPCDebugger { public: explicit PPCDebugger(Simulator* sim) : sim_(sim) {} void Debug(); private: static const Instr kBreakpointInstr = (TWI | 0x1F * B21); static const Instr kNopInstr = (ORI); // ori, 0,0,0 Simulator* sim_; intptr_t GetRegisterValue(int regnum); double GetRegisterPairDoubleValue(int regnum); double GetFPDoubleRegisterValue(int regnum); bool GetValue(const char* desc, intptr_t* value); bool GetFPDoubleValue(const char* desc, double* value); // Set or delete breakpoint (there can be only one). bool SetBreakpoint(Instruction* break_pc); void DeleteBreakpoint(); // Undo and redo the breakpoint. This is needed to bracket disassembly and // execution to skip past the breakpoint when run from the debugger. void UndoBreakpoint(); void RedoBreakpoint(); }; void Simulator::DebugAtNextPC() { PrintF("Starting debugger on the next instruction:\n"); set_pc(get_pc() + kInstrSize); PPCDebugger(this).Debug(); } intptr_t PPCDebugger::GetRegisterValue(int regnum) { return sim_->get_register(regnum); } double PPCDebugger::GetRegisterPairDoubleValue(int regnum) { return sim_->get_double_from_register_pair(regnum); } double PPCDebugger::GetFPDoubleRegisterValue(int regnum) { return sim_->get_double_from_d_register(regnum); } bool PPCDebugger::GetValue(const char* desc, intptr_t* value) { int regnum = Registers::Number(desc); if (regnum != kNoRegister) { *value = GetRegisterValue(regnum); return true; } if (strncmp(desc, "0x", 2) == 0) { return SScanF(desc + 2, "%" V8PRIxPTR, reinterpret_cast<uintptr_t*>(value)) == 1; } return SScanF(desc, "%" V8PRIuPTR, reinterpret_cast<uintptr_t*>(value)) == 1; } bool PPCDebugger::GetFPDoubleValue(const char* desc, double* value) { int regnum = DoubleRegisters::Number(desc); if (regnum != kNoRegister) { *value = sim_->get_double_from_d_register(regnum); return true; } return false; } bool PPCDebugger::SetBreakpoint(Instruction* break_pc) { // Check if a breakpoint can be set. If not return without any side-effects. if (sim_->break_pc_ != nullptr) { return false; } // Set the breakpoint. sim_->break_pc_ = break_pc; sim_->break_instr_ = break_pc->InstructionBits(); // Not setting the breakpoint instruction in the code itself. It will be set // when the debugger shell continues. return true; } namespace { // This function is dangerous, but it's only available in non-production // (simulator) builds. void SetInstructionBitsInCodeSpace(Instruction* instr, Instr value, Heap* heap) { CodePageMemoryModificationScope scope( MemoryChunk::FromAddress(reinterpret_cast<Address>(instr))); instr->SetInstructionBits(value); } } // namespace void PPCDebugger::DeleteBreakpoint() { UndoBreakpoint(); sim_->break_pc_ = nullptr; sim_->break_instr_ = 0; } void PPCDebugger::UndoBreakpoint() { if (sim_->break_pc_ != nullptr) { SetInstructionBitsInCodeSpace(sim_->break_pc_, sim_->break_instr_, sim_->isolate_->heap()); } } void PPCDebugger::RedoBreakpoint() { if (sim_->break_pc_ != nullptr) { SetInstructionBitsInCodeSpace(sim_->break_pc_, kBreakpointInstr, sim_->isolate_->heap()); } } void PPCDebugger::Debug() { if (v8_flags.correctness_fuzzer_suppressions) { PrintF("Debugger disabled for differential fuzzing.\n"); return; } intptr_t last_pc = -1; bool done = false; #define COMMAND_SIZE 63 #define ARG_SIZE 255 #define STR(a) #a #define XSTR(a) STR(a) char cmd[COMMAND_SIZE + 1]; char arg1[ARG_SIZE + 1]; char arg2[ARG_SIZE + 1]; char* argv[3] = {cmd, arg1, arg2}; // make sure to have a proper terminating character if reaching the limit cmd[COMMAND_SIZE] = 0; arg1[ARG_SIZE] = 0; arg2[ARG_SIZE] = 0; // Unset breakpoint while running in the debugger shell, making it invisible // to all commands. UndoBreakpoint(); // Disable tracing while simulating bool trace = v8_flags.trace_sim; v8_flags.trace_sim = false; while (!done && !sim_->has_bad_pc()) { if (last_pc != sim_->get_pc()) { disasm::NameConverter converter; disasm::Disassembler dasm(converter); // use a reasonably large buffer v8::base::EmbeddedVector<char, 256> buffer; dasm.InstructionDecode(buffer, reinterpret_cast<uint8_t*>(sim_->get_pc())); PrintF(" 0x%08" V8PRIxPTR " %s\n", sim_->get_pc(), buffer.begin()); last_pc = sim_->get_pc(); } char* line = ReadLine("sim> "); if (line == nullptr) { break; } else { char* last_input = sim_->last_debugger_input(); if (strcmp(line, "\n") == 0 && last_input != nullptr) { line = last_input; } else { // Ownership is transferred to sim_; sim_->set_last_debugger_input(line); } // Use sscanf to parse the individual parts of the command line. At the // moment no command expects more than two parameters. int argc = SScanF(line, "%" XSTR(COMMAND_SIZE) "s " "%" XSTR(ARG_SIZE) "s " "%" XSTR(ARG_SIZE) "s", cmd, arg1, arg2); if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { intptr_t value; // If at a breakpoint, proceed past it. if ((reinterpret_cast<Instruction*>(sim_->get_pc())) ->InstructionBits() == 0x7D821008) { sim_->set_pc(sim_->get_pc() + kInstrSize); } else { sim_->ExecuteInstruction( reinterpret_cast<Instruction*>(sim_->get_pc())); } if (argc == 2 && last_pc != sim_->get_pc() && GetValue(arg1, &value)) { for (int i = 1; i < value; i++) { disasm::NameConverter converter; disasm::Disassembler dasm(converter); // use a reasonably large buffer v8::base::EmbeddedVector<char, 256> buffer; dasm.InstructionDecode(buffer, reinterpret_cast<uint8_t*>(sim_->get_pc())); PrintF(" 0x%08" V8PRIxPTR " %s\n", sim_->get_pc(), buffer.begin()); sim_->ExecuteInstruction( reinterpret_cast<Instruction*>(sim_->get_pc())); } } } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { // If at a breakpoint, proceed past it. if ((reinterpret_cast<Instruction*>(sim_->get_pc())) ->InstructionBits() == 0x7D821008) { sim_->set_pc(sim_->get_pc() + kInstrSize); } else { // Execute the one instruction we broke at with breakpoints disabled. sim_->ExecuteInstruction( reinterpret_cast<Instruction*>(sim_->get_pc())); } // Leave the debugger shell. done = true; } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) { intptr_t value; double dvalue; if (strcmp(arg1, "all") == 0) { for (int i = 0; i < kNumRegisters; i++) { value = GetRegisterValue(i); PrintF(" %3s: %08" V8PRIxPTR, RegisterName(Register::from_code(i)), value); if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 && (i % 2) == 0) { dvalue = GetRegisterPairDoubleValue(i); PrintF(" (%f)\n", dvalue); } else if (i != 0 && !((i + 1) & 3)) { PrintF("\n"); } } PrintF(" pc: %08" V8PRIxPTR " lr: %08" V8PRIxPTR " " "ctr: %08" V8PRIxPTR " xer: %08x cr: %08x\n", sim_->special_reg_pc_, sim_->special_reg_lr_, sim_->special_reg_ctr_, sim_->special_reg_xer_, sim_->condition_reg_); } else if (strcmp(arg1, "alld") == 0) { for (int i = 0; i < kNumRegisters; i++) { value = GetRegisterValue(i); PrintF(" %3s: %08" V8PRIxPTR " %11" V8PRIdPTR, RegisterName(Register::from_code(i)), value, value); if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 && (i % 2) == 0) { dvalue = GetRegisterPairDoubleValue(i); PrintF(" (%f)\n", dvalue); } else if (!((i + 1) % 2)) { PrintF("\n"); } } PrintF(" pc: %08" V8PRIxPTR " lr: %08" V8PRIxPTR " " "ctr: %08" V8PRIxPTR " xer: %08x cr: %08x\n", sim_->special_reg_pc_, sim_->special_reg_lr_, sim_->special_reg_ctr_, sim_->special_reg_xer_, sim_->condition_reg_); } else if (strcmp(arg1, "allf") == 0) { for (int i = 0; i < DoubleRegister::kNumRegisters; i++) { dvalue = GetFPDoubleRegisterValue(i); uint64_t as_words = base::bit_cast<uint64_t>(dvalue); PrintF("%3s: %f 0x%08x %08x\n", RegisterName(DoubleRegister::from_code(i)), dvalue, static_cast<uint32_t>(as_words >> 32), static_cast<uint32_t>(as_words & 0xFFFFFFFF)); } } else if (arg1[0] == 'r' && (arg1[1] >= '0' && arg1[1] <= '9' && (arg1[2] == '\0' || (arg1[2] >= '0' && arg1[2] <= '9' && arg1[3] == '\0')))) { int regnum = strtoul(&arg1[1], 0, 10); if (regnum != kNoRegister) { value = GetRegisterValue(regnum); PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value, value); } else { PrintF("%s unrecognized\n", arg1); } } else { if (GetValue(arg1, &value)) { PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value, value); } else if (GetFPDoubleValue(arg1, &dvalue)) { uint64_t as_words = base::bit_cast<uint64_t>(dvalue); PrintF("%s: %f 0x%08x %08x\n", arg1, dvalue, static_cast<uint32_t>(as_words >> 32), static_cast<uint32_t>(as_words & 0xFFFFFFFF)); } else { PrintF("%s unrecognized\n", arg1); } } } else { PrintF("print <register>\n"); } } else if ((strcmp(cmd, "po") == 0) || (strcmp(cmd, "printobject") == 0)) { if (argc == 2) { intptr_t value; StdoutStream os; if (GetValue(arg1, &value)) { Tagged<Object> obj(value); os << arg1 << ": \n"; #ifdef DEBUG Print(obj, os); os << "\n"; #else os << Brief(obj) << "\n"; #endif } else { os << arg1 << " unrecognized\n"; } } else { PrintF("printobject <value>\n"); } } else if (strcmp(cmd, "setpc") == 0) { intptr_t value; if (!GetValue(arg1, &value)) { PrintF("%s unrecognized\n", arg1); continue; } sim_->set_pc(value); } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0 || strcmp(cmd, "dump") == 0) { intptr_t* cur = nullptr; intptr_t* end = nullptr; int next_arg = 1; if (strcmp(cmd, "stack") == 0) { cur = reinterpret_cast<intptr_t*>(sim_->get_register(Simulator::sp)); } else { // "mem" intptr_t value; if (!GetValue(arg1, &value)) { PrintF("%s unrecognized\n", arg1); continue; } cur = reinterpret_cast<intptr_t*>(value); next_arg++; } intptr_t words; // likely inaccurate variable name for 64bit if (argc == next_arg) { words = 10; } else { if (!GetValue(argv[next_arg], &words)) { words = 10; } } end = cur + words; bool skip_obj_print = (strcmp(cmd, "dump") == 0); while (cur < end) { PrintF(" 0x%08" V8PRIxPTR ": 0x%08" V8PRIxPTR " %10" V8PRIdPTR, reinterpret_cast<intptr_t>(cur), *cur, *cur); Tagged<Object> obj(*cur); Heap* current_heap = sim_->isolate_->heap(); if (!skip_obj_print) { if (IsSmi(obj) || IsValidHeapObject(current_heap, HeapObject::cast(obj))) { PrintF(" ("); if (IsSmi(obj)) { PrintF("smi %d", Smi::ToInt(obj)); } else { ShortPrint(obj); } PrintF(")"); } } PrintF("\n"); cur++; } } else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) { disasm::NameConverter converter; disasm::Disassembler dasm(converter); // use a reasonably large buffer v8::base::EmbeddedVector<char, 256> buffer; uint8_t* prev = nullptr; uint8_t* cur = nullptr; uint8_t* end = nullptr; if (argc == 1) { cur = reinterpret_cast<uint8_t*>(sim_->get_pc()); end = cur + (10 * kInstrSize); } else if (argc == 2) { int regnum = Registers::Number(arg1); if (regnum != kNoRegister || strncmp(arg1, "0x", 2) == 0) { // The argument is an address or a register name. intptr_t value; if (GetValue(arg1, &value)) { cur = reinterpret_cast<uint8_t*>(value); // Disassemble 10 instructions at <arg1>. end = cur + (10 * kInstrSize); } } else { // The argument is the number of instructions. intptr_t value; if (GetValue(arg1, &value)) { cur = reinterpret_cast<uint8_t*>(sim_->get_pc()); // Disassemble <arg1> instructions. end = cur + (value * kInstrSize); } } } else { intptr_t value1; intptr_t value2; if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { cur = reinterpret_cast<uint8_t*>(value1); end = cur + (value2 * kInstrSize); } } while (cur < end) { prev = cur; cur += dasm.InstructionDecode(buffer, cur); PrintF(" 0x%08" V8PRIxPTR " %s\n", reinterpret_cast<intptr_t>(prev), buffer.begin()); } } else if (strcmp(cmd, "gdb") == 0) { PrintF("relinquishing control to gdb\n"); v8::base::OS::DebugBreak(); PrintF("regaining control from gdb\n"); } else if (strcmp(cmd, "break") == 0) { if (argc == 2) { intptr_t value; if (GetValue(arg1, &value)) { if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) { PrintF("setting breakpoint failed\n"); } } else { PrintF("%s unrecognized\n", arg1); } } else { PrintF("break <address>\n"); } } else if (strcmp(cmd, "del") == 0) { DeleteBreakpoint(); } else if (strcmp(cmd, "cr") == 0) { PrintF("Condition reg: %08x\n", sim_->condition_reg_); } else if (strcmp(cmd, "lr") == 0) { PrintF("Link reg: %08" V8PRIxPTR "\n", sim_->special_reg_lr_); } else if (strcmp(cmd, "ctr") == 0) { PrintF("Ctr reg: %08" V8PRIxPTR "\n", sim_->special_reg_ctr_); } else if (strcmp(cmd, "xer") == 0) { PrintF("XER: %08x\n", sim_->special_reg_xer_); } else if (strcmp(cmd, "fpscr") == 0) { PrintF("FPSCR: %08x\n", sim_->fp_condition_reg_); } else if (strcmp(cmd, "stop") == 0) { intptr_t value; intptr_t stop_pc = sim_->get_pc() - (kInstrSize + kSystemPointerSize); Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc); Instruction* msg_address = reinterpret_cast<Instruction*>(stop_pc + kInstrSize); if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) { // Remove the current stop. if (sim_->isStopInstruction(stop_instr)) { SetInstructionBitsInCodeSpace(stop_instr, kNopInstr, sim_->isolate_->heap()); msg_address->SetInstructionBits(kNopInstr); } else { PrintF("Not at debugger stop.\n"); } } else if (argc == 3) { // Print information about all/the specified breakpoint(s). if (strcmp(arg1, "info") == 0) { if (strcmp(arg2, "all") == 0) { PrintF("Stop information:\n"); for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { sim_->PrintStopInfo(i); } } else if (GetValue(arg2, &value)) { sim_->PrintStopInfo(value); } else { PrintF("Unrecognized argument.\n"); } } else if (strcmp(arg1, "enable") == 0) { // Enable all/the specified breakpoint(s). if (strcmp(arg2, "all") == 0) { for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { sim_->EnableStop(i); } } else if (GetValue(arg2, &value)) { sim_->EnableStop(value); } else { PrintF("Unrecognized argument.\n"); } } else if (strcmp(arg1, "disable") == 0) { // Disable all/the specified breakpoint(s). if (strcmp(arg2, "all") == 0) { for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { sim_->DisableStop(i); } } else if (GetValue(arg2, &value)) { sim_->DisableStop(value); } else { PrintF("Unrecognized argument.\n"); } } } else { PrintF("Wrong usage. Use help command for more information.\n"); } } else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) { v8_flags.trace_sim = !v8_flags.trace_sim; PrintF("Trace of executed instructions is %s\n", v8_flags.trace_sim ? "on" : "off"); } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { PrintF("cont\n"); PrintF(" continue execution (alias 'c')\n"); PrintF("stepi [num instructions]\n"); PrintF(" step one/num instruction(s) (alias 'si')\n"); PrintF("print <register>\n"); PrintF(" print register content (alias 'p')\n"); PrintF(" use register name 'all' to display all integer registers\n"); PrintF( " use register name 'alld' to display integer registers " "with decimal values\n"); PrintF(" use register name 'rN' to display register number 'N'\n"); PrintF(" add argument 'fp' to print register pair double values\n"); PrintF( " use register name 'allf' to display floating-point " "registers\n"); PrintF("printobject <register>\n"); PrintF(" print an object from a register (alias 'po')\n"); PrintF("cr\n"); PrintF(" print condition register\n"); PrintF("lr\n"); PrintF(" print link register\n"); PrintF("ctr\n"); PrintF(" print ctr register\n"); PrintF("xer\n"); PrintF(" print XER\n"); PrintF("fpscr\n"); PrintF(" print FPSCR\n"); PrintF("stack [<num words>]\n"); PrintF(" dump stack content, default dump 10 words)\n"); PrintF("mem <address> [<num words>]\n"); PrintF(" dump memory content, default dump 10 words)\n"); PrintF("dump [<words>]\n"); PrintF( " dump memory content without pretty printing JS objects, default " "dump 10 words)\n"); PrintF("disasm [<instructions>]\n"); PrintF("disasm [<address/register>]\n"); PrintF("disasm [[<address/register>] <instructions>]\n"); PrintF(" disassemble code, default is 10 instructions\n"); PrintF(" from pc (alias 'di')\n"); PrintF("gdb\n"); PrintF(" enter gdb\n"); PrintF("break <address>\n"); PrintF(" set a break point on the address\n"); PrintF("del\n"); PrintF(" delete the breakpoint\n"); PrintF("trace (alias 't')\n"); PrintF(" toogle the tracing of all executed statements\n"); PrintF("stop feature:\n"); PrintF(" Description:\n"); PrintF(" Stops are debug instructions inserted by\n"); PrintF(" the Assembler::stop() function.\n"); PrintF(" When hitting a stop, the Simulator will\n"); PrintF(" stop and give control to the PPCDebugger.\n"); PrintF(" The first %d stop codes are watched:\n", Simulator::kNumOfWatchedStops); PrintF(" - They can be enabled / disabled: the Simulator\n"); PrintF(" will / won't stop when hitting them.\n"); PrintF(" - The Simulator keeps track of how many times they \n"); PrintF(" are met. (See the info command.) Going over a\n"); PrintF(" disabled stop still increases its counter. \n"); PrintF(" Commands:\n"); PrintF(" stop info all/<code> : print infos about number <code>\n"); PrintF(" or all stop(s).\n"); PrintF(" stop enable/disable all/<code> : enables / disables\n"); PrintF(" all or number <code> stop(s)\n"); PrintF(" stop unstop\n"); PrintF(" ignore the stop instruction at the current location\n"); PrintF(" from now on\n"); } else { PrintF("Unknown command: %s\n", cmd); } } } // Reinstall breakpoint to stop execution and enter the debugger shell when // hit. RedoBreakpoint(); // Restore tracing v8_flags.trace_sim = trace; #undef COMMAND_SIZE #undef ARG_SIZE #undef STR #undef XSTR } bool Simulator::ICacheMatch(void* one, void* two) { DCHECK_EQ(reinterpret_cast<intptr_t>(one) & CachePage::kPageMask, 0); DCHECK_EQ(reinterpret_cast<intptr_t>(two) & CachePage::kPageMask, 0); return one == two; } static uint32_t ICacheHash(void* key) { return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2; } static bool AllOnOnePage(uintptr_t start, int size) { intptr_t start_page = (start & ~CachePage::kPageMask); intptr_t end_page = ((start + size) & ~CachePage::kPageMask); return start_page == end_page; } static bool is_snan(float input) { uint32_t kQuietNanFPBit = 1 << 22; uint32_t InputAsUint = base::bit_cast<uint32_t>(input); return isnan(input) && ((InputAsUint & kQuietNanFPBit) == 0); } static bool is_snan(double input) { uint64_t kQuietNanDPBit = 1L << 51; uint64_t InputAsUint = base::bit_cast<uint64_t>(input); return isnan(input) && ((InputAsUint & kQuietNanDPBit) == 0); } void Simulator::set_last_debugger_input(char* input) { DeleteArray(last_debugger_input_); last_debugger_input_ = input; } void Simulator::SetRedirectInstruction(Instruction* instruction) { instruction->SetInstructionBits(rtCallRedirInstr | kCallRtRedirected); } void Simulator::FlushICache(base::CustomMatcherHashMap* i_cache, void* start_addr, size_t size) { intptr_t start = reinterpret_cast<intptr_t>(start_addr); int intra_line = (start & CachePage::kLineMask); start -= intra_line; size += intra_line; size = ((size - 1) | CachePage::kLineMask) + 1; int offset = (start & CachePage::kPageMask); while (!AllOnOnePage(start, size - 1)) { int bytes_to_flush = CachePage::kPageSize - offset; FlushOnePage(i_cache, start, bytes_to_flush); start += bytes_to_flush; size -= bytes_to_flush; DCHECK_EQ(0, static_cast<int>(start & CachePage::kPageMask)); offset = 0; } if (size != 0) { FlushOnePage(i_cache, start, size); } } CachePage* Simulator::GetCachePage(base::CustomMatcherHashMap* i_cache, void* page) { base::HashMap::Entry* entry = i_cache->LookupOrInsert(page, ICacheHash(page)); if (entry->value == nullptr) { CachePage* new_page = new CachePage(); entry->value = new_page; } return reinterpret_cast<CachePage*>(entry->value); } // Flush from start up to and not including start + size. void Simulator::FlushOnePage(base::CustomMatcherHashMap* i_cache, intptr_t start, int size) { DCHECK_LE(size, CachePage::kPageSize); DCHECK(AllOnOnePage(start, size - 1)); DCHECK_EQ(start & CachePage::kLineMask, 0); DCHECK_EQ(size & CachePage::kLineMask, 0); void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask)); int offset = (start & CachePage::kPageMask); CachePage* cache_page = GetCachePage(i_cache, page); char* valid_bytemap = cache_page->ValidityByte(offset); memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift); } void Simulator::CheckICache(base::CustomMatcherHashMap* i_cache, Instruction* instr) { intptr_t address = reinterpret_cast<intptr_t>(instr); void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask)); void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask)); int offset = (address & CachePage::kPageMask); CachePage* cache_page = GetCachePage(i_cache, page); char* cache_valid_byte = cache_page->ValidityByte(offset); bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID); char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask); if (cache_hit) { // Check that the data in memory matches the contents of the I-cache. CHECK_EQ(0, memcmp(reinterpret_cast<void*>(instr), cache_page->CachedData(offset), kInstrSize)); } else { // Cache miss. Load memory into the cache. memcpy(cached_line, line, CachePage::kLineLength); *cache_valid_byte = CachePage::LINE_VALID; } } Simulator::Simulator(Isolate* isolate) : isolate_(isolate) { // Set up simulator support first. Some of this information is needed to // setup the architecture state. stack_ = reinterpret_cast<uint8_t*>(base::Malloc(AllocatedStackSize())); pc_modified_ = false; icount_ = 0; break_pc_ = nullptr; break_instr_ = 0; // Set up architecture state. // All registers are initialized to zero to start with. for (int i = 0; i < kNumGPRs; i++) { registers_[i] = 0; } condition_reg_ = 0; fp_condition_reg_ = 0; special_reg_pc_ = 0; special_reg_lr_ = 0; special_reg_ctr_ = 0; // Initializing FP registers. for (int i = 0; i < kNumFPRs; i++) { fp_registers_[i] = 0.0; } // The sp is initialized to point to the bottom (high address) of the // allocated stack area. To be safe in potential stack underflows we leave // some buffer below. registers_[sp] = reinterpret_cast<intptr_t>(stack_) + UsableStackSize(); last_debugger_input_ = nullptr; } Simulator::~Simulator() { base::Free(stack_); } // Get the active Simulator for the current thread. Simulator* Simulator::current(Isolate* isolate) { v8::internal::Isolate::PerIsolateThreadData* isolate_data = isolate->FindOrAllocatePerThreadDataForThisThread(); DCHECK_NOT_NULL(isolate_data); Simulator* sim = isolate_data->simulator(); if (sim == nullptr) { // TODO(146): delete the simulator object when a thread/isolate goes away. sim = new Simulator(isolate); isolate_data->set_simulator(sim); } return sim; } // Sets the register in the architecture state. void Simulator::set_register(int reg, intptr_t value) { DCHECK((reg >= 0) && (reg < kNumGPRs)); registers_[reg] = value; } // Get the register from the architecture state. intptr_t Simulator::get_register(int reg) const { DCHECK((reg >= 0) && (reg < kNumGPRs)); // Stupid code added to avoid bug in GCC. // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949 if (reg >= kNumGPRs) return 0; // End stupid code. return registers_[reg]; } double Simulator::get_double_from_register_pair(int reg) { DCHECK((reg >= 0) && (reg < kNumGPRs) && ((reg % 2) == 0)); double dm_val = 0.0; #if !V8_TARGET_ARCH_PPC64 // doesn't make sense in 64bit mode // Read the bits from the unsigned integer register_[] array // into the double precision floating point value and return it. char buffer[sizeof(fp_registers_[0])]; memcpy(buffer, ®isters_[reg], 2 * sizeof(registers_[0])); memcpy(&dm_val, buffer, 2 * sizeof(registers_[0])); #endif return (dm_val); } // Raw access to the PC register. void Simulator::set_pc(intptr_t value) { pc_modified_ = true; special_reg_pc_ = value; } bool Simulator::has_bad_pc() const { return ((special_reg_pc_ == bad_lr) || (special_reg_pc_ == end_sim_pc)); } // Raw access to the PC register without the special adjustment when reading. intptr_t Simulator::get_pc() const { return special_reg_pc_; } // Accessor to the internal Link Register intptr_t Simulator::get_lr() const { return special_reg_lr_; } // Runtime FP routines take: // - two double arguments // - one double argument and zero or one integer arguments. // All are consructed here from d1, d2 and r3. void Simulator::GetFpArgs(double* x, double* y, intptr_t* z) { *x = get_double_from_d_register(1); *y = get_double_from_d_register(2); *z = get_register(3); } // The return value is in d1. void Simulator::SetFpResult(const double& result) { set_d_register_from_double(1, result); } void Simulator::TrashCallerSaveRegisters() { // We don't trash the registers with the return value. #if 0 // A good idea to trash volatile registers, needs to be done registers_[2] = 0x50BAD4U; registers_[3] = 0x50BAD4U; registers_[12] = 0x50BAD4U; #endif } #define GENERATE_RW_FUNC(size, type) \ type Simulator::Read##size(uintptr_t addr) { \ type value; \ Read(addr, &value); \ return value; \ } \ type Simulator::ReadEx##size(uintptr_t addr) { \ type value; \ ReadEx(addr, &value); \ return value; \ } \ void Simulator::Write##size(uintptr_t addr, type value) { \ Write(addr, value); \ } \ int32_t Simulator::WriteEx##size(uintptr_t addr, type value) { \ return WriteEx(addr, value); \ } RW_VAR_LIST(GENERATE_RW_FUNC) #undef GENERATE_RW_FUNC // Returns the limit of the stack area to enable checking for stack overflows. uintptr_t Simulator::StackLimit(uintptr_t c_limit) const { // The simulator uses a separate JS stack. If we have exhausted the C stack, // we also drop down the JS limit to reflect the exhaustion on the JS stack. if (base::Stack::GetCurrentStackPosition() < c_limit) { return reinterpret_cast<uintptr_t>(get_sp()); } // Otherwise the limit is the JS stack. Leave a safety margin to prevent // overrunning the stack when pushing values. return reinterpret_cast<uintptr_t>(stack_) + kStackProtectionSize; } base::Vector<uint8_t> Simulator::GetCurrentStackView() const { // We do not add an additional safety margin as above in // Simulator::StackLimit, as this is currently only used in wasm::StackMemory, // which adds its own margin. return base::VectorOf(stack_, UsableStackSize()); } // Unsupported instructions use Format to print an error and stop execution. void Simulator::Format(Instruction* instr, const char* format) { PrintF("Simulator found unsupported instruction:\n 0x%08" V8PRIxPTR ": %s\n", reinterpret_cast<intptr_t>(instr), format); UNIMPLEMENTED(); } // Calculate C flag value for additions. bool Simulator::CarryFrom(int32_t left, int32_t right, int32_t carry) { uint32_t uleft = static_cast<uint32_t>(left); uint32_t uright = static_cast<uint32_t>(right); uint32_t urest = 0xFFFFFFFFU - uleft; return (uright > urest) || (carry && (((uright + 1) > urest) || (uright > (urest - 1)))); } // Calculate C flag value for subtractions. bool Simulator::BorrowFrom(int32_t left, int32_t right) { uint32_t uleft = static_cast<uint32_t>(left); uint32_t uright = static_cast<uint32_t>(right); return (uright > uleft); } // Calculate V flag value for additions and subtractions. bool Simulator::OverflowFrom(int32_t alu_out, int32_t left, int32_t right, bool addition) { bool overflow; if (addition) { // operands have the same sign overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0)) // and operands and result have different sign && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0)); } else { // operands have different signs overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0)) // and first operand and result have different signs && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0)); } return overflow; } static void decodeObjectPair(ObjectPair* pair, intptr_t* x, intptr_t* y) { *x = static_cast<intptr_t>(pair->x); *y = static_cast<intptr_t>(pair->y); } // Calls into the V8 runtime. using SimulatorRuntimeCall = intptr_t (*)( intptr_t arg0, intptr_t arg1, intptr_t arg2, intptr_t arg3, intptr_t arg4, intptr_t arg5, intptr_t arg6, intptr_t arg7, intptr_t arg8, intptr_t arg9, intptr_t arg10, intptr_t arg11, intptr_t arg12, intptr_t arg13, intptr_t arg14, intptr_t arg15, intptr_t arg16, intptr_t arg17, intptr_t arg18, intptr_t arg19); using SimulatorRuntimePairCall = ObjectPair (*)( intptr_t arg0, intptr_t arg1, intptr_t arg2, intptr_t arg3, intptr_t arg4, intptr_t arg5, intptr_t arg6, intptr_t arg7, intptr_t arg8, intptr_t arg9, intptr_t arg10, intptr_t arg11, intptr_t arg12, intptr_t arg13, intptr_t arg14, intptr_t arg15, intptr_t arg16, intptr_t arg17, intptr_t arg18, intptr_t arg19); // These prototypes handle the four types of FP calls. using SimulatorRuntimeCompareCall = int (*)(double darg0, double darg1); using SimulatorRuntimeFPFPCall = double (*)(double darg0, double darg1); using SimulatorRuntimeFPCall = double (*)(double darg0); using SimulatorRuntimeFPIntCall = double (*)(double darg0, intptr_t arg0); // Define four args for future flexibility; at the time of this writing only // one is ever used. using SimulatorRuntimeFPTaggedCall = double (*)(int32_t arg0, int32_t arg1, int32_t arg2, int32_t arg3); // This signature supports direct call in to API function native callback // (refer to InvocationCallback in v8.h). using SimulatorRuntimeDirectApiCall = void (*)(intptr_t arg0); // This signature supports direct call to accessor getter callback. using SimulatorRuntimeDirectGetterCall = void (*)(intptr_t arg0, intptr_t arg1); // Software interrupt instructions are used by the simulator to call into the // C-based V8 runtime. void Simulator::SoftwareInterrupt(Instruction* instr) { int svc = instr->SvcValue(); switch (svc) { case kCallRtRedirected: { // Check if stack is aligned. Error if not aligned is reported below to // include information on the function called. bool stack_aligned = (get_register(sp) & (v8_flags.sim_stack_alignment - 1)) == 0; Redirection* redirection = Redirection::FromInstruction(instr); const int kArgCount = 20; const int kRegisterArgCount = 8; int arg0_regnum = 3; intptr_t result_buffer = 0; bool uses_result_buffer = (redirection->type() == ExternalReference::BUILTIN_CALL_PAIR && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS); if (uses_result_buffer) { result_buffer = get_register(r3); arg0_regnum++; } intptr_t arg[kArgCount]; // First eight arguments in registers r3-r10. for (int i = 0; i < kRegisterArgCount; i++) { arg[i] = get_register(arg0_regnum + i); } intptr_t* stack_pointer = reinterpret_cast<intptr_t*>(get_register(sp)); // Remaining argument on stack for (int i = kRegisterArgCount, j = 0; i < kArgCount; i++, j++) { arg[i] = stack_pointer[kStackFrameExtraParamSlot + j]; } static_assert(kArgCount == kRegisterArgCount + 12); static_assert(kMaxCParameters == kArgCount); bool fp_call = (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) || (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) || (redirection->type() == ExternalReference::BUILTIN_FP_CALL) || (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL); // This is dodgy but it works because the C entry stubs are never moved. // See comment in codegen-arm.cc and bug 1242173. intptr_t saved_lr = special_reg_lr_; intptr_t external = reinterpret_cast<intptr_t>(redirection->external_function()); if (fp_call) { double dval0, dval1; // one or two double parameters intptr_t ival; // zero or one integer parameters int iresult = 0; // integer return value double dresult = 0; // double return value GetFpArgs(&dval0, &dval1, &ival); if (v8_flags.trace_sim || !stack_aligned) { SimulatorRuntimeCall generic_target = reinterpret_cast<SimulatorRuntimeCall>(external); switch (redirection->type()) { case ExternalReference::BUILTIN_FP_FP_CALL: case ExternalReference::BUILTIN_COMPARE_CALL: PrintF("Call to host function at %p with args %f, %f", reinterpret_cast<void*>(FUNCTION_ADDR(generic_target)), dval0, dval1); break; case ExternalReference::BUILTIN_FP_CALL: PrintF("Call to host function at %p with arg %f", reinterpret_cast<void*>(FUNCTION_ADDR(generic_target)), dval0); break; case ExternalReference::BUILTIN_FP_INT_CALL: PrintF("Call to host function at %p with args %f, %" V8PRIdPTR, reinterpret_cast<void*>(FUNCTION_ADDR(generic_target)), dval0, ival); break; default: UNREACHABLE(); } if (!stack_aligned) { PrintF(" with unaligned stack %08" V8PRIxPTR "\n", get_register(sp)); } PrintF("\n"); } CHECK(stack_aligned); switch (redirection->type()) { case ExternalReference::BUILTIN_COMPARE_CALL: { SimulatorRuntimeCompareCall target = reinterpret_cast<SimulatorRuntimeCompareCall>(external); iresult = target(dval0, dval1); set_register(r3, iresult); break; } case ExternalReference::BUILTIN_FP_FP_CALL: { SimulatorRuntimeFPFPCall target = reinterpret_cast<SimulatorRuntimeFPFPCall>(external); dresult = target(dval0, dval1); SetFpResult(dresult); break; } case ExternalReference::BUILTIN_FP_CALL: { SimulatorRuntimeFPCall target = reinterpret_cast<SimulatorRuntimeFPCall>(external); dresult = target(dval0); SetFpResult(dresult); break; } case ExternalReference::BUILTIN_FP_INT_CALL: { SimulatorRuntimeFPIntCall target = reinterpret_cast<SimulatorRuntimeFPIntCall>(external); dresult = target(dval0, ival); SetFpResult(dresult); break; } default: UNREACHABLE(); } if (v8_flags.trace_sim) { switch (redirection->type()) { case ExternalReference::BUILTIN_COMPARE_CALL: PrintF("Returned %08x\n", iresult); break; case ExternalReference::BUILTIN_FP_FP_CALL: case ExternalReference::BUILTIN_FP_CALL: case ExternalReference::BUILTIN_FP_INT_CALL: PrintF("Returned %f\n", dresult); break; default: UNREACHABLE(); } } } else if (redirection->type() == ExternalReference::BUILTIN_FP_POINTER_CALL) { if (v8_flags.trace_sim || !stack_aligned) { PrintF("Call to host function at %p args %08" V8PRIxPTR, reinterpret_cast<void*>(external), arg[0]); if (!stack_aligned) { PrintF(" with unaligned stack %08" V8PRIxPTR "\n", get_register(sp)); } PrintF("\n"); } CHECK(stack_aligned); SimulatorRuntimeFPTaggedCall target = reinterpret_cast<SimulatorRuntimeFPTaggedCall>(external); double dresult = target(arg[0], arg[1], arg[2], arg[3]); #ifdef DEBUG TrashCallerSaveRegisters(); #endif SetFpResult(dresult); if (v8_flags.trace_sim) { PrintF("Returned %f\n", dresult); } } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) { // See callers of MacroAssembler::CallApiFunctionAndReturn for // explanation of register usage. // void f(v8::FunctionCallbackInfo&) if (v8_flags.trace_sim || !stack_aligned) { PrintF("Call to host function at %p args %08" V8PRIxPTR, reinterpret_cast<void*>(external), arg[0]); if (!stack_aligned) { PrintF(" with unaligned stack %08" V8PRIxPTR "\n", get_register(sp)); } PrintF("\n"); } CHECK(stack_aligned); SimulatorRuntimeDirectApiCall target = reinterpret_cast<SimulatorRuntimeDirectApiCall>(external); target(arg[0]); } else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) { // See callers of MacroAssembler::CallApiFunctionAndReturn for // explanation of register usage. // void f(v8::Local<String> property, v8::PropertyCallbackInfo& info) if (v8_flags.trace_sim || !stack_aligned) { PrintF("Call to host function at %p args %08" V8PRIxPTR " %08" V8PRIxPTR, reinterpret_cast<void*>(external), arg[0], arg[1]); if (!stack_aligned) { PrintF(" with unaligned stack %08" V8PRIxPTR "\n", get_register(sp)); } PrintF("\n"); } CHECK(stack_aligned); SimulatorRuntimeDirectGetterCall target = reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external); if (!ABI_PASSES_HANDLES_IN_REGS) { arg[0] = base::bit_cast<intptr_t>(arg[0]); } target(arg[0], arg[1]); } else { // builtin call. if (v8_flags.trace_sim || !stack_aligned) { SimulatorRuntimeCall target = reinterpret_cast<SimulatorRuntimeCall>(external); PrintF( "Call to host function at %p,\n" "\t\t\t\targs %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR, reinterpret_cast<void*>(FUNCTION_ADDR(target)), arg[0], arg[1], arg[2], arg[3], arg[4], arg[5], arg[6], arg[7], arg[8], arg[9], arg[10], arg[11], arg[12], arg[13], arg[14], arg[15], arg[16], arg[17], arg[18], arg[19]); if (!stack_aligned) { PrintF(" with unaligned stack %08" V8PRIxPTR "\n", get_register(sp)); } PrintF("\n"); } CHECK(stack_aligned); if (redirection->type() == ExternalReference::BUILTIN_CALL_PAIR) { SimulatorRuntimePairCall target = reinterpret_cast<SimulatorRuntimePairCall>(external); ObjectPair result = target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5], arg[6], arg[7], arg[8], arg[9], arg[10], arg[11], arg[12], arg[13], arg[14], arg[15], arg[16], arg[17], arg[18], arg[19]); intptr_t x; intptr_t y; decodeObjectPair(&result, &x, &y); if (v8_flags.trace_sim) { PrintF("Returned {%08" V8PRIxPTR ", %08" V8PRIxPTR "}\n", x, y); } if (ABI_RETURNS_OBJECT_PAIRS_IN_REGS) { set_register(r3, x); set_register(r4, y); } else { memcpy(reinterpret_cast<void*>(result_buffer), &result, sizeof(ObjectPair)); set_register(r3, result_buffer); } } else { // FAST_C_CALL is temporarily handled here as well, because we lack // proper support for direct C calls with FP params in the simulator. // The generic BUILTIN_CALL path assumes all parameters are passed in // the GP registers, thus supporting calling the slow callback without // crashing. The reason for that is that in the mjsunit tests we check // the `fast_c_api.supports_fp_params` (which is false on // non-simulator builds for arm/arm64), thus we expect that the slow // path will be called. And since the slow path passes the arguments // as a `const FunctionCallbackInfo<Value>&` (which is a GP argument), // the call is made correctly. DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL || redirection->type() == ExternalReference::FAST_C_CALL); SimulatorRuntimeCall target = reinterpret_cast<SimulatorRuntimeCall>(external); intptr_t result = target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5], arg[6], arg[7], arg[8], arg[9], arg[10], arg[11], arg[12], arg[13], arg[14], arg[15], arg[16], arg[17], arg[18], arg[19]); if (v8_flags.trace_sim) { PrintF("Returned %08" V8PRIxPTR "\n", result); } set_register(r3, result); } } set_pc(saved_lr); break; } case kBreakpoint: PPCDebugger(this).Debug(); break; // stop uses all codes greater than 1 << 23. default: if (svc >= (1 << 23)) { uint32_t code = svc & kStopCodeMask; if (isWatchedStop(code)) { IncreaseStopCounter(code); } // Stop if it is enabled, otherwise go on jumping over the stop // and the message address. if (isEnabledStop(code)) { if (code != kMaxStopCode) { PrintF("Simulator hit stop %u. ", code); } else { PrintF("Simulator hit stop. "); } DebugAtNextPC(); } else { set_pc(get_pc() + kInstrSize + kSystemPointerSize); } } else { // This is not a valid svc code. UNREACHABLE(); } } } // Stop helper functions. bool Simulator::isStopInstruction(Instruction* instr) { return (instr->Bits(27, 24) == 0xF) && (instr->SvcValue() >= kStopCode); } bool Simulator::isWatchedStop(uint32_t code) { DCHECK_LE(code, kMaxStopCode); return code < kNumOfWatchedStops; } bool Simulator::isEnabledStop(uint32_t code) { DCHECK_LE(code, kMaxStopCode); // Unwatched stops are always enabled. return !isWatchedStop(code) || !(watched_stops_[code].count & kStopDisabledBit); } void Simulator::EnableStop(uint32_t code) { DCHECK(isWatchedStop(code)); if (!isEnabledStop(code)) { watched_stops_[code].count &= ~kStopDisabledBit; } } void Simulator::DisableStop(uint32_t code) { DCHECK(isWatchedStop(code)); if (isEnabledStop(code)) { watched_stops_[code].count |= kStopDisabledBit; } } void Simulator::IncreaseStopCounter(uint32_t code) { DCHECK_LE(code, kMaxStopCode); DCHECK(isWatchedStop(code)); if ((watched_stops_[code].count & ~(1 << 31)) == 0x7FFFFFFF) { PrintF( "Stop counter for code %i has overflowed.\n" "Enabling this code and reseting the counter to 0.\n", code); watched_stops_[code].count = 0; EnableStop(code); } else { watched_stops_[code].count++; } } // Print a stop status. void Simulator::PrintStopInfo(uint32_t code) { DCHECK_LE(code, kMaxStopCode); if (!isWatchedStop(code)) { PrintF("Stop not watched."); } else { const char* state = isEnabledStop(code) ? "Enabled" : "Disabled"; int32_t count = watched_stops_[code].count & ~kStopDisabledBit; // Don't print the state of unused breakpoints. if (count != 0) { if (watched_stops_[code].desc) { PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code, state, count, watched_stops_[code].desc); } else { PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state, count); } } } } void Simulator::SetCR0(intptr_t result, bool setSO) { int bf = 0; if (result < 0) { bf |= 0x80000000; } if (result > 0) { bf |= 0x40000000; } if (result == 0) { bf |= 0x20000000; } if (setSO) { bf |= 0x10000000; } condition_reg_ = (condition_reg_ & ~0xF0000000) | bf; } void Simulator::SetCR6(bool true_for_all) { int32_t clear_cr6_mask = 0xFFFFFF0F; if (true_for_all) { condition_reg_ = (condition_reg_ & clear_cr6_mask) | 0x80; } else { condition_reg_ = (condition_reg_ & clear_cr6_mask) | 0x20; } } void Simulator::ExecuteBranchConditional(Instruction* instr, BCType type) { int bo = instr->Bits(25, 21) << 21; int condition_bit = instr->Bits(20, 16); int condition_mask = 0x80000000 >> condition_bit; switch (bo) { case DCBNZF: // Decrement CTR; branch if CTR != 0 and condition false case DCBEZF: // Decrement CTR; branch if CTR == 0 and condition false UNIMPLEMENTED(); case BF: { // Branch if condition false if (condition_reg_ & condition_mask) return; break; } case DCBNZT: // Decrement CTR; branch if CTR != 0 and condition true case DCBEZT: // Decrement CTR; branch if CTR == 0 and condition true UNIMPLEMENTED(); case BT: { // Branch if condition true if (!(condition_reg_ & condition_mask)) return; break; } case DCBNZ: // Decrement CTR; branch if CTR != 0 case DCBEZ: // Decrement CTR; branch if CTR == 0 special_reg_ctr_ -= 1; if ((special_reg_ctr_ == 0) != (bo == DCBEZ)) return; break; case BA: { // Branch always break; } default: UNIMPLEMENTED(); // Invalid encoding } intptr_t old_pc = get_pc(); switch (type) { case BC_OFFSET: { int offset = (instr->Bits(15, 2) << 18) >> 16; set_pc(old_pc + offset); break; } case BC_LINK_REG: set_pc(special_reg_lr_); break; case BC_CTR_REG: set_pc(special_reg_ctr_); break; } if (instr->Bit(0) == 1) { // LK flag set special_reg_lr_ = old_pc + 4; } } // Vector instruction helpers. #define GET_ADDRESS(a, b, a_val, b_val) \ intptr_t a_val = a == 0 ? 0 : get_register(a); \ intptr_t b_val = get_register(b); #define DECODE_VX_INSTRUCTION(d, a, b, source_or_target) \ int d = instr->R##source_or_target##Value(); \ int a = instr->RAValue(); \ int b = instr->RBValue(); #define FOR_EACH_LANE(i, type) \ for (uint32_t i = 0; i < kSimd128Size / sizeof(type); i++) template <typename A, typename T, typename Operation> void VectorCompareOp(Simulator* sim, Instruction* instr, bool is_fp, Operation op) { DECODE_VX_INSTRUCTION(t, a, b, T) bool true_for_all = true; FOR_EACH_LANE(i, A) { A a_val = sim->get_simd_register_by_lane<A>(a, i); A b_val = sim->get_simd_register_by_lane<A>(b, i); T t_val = 0; bool is_not_nan = is_fp ? !isnan(a_val) && !isnan(b_val) : true; if (is_not_nan && op(a_val, b_val)) { t_val = -1; // Set all bits to 1 indicating true. } else { true_for_all = false; } sim->set_simd_register_by_lane<T>(t, i, t_val); } if (instr->Bit(10)) { // RC bit set. sim->SetCR6(true_for_all); } } template <typename S, typename T> void VectorConverFromFPSaturate(Simulator* sim, Instruction* instr, T min_val, T max_val, bool even_lane_result = false) { int t = instr->RTValue(); int b = instr->RBValue(); FOR_EACH_LANE(i, S) { T t_val; double b_val = static_cast<double>(sim->get_simd_register_by_lane<S>(b, i)); if (isnan(b_val)) { t_val = min_val; } else { // Round Towards Zero. b_val = std::trunc(b_val); if (b_val < min_val) { t_val = min_val; } else if (b_val > max_val) { t_val = max_val; } else { t_val = static_cast<T>(b_val); } } sim->set_simd_register_by_lane<T>(t, even_lane_result ? 2 * i : i, t_val); } } template <typename S, typename T> void VectorPackSaturate(Simulator* sim, Instruction* instr, S min_val, S max_val) { DECODE_VX_INSTRUCTION(t, a, b, T) int src = a; int count = 0; S value = 0; // Setup a temp array to avoid overwriting dst mid loop. T temps[kSimd128Size / sizeof(T)] = {0}; for (size_t i = 0; i < kSimd128Size / sizeof(T); i++, count++) { if (count == kSimd128Size / sizeof(S)) { src = b; count = 0; } value = sim->get_simd_register_by_lane<S>(src, count); if (value > max_val) { value = max_val; } else if (value < min_val) { value = min_val; } temps[i] = static_cast<T>(value); } FOR_EACH_LANE(i, T) { sim->set_simd_register_by_lane<T>(t, i, temps[i]); } } template <typename T> T VSXFPMin(T x, T y) { // Handle NaN. // TODO(miladfarca): include the payload of src1. if (std::isnan(x) && std::isnan(y)) return NAN; // Handle +0 and -0. if (std::signbit(x) < std::signbit(y)) return y; if (std::signbit(y) < std::signbit(x)) return x; return std::fmin(x, y); } template <typename T> T VSXFPMax(T x, T y) { // Handle NaN. // TODO(miladfarca): include the payload of src1. if (std::isnan(x) && std::isnan(y)) return NAN; // Handle +0 and -0. if (std::signbit(x) < std::signbit(y)) return x; if (std::signbit(y) < std::signbit(x)) return y; return std::fmax(x, y); } float VMXFPMin(float x, float y) { // Handle NaN. if (std::isnan(x) || std::isnan(y)) return NAN; // Handle +0 and -0. if (std::signbit(x) < std::signbit(y)) return y; if (std::signbit(y) < std::signbit(x)) return x; return x < y ? x : y; } float VMXFPMax(float x, float y) { // Handle NaN. if (std::isnan(x) || std::isnan(y)) return NAN; // Handle +0 and -0. if (std::signbit(x) < std::signbit(y)) return x; if (std::signbit(y) < std::signbit(x)) return y; return x > y ? x : y; } void Simulator::ExecuteGeneric(Instruction* instr) { uint32_t opcode = instr->OpcodeBase(); switch (opcode) { // Prefixed instructions. case PLOAD_STORE_8LS: case PLOAD_STORE_MLS: { // TODO(miladfarca): Simulate PC-relative capability indicated by the R // bit. DCHECK_NE(instr->Bit(20), 1); // Read prefix value. uint64_t prefix_value = instr->Bits(17, 0); // Read suffix (next instruction). Instruction* next_instr = base::bit_cast<Instruction*>(get_pc() + kInstrSize); uint16_t suffix_value = next_instr->Bits(15, 0); int64_t im_val = SIGN_EXT_IMM34((prefix_value << 16) | suffix_value); switch (next_instr->OpcodeBase()) { // Prefixed ADDI. case ADDI: { int rt = next_instr->RTValue(); int ra = next_instr->RAValue(); intptr_t alu_out; if (ra == 0) { alu_out = im_val; } else { intptr_t ra_val = get_register(ra); alu_out = ra_val + im_val; } set_register(rt, alu_out); break; } // Prefixed LBZ. case LBZ: { int ra = next_instr->RAValue(); int rt = next_instr->RTValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); set_register(rt, ReadB(ra_val + im_val) & 0xFF); break; } // Prefixed LHZ. case LHZ: { int ra = next_instr->RAValue(); int rt = next_instr->RTValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); uintptr_t result = ReadHU(ra_val + im_val) & 0xFFFF; set_register(rt, result); break; } // Prefixed LHA. case LHA: { int ra = next_instr->RAValue(); int rt = next_instr->RTValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); intptr_t result = ReadH(ra_val + im_val); set_register(rt, result); break; } // Prefixed LWZ. case LWZ: { int ra = next_instr->RAValue(); int rt = next_instr->RTValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); set_register(rt, ReadWU(ra_val + im_val)); break; } // Prefixed LWA. case PPLWA: { int ra = next_instr->RAValue(); int rt = next_instr->RTValue(); int64_t ra_val = ra == 0 ? 0 : get_register(ra); set_register(rt, ReadW(ra_val + im_val)); break; } // Prefixed LD. case PPLD: { int ra = next_instr->RAValue(); int rt = next_instr->RTValue(); int64_t ra_val = ra == 0 ? 0 : get_register(ra); set_register(rt, ReadDW(ra_val + im_val)); break; } // Prefixed LFS. case LFS: { int frt = next_instr->RTValue(); int ra = next_instr->RAValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); int32_t val = ReadW(ra_val + im_val); float* fptr = reinterpret_cast<float*>(&val); #if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64 // Conversion using double changes sNan to qNan on ia32/x64 if ((val & 0x7F800000) == 0x7F800000) { int64_t dval = static_cast<int64_t>(val); dval = ((dval & 0xC0000000) << 32) | ((dval & 0x40000000) << 31) | ((dval & 0x40000000) << 30) | ((dval & 0x7FFFFFFF) << 29) | 0x0; set_d_register(frt, dval); } else { set_d_register_from_double(frt, static_cast<double>(*fptr)); } #else set_d_register_from_double(frt, static_cast<double>(*fptr)); #endif break; } // Prefixed LFD. case LFD: { int frt = next_instr->RTValue(); int ra = next_instr->RAValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); int64_t dptr = ReadDW(ra_val + im_val); set_d_register(frt, dptr); break; } // Prefixed STB. case STB: { int ra = next_instr->RAValue(); int rs = next_instr->RSValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); WriteB(ra_val + im_val, get_register(rs)); break; } // Prefixed STH. case STH: { int ra = next_instr->RAValue(); int rs = next_instr->RSValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); WriteH(ra_val + im_val, get_register(rs)); break; } // Prefixed STW. case STW: { int ra = next_instr->RAValue(); int rs = next_instr->RSValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); WriteW(ra_val + im_val, get_register(rs)); break; } // Prefixed STD. case PPSTD: { int ra = next_instr->RAValue(); int rs = next_instr->RSValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); WriteDW(ra_val + im_val, get_register(rs)); break; } // Prefixed STFS. case STFS: { int frs = next_instr->RSValue(); int ra = next_instr->RAValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); float frs_val = static_cast<float>(get_double_from_d_register(frs)); int32_t* p; #if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64 // Conversion using double changes sNan to qNan on ia32/x64 int32_t sval = 0; int64_t dval = get_d_register(frs); if ((dval & 0x7FF0000000000000) == 0x7FF0000000000000) { sval = ((dval & 0xC000000000000000) >> 32) | ((dval & 0x07FFFFFFE0000000) >> 29); p = &sval; } else { p = reinterpret_cast<int32_t*>(&frs_val); } #else p = reinterpret_cast<int32_t*>(&frs_val); #endif WriteW(ra_val + im_val, *p); break; } // Prefixed STFD. case STFD: { int frs = next_instr->RSValue(); int ra = next_instr->RAValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); int64_t frs_val = get_d_register(frs); WriteDW(ra_val + im_val, frs_val); break; } default: UNREACHABLE(); } // We have now executed instructions at this as well as next pc. set_pc(get_pc() + (2 * kInstrSize)); break; } case SUBFIC: { int rt = instr->RTValue(); int ra = instr->RAValue(); intptr_t ra_val = get_register(ra); int32_t im_val = instr->Bits(15, 0); im_val = SIGN_EXT_IMM16(im_val); intptr_t alu_out = im_val - ra_val; set_register(rt, alu_out); // todo - handle RC bit break; } case CMPLI: { int ra = instr->RAValue(); uint32_t im_val = instr->Bits(15, 0); int cr = instr->Bits(25, 23); uint32_t bf = 0; #if V8_TARGET_ARCH_PPC64 int L = instr->Bit(21); if (L) { #endif uintptr_t ra_val = get_register(ra); if (ra_val < im_val) { bf |= 0x80000000; } if (ra_val > im_val) { bf |= 0x40000000; } if (ra_val == im_val) { bf |= 0x20000000; } #if V8_TARGET_ARCH_PPC64 } else { uint32_t ra_val = get_register(ra); if (ra_val < im_val) { bf |= 0x80000000; } if (ra_val > im_val) { bf |= 0x40000000; } if (ra_val == im_val) { bf |= 0x20000000; } } #endif uint32_t condition_mask = 0xF0000000U >> (cr * 4); uint32_t condition = bf >> (cr * 4); condition_reg_ = (condition_reg_ & ~condition_mask) | condition; break; } case CMPI: { int ra = instr->RAValue(); int32_t im_val = instr->Bits(15, 0); im_val = SIGN_EXT_IMM16(im_val); int cr = instr->Bits(25, 23); uint32_t bf = 0; #if V8_TARGET_ARCH_PPC64 int L = instr->Bit(21); if (L) { #endif intptr_t ra_val = get_register(ra); if (ra_val < im_val) { bf |= 0x80000000; } if (ra_val > im_val) { bf |= 0x40000000; } if (ra_val == im_val) { bf |= 0x20000000; } #if V8_TARGET_ARCH_PPC64 } else { int32_t ra_val = get_register(ra); if (ra_val < im_val) { bf |= 0x80000000; } if (ra_val > im_val) { bf |= 0x40000000; } if (ra_val == im_val) { bf |= 0x20000000; } } #endif uint32_t condition_mask = 0xF0000000U >> (cr * 4); uint32_t condition = bf >> (cr * 4); condition_reg_ = (condition_reg_ & ~condition_mask) | condition; break; } case ADDIC: { int rt = instr->RTValue(); int ra = instr->RAValue(); uintptr_t ra_val = get_register(ra); uintptr_t im_val = SIGN_EXT_IMM16(instr->Bits(15, 0)); uintptr_t alu_out = ra_val + im_val; // Check overflow if (~ra_val < im_val) { special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000; } else { special_reg_xer_ &= ~0xF0000000; } set_register(rt, alu_out); break; } case ADDI: { int rt = instr->RTValue(); int ra = instr->RAValue(); int32_t im_val = SIGN_EXT_IMM16(instr->Bits(15, 0)); intptr_t alu_out; if (ra == 0) { alu_out = im_val; } else { intptr_t ra_val = get_register(ra); alu_out = ra_val + im_val; } set_register(rt, alu_out); // todo - handle RC bit break; } case ADDIS: { int rt = instr->RTValue(); int ra = instr->RAValue(); int32_t im_val = (instr->Bits(15, 0) << 16); intptr_t alu_out; if (ra == 0) { // treat r0 as zero alu_out = im_val; } else { intptr_t ra_val = get_register(ra); alu_out = ra_val + im_val; } set_register(rt, alu_out); break; } case BCX: { ExecuteBranchConditional(instr, BC_OFFSET); break; } case BX: { int offset = (instr->Bits(25, 2) << 8) >> 6; if (instr->Bit(0) == 1) { // LK flag set special_reg_lr_ = get_pc() + 4; } set_pc(get_pc() + offset); // todo - AA flag break; } case MCRF: UNIMPLEMENTED(); // Not used by V8. case BCLRX: ExecuteBranchConditional(instr, BC_LINK_REG); break; case BCCTRX: ExecuteBranchConditional(instr, BC_CTR_REG); break; case CRNOR: case RFI: case CRANDC: UNIMPLEMENTED(); case ISYNC: { // todo - simulate isync break; } case CRXOR: { int bt = instr->Bits(25, 21); int ba = instr->Bits(20, 16); int bb = instr->Bits(15, 11); int ba_val = ((0x80000000 >> ba) & condition_reg_) == 0 ? 0 : 1; int bb_val = ((0x80000000 >> bb) & condition_reg_) == 0 ? 0 : 1; int bt_val = ba_val ^ bb_val; bt_val = bt_val << (31 - bt); // shift bit to correct destination condition_reg_ &= ~(0x80000000 >> bt); condition_reg_ |= bt_val; break; } case CREQV: { int bt = instr->Bits(25, 21); int ba = instr->Bits(20, 16); int bb = instr->Bits(15, 11); int ba_val = ((0x80000000 >> ba) & condition_reg_) == 0 ? 0 : 1; int bb_val = ((0x80000000 >> bb) & condition_reg_) == 0 ? 0 : 1; int bt_val = 1 - (ba_val ^ bb_val); bt_val = bt_val << (31 - bt); // shift bit to correct destination condition_reg_ &= ~(0x80000000 >> bt); condition_reg_ |= bt_val; break; } case CRNAND: case CRAND: case CRORC: case CROR: { UNIMPLEMENTED(); // Not used by V8. } case RLWIMIX: { int ra = instr->RAValue(); int rs = instr->RSValue(); uint32_t rs_val = get_register(rs); int32_t ra_val = get_register(ra); int sh = instr->Bits(15, 11); int mb = instr->Bits(10, 6); int me = instr->Bits(5, 1); uint32_t result = base::bits::RotateLeft32(rs_val, sh); int mask = 0; if (mb < me + 1) { int bit = 0x80000000 >> mb; for (; mb <= me; mb++) { mask |= bit; bit >>= 1; } } else if (mb == me + 1) { mask = 0xFFFFFFFF; } else { // mb > me+1 int bit = 0x80000000 >> (me + 1); // needs to be tested mask = 0xFFFFFFFF; for (; me < mb; me++) { mask ^= bit; bit >>= 1; } } result &= mask; ra_val &= ~mask; result |= ra_val; set_register(ra, result); if (instr->Bit(0)) { // RC bit set SetCR0(result); } break; } case RLWINMX: case RLWNMX: { int ra = instr->RAValue(); int rs = instr->RSValue(); uint32_t rs_val = get_register(rs); int sh = 0; if (opcode == RLWINMX) { sh = instr->Bits(15, 11); } else { int rb = instr->RBValue(); uint32_t rb_val = get_register(rb); sh = (rb_val & 0x1F); } int mb = instr->Bits(10, 6); int me = instr->Bits(5, 1); uint32_t result = base::bits::RotateLeft32(rs_val, sh); int mask = 0; if (mb < me + 1) { int bit = 0x80000000 >> mb; for (; mb <= me; mb++) { mask |= bit; bit >>= 1; } } else if (mb == me + 1) { mask = 0xFFFFFFFF; } else { // mb > me+1 int bit = 0x80000000 >> (me + 1); // needs to be tested mask = 0xFFFFFFFF; for (; me < mb; me++) { mask ^= bit; bit >>= 1; } } result &= mask; set_register(ra, result); if (instr->Bit(0)) { // RC bit set SetCR0(result); } break; } case ORI: { int rs = instr->RSValue(); int ra = instr->RAValue(); intptr_t rs_val = get_register(rs); uint32_t im_val = instr->Bits(15, 0); intptr_t alu_out = rs_val | im_val; set_register(ra, alu_out); break; } case ORIS: { int rs = instr->RSValue(); int ra = instr->RAValue(); intptr_t rs_val = get_register(rs); uint32_t im_val = instr->Bits(15, 0); intptr_t alu_out = rs_val | (im_val << 16); set_register(ra, alu_out); break; } case XORI: { int rs = instr->RSValue(); int ra = instr->RAValue(); intptr_t rs_val = get_register(rs); uint32_t im_val = instr->Bits(15, 0); intptr_t alu_out = rs_val ^ im_val; set_register(ra, alu_out); // todo - set condition based SO bit break; } case XORIS: { int rs = instr->RSValue(); int ra = instr->RAValue(); intptr_t rs_val = get_register(rs); uint32_t im_val = instr->Bits(15, 0); intptr_t alu_out = rs_val ^ (im_val << 16); set_register(ra, alu_out); break; } case ANDIx: { int rs = instr->RSValue(); int ra = instr->RAValue(); intptr_t rs_val = get_register(rs); uint32_t im_val = instr->Bits(15, 0); intptr_t alu_out = rs_val & im_val; set_register(ra, alu_out); SetCR0(alu_out); break; } case ANDISx: { int rs = instr->RSValue(); int ra = instr->RAValue(); intptr_t rs_val = get_register(rs); uint32_t im_val = instr->Bits(15, 0); intptr_t alu_out = rs_val & (im_val << 16); set_register(ra, alu_out); SetCR0(alu_out); break; } case SRWX: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); uint32_t rs_val = get_register(rs); uintptr_t rb_val = get_register(rb) & 0x3F; intptr_t result = (rb_val > 31) ? 0 : rs_val >> rb_val; set_register(ra, result); if (instr->Bit(0)) { // RC bit set SetCR0(result); } break; } #if V8_TARGET_ARCH_PPC64 case SRDX: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); uintptr_t rs_val = get_register(rs); uintptr_t rb_val = get_register(rb) & 0x7F; intptr_t result = (rb_val > 63) ? 0 : rs_val >> rb_val; set_register(ra, result); if (instr->Bit(0)) { // RC bit set SetCR0(result); } break; } #endif case MODUW: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); uint32_t ra_val = get_register(ra); uint32_t rb_val = get_register(rb); uint32_t alu_out = (rb_val == 0) ? -1 : ra_val % rb_val; set_register(rt, alu_out); break; } #if V8_TARGET_ARCH_PPC64 case MODUD: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); uint64_t ra_val = get_register(ra); uint64_t rb_val = get_register(rb); uint64_t alu_out = (rb_val == 0) ? -1 : ra_val % rb_val; set_register(rt, alu_out); break; } #endif case MODSW: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); int32_t ra_val = get_register(ra); int32_t rb_val = get_register(rb); bool overflow = (ra_val == kMinInt && rb_val == -1); // result is undefined if divisor is zero or if operation // is 0x80000000 / -1. int32_t alu_out = (rb_val == 0 || overflow) ? -1 : ra_val % rb_val; set_register(rt, alu_out); break; } #if V8_TARGET_ARCH_PPC64 case MODSD: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); int64_t ra_val = get_register(ra); int64_t rb_val = get_register(rb); int64_t one = 1; // work-around gcc int64_t kMinLongLong = (one << 63); // result is undefined if divisor is zero or if operation // is 0x80000000_00000000 / -1. int64_t alu_out = (rb_val == 0 || (ra_val == kMinLongLong && rb_val == -1)) ? -1 : ra_val % rb_val; set_register(rt, alu_out); break; } #endif case SRAW: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); int32_t rs_val = get_register(rs); intptr_t rb_val = get_register(rb) & 0x3F; intptr_t result = (rb_val > 31) ? rs_val >> 31 : rs_val >> rb_val; set_register(ra, result); if (instr->Bit(0)) { // RC bit set SetCR0(result); } break; } #if V8_TARGET_ARCH_PPC64 case SRAD: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t rs_val = get_register(rs); intptr_t rb_val = get_register(rb) & 0x7F; intptr_t result = (rb_val > 63) ? rs_val >> 63 : rs_val >> rb_val; set_register(ra, result); if (instr->Bit(0)) { // RC bit set SetCR0(result); } break; } #endif case SRAWIX: { int ra = instr->RAValue(); int rs = instr->RSValue(); int sh = instr->Bits(15, 11); int32_t rs_val = get_register(rs); intptr_t result = rs_val >> sh; set_register(ra, result); if (instr->Bit(0)) { // RC bit set SetCR0(result); } break; } #if V8_TARGET_ARCH_PPC64 case EXTSW: { const int shift = kBitsPerSystemPointer - 32; int ra = instr->RAValue(); int rs = instr->RSValue(); intptr_t rs_val = get_register(rs); intptr_t ra_val = (rs_val << shift) >> shift; set_register(ra, ra_val); if (instr->Bit(0)) { // RC bit set SetCR0(ra_val); } break; } #endif case EXTSH: { const int shift = kBitsPerSystemPointer - 16; int ra = instr->RAValue(); int rs = instr->RSValue(); intptr_t rs_val = get_register(rs); intptr_t ra_val = (rs_val << shift) >> shift; set_register(ra, ra_val); if (instr->Bit(0)) { // RC bit set SetCR0(ra_val); } break; } case EXTSB: { const int shift = kBitsPerSystemPointer - 8; int ra = instr->RAValue(); int rs = instr->RSValue(); intptr_t rs_val = get_register(rs); intptr_t ra_val = (rs_val << shift) >> shift; set_register(ra, ra_val); if (instr->Bit(0)) { // RC bit set SetCR0(ra_val); } break; } case LFSUX: case LFSX: { int frt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); intptr_t rb_val = get_register(rb); int32_t val = ReadW(ra_val + rb_val); float* fptr = reinterpret_cast<float*>(&val); #if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64 // Conversion using double changes sNan to qNan on ia32/x64 if ((val & 0x7F800000) == 0x7F800000) { int64_t dval = static_cast<int64_t>(val); dval = ((dval & 0xC0000000) << 32) | ((dval & 0x40000000) << 31) | ((dval & 0x40000000) << 30) | ((dval & 0x7FFFFFFF) << 29) | 0x0; set_d_register(frt, dval); } else { set_d_register_from_double(frt, static_cast<double>(*fptr)); } #else set_d_register_from_double(frt, static_cast<double>(*fptr)); #endif if (opcode == LFSUX) { DCHECK_NE(ra, 0); set_register(ra, ra_val + rb_val); } break; } case LFDUX: case LFDX: { int frt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); intptr_t rb_val = get_register(rb); int64_t dptr = ReadDW(ra_val + rb_val); set_d_register(frt, dptr); if (opcode == LFDUX) { DCHECK_NE(ra, 0); set_register(ra, ra_val + rb_val); } break; } case STFSUX: V8_FALLTHROUGH; case STFSX: { int frs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); intptr_t rb_val = get_register(rb); float frs_val = static_cast<float>(get_double_from_d_register(frs)); int32_t* p = reinterpret_cast<int32_t*>(&frs_val); #if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64 // Conversion using double changes sNan to qNan on ia32/x64 int32_t sval = 0; int64_t dval = get_d_register(frs); if ((dval & 0x7FF0000000000000) == 0x7FF0000000000000) { sval = ((dval & 0xC000000000000000) >> 32) | ((dval & 0x07FFFFFFE0000000) >> 29); p = &sval; } else { p = reinterpret_cast<int32_t*>(&frs_val); } #else p = reinterpret_cast<int32_t*>(&frs_val); #endif WriteW(ra_val + rb_val, *p); if (opcode == STFSUX) { DCHECK_NE(ra, 0); set_register(ra, ra_val + rb_val); } break; } case STFDUX: V8_FALLTHROUGH; case STFDX: { int frs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); intptr_t rb_val = get_register(rb); int64_t frs_val = get_d_register(frs); WriteDW(ra_val + rb_val, frs_val); if (opcode == STFDUX) { DCHECK_NE(ra, 0); set_register(ra, ra_val + rb_val); } break; } case POPCNTW: { int rs = instr->RSValue(); int ra = instr->RAValue(); uintptr_t rs_val = get_register(rs); uintptr_t count = 0; int n = 0; uintptr_t bit = 0x80000000; for (; n < 32; n++) { if (bit & rs_val) count++; bit >>= 1; } set_register(ra, count); break; } #if V8_TARGET_ARCH_PPC64 case POPCNTD: { int rs = instr->RSValue(); int ra = instr->RAValue(); uintptr_t rs_val = get_register(rs); uintptr_t count = 0; int n = 0; uintptr_t bit = 0x8000000000000000UL; for (; n < 64; n++) { if (bit & rs_val) count++; bit >>= 1; } set_register(ra, count); break; } #endif case SYNC: { // todo - simulate sync __sync_synchronize(); break; } case ICBI: { // todo - simulate icbi break; } case LWZU: case LWZ: { int ra = instr->RAValue(); int rt = instr->RTValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); int offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); set_register(rt, ReadWU(ra_val + offset)); if (opcode == LWZU) { DCHECK_NE(ra, 0); set_register(ra, ra_val + offset); } break; } case LBZU: case LBZ: { int ra = instr->RAValue(); int rt = instr->RTValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); int offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); set_register(rt, ReadB(ra_val + offset) & 0xFF); if (opcode == LBZU) { DCHECK_NE(ra, 0); set_register(ra, ra_val + offset); } break; } case STWU: case STW: { int ra = instr->RAValue(); int rs = instr->RSValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); int32_t rs_val = get_register(rs); int offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); WriteW(ra_val + offset, rs_val); if (opcode == STWU) { DCHECK_NE(ra, 0); set_register(ra, ra_val + offset); } break; } case SRADIX: { int ra = instr->RAValue(); int rs = instr->RSValue(); int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5)); intptr_t rs_val = get_register(rs); intptr_t result = rs_val >> sh; set_register(ra, result); if (instr->Bit(0)) { // RC bit set SetCR0(result); } break; } case STBCX: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); int8_t rs_val = get_register(rs); intptr_t rb_val = get_register(rb); SetCR0(WriteExB(ra_val + rb_val, rs_val)); break; } case STHCX: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); int16_t rs_val = get_register(rs); intptr_t rb_val = get_register(rb); SetCR0(WriteExH(ra_val + rb_val, rs_val)); break; } case STWCX: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); int32_t rs_val = get_register(rs); intptr_t rb_val = get_register(rb); SetCR0(WriteExW(ra_val + rb_val, rs_val)); break; } case STDCX: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); int64_t rs_val = get_register(rs); intptr_t rb_val = get_register(rb); SetCR0(WriteExDW(ra_val + rb_val, rs_val)); break; } case TW: { // used for call redirection in simulation mode SoftwareInterrupt(instr); break; } case CMP: { int ra = instr->RAValue(); int rb = instr->RBValue(); int cr = instr->Bits(25, 23); uint32_t bf = 0; #if V8_TARGET_ARCH_PPC64 int L = instr->Bit(21); if (L) { #endif intptr_t ra_val = get_register(ra); intptr_t rb_val = get_register(rb); if (ra_val < rb_val) { bf |= 0x80000000; } if (ra_val > rb_val) { bf |= 0x40000000; } if (ra_val == rb_val) { bf |= 0x20000000; } #if V8_TARGET_ARCH_PPC64 } else { int32_t ra_val = get_register(ra); int32_t rb_val = get_register(rb); if (ra_val < rb_val) { bf |= 0x80000000; } if (ra_val > rb_val) { bf |= 0x40000000; } if (ra_val == rb_val) { bf |= 0x20000000; } } #endif uint32_t condition_mask = 0xF0000000U >> (cr * 4); uint32_t condition = bf >> (cr * 4); condition_reg_ = (condition_reg_ & ~condition_mask) | condition; break; } case SUBFCX: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); // int oe = instr->Bit(10); uintptr_t ra_val = get_register(ra); uintptr_t rb_val = get_register(rb); uintptr_t alu_out = ~ra_val + rb_val + 1; // Set carry if (ra_val <= rb_val) { special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000; } else { special_reg_xer_ &= ~0xF0000000; } set_register(rt, alu_out); if (instr->Bit(0)) { // RC bit set SetCR0(alu_out); } // todo - handle OE bit break; } case SUBFEX: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); // int oe = instr->Bit(10); uintptr_t ra_val = get_register(ra); uintptr_t rb_val = get_register(rb); uintptr_t alu_out = ~ra_val + rb_val; if (special_reg_xer_ & 0x20000000) { alu_out += 1; } set_register(rt, alu_out); if (instr->Bit(0)) { // RC bit set SetCR0(static_cast<intptr_t>(alu_out)); } // todo - handle OE bit break; } case ADDCX: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); // int oe = instr->Bit(10); uintptr_t ra_val = get_register(ra); uintptr_t rb_val = get_register(rb); uintptr_t alu_out = ra_val + rb_val; // Set carry if (~ra_val < rb_val) { special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000; } else { special_reg_xer_ &= ~0xF0000000; } set_register(rt, alu_out); if (instr->Bit(0)) { // RC bit set SetCR0(static_cast<intptr_t>(alu_out)); } // todo - handle OE bit break; } case ADDEX: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); // int oe = instr->Bit(10); uintptr_t ra_val = get_register(ra); uintptr_t rb_val = get_register(rb); uintptr_t alu_out = ra_val + rb_val; if (special_reg_xer_ & 0x20000000) { alu_out += 1; } set_register(rt, alu_out); if (instr->Bit(0)) { // RC bit set SetCR0(static_cast<intptr_t>(alu_out)); } // todo - handle OE bit break; } case MULHWX: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); int32_t ra_val = (get_register(ra) & 0xFFFFFFFF); int32_t rb_val = (get_register(rb) & 0xFFFFFFFF); int64_t alu_out = (int64_t)ra_val * (int64_t)rb_val; // High 32 bits of the result is undefined, // Which is simulated here by adding random bits. alu_out = (alu_out >> 32) | 0x421000000000000; set_register(rt, alu_out); if (instr->Bit(0)) { // RC bit set SetCR0(static_cast<intptr_t>(alu_out)); } break; } case MULHWUX: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); uint32_t ra_val = (get_register(ra) & 0xFFFFFFFF); uint32_t rb_val = (get_register(rb) & 0xFFFFFFFF); uint64_t alu_out = (uint64_t)ra_val * (uint64_t)rb_val; // High 32 bits of the result is undefined, // Which is simulated here by adding random bits. alu_out = (alu_out >> 32) | 0x421000000000000; set_register(rt, alu_out); if (instr->Bit(0)) { // RC bit set SetCR0(static_cast<intptr_t>(alu_out)); } break; } case MULHD: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); int64_t ra_val = get_register(ra); int64_t rb_val = get_register(rb); int64_t alu_out = base::bits::SignedMulHigh64(ra_val, rb_val); set_register(rt, alu_out); if (instr->Bit(0)) { // RC bit set SetCR0(static_cast<intptr_t>(alu_out)); } break; } case MULHDU: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); uint64_t ra_val = get_register(ra); uint64_t rb_val = get_register(rb); uint64_t alu_out = base::bits::UnsignedMulHigh64(ra_val, rb_val); set_register(rt, alu_out); if (instr->Bit(0)) { // RC bit set SetCR0(static_cast<intptr_t>(alu_out)); } break; } case NEGX: { int rt = instr->RTValue(); int ra = instr->RAValue(); intptr_t ra_val = get_register(ra); intptr_t alu_out = 1 + ~ra_val; #if V8_TARGET_ARCH_PPC64 intptr_t one = 1; // work-around gcc intptr_t kOverflowVal = (one << 63); #else intptr_t kOverflowVal = kMinInt; #endif set_register(rt, alu_out); if (instr->Bit(10)) { // OE bit set if (ra_val == kOverflowVal) { special_reg_xer_ |= 0xC0000000; // set SO,OV } else { special_reg_xer_ &= ~0x40000000; // clear OV } } if (instr->Bit(0)) { // RC bit set bool setSO = (special_reg_xer_ & 0x80000000); SetCR0(alu_out, setSO); } break; } case SLWX: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); uint32_t rs_val = get_register(rs); uintptr_t rb_val = get_register(rb) & 0x3F; uint32_t result = (rb_val > 31) ? 0 : rs_val << rb_val; set_register(ra, result); if (instr->Bit(0)) { // RC bit set SetCR0(result); } break; } #if V8_TARGET_ARCH_PPC64 case SLDX: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); uintptr_t rs_val = get_register(rs); uintptr_t rb_val = get_register(rb) & 0x7F; uintptr_t result = (rb_val > 63) ? 0 : rs_val << rb_val; set_register(ra, result); if (instr->Bit(0)) { // RC bit set SetCR0(result); } break; } case MFVSRD: { int frt = instr->RTValue(); int ra = instr->RAValue(); int64_t frt_val; if (!instr->Bit(0)) { // if double reg (TX=0). frt_val = get_d_register(frt); } else { // if simd reg (TX=1). DCHECK_EQ(instr->Bit(0), 1); frt_val = get_simd_register_by_lane<int64_t>(frt, 0); } set_register(ra, frt_val); break; } case MFVSRWZ: { DCHECK(!instr->Bit(0)); int frt = instr->RTValue(); int ra = instr->RAValue(); int64_t frt_val = get_d_register(frt); set_register(ra, static_cast<uint32_t>(frt_val)); break; } case MTVSRD: { int frt = instr->RTValue(); int ra = instr->RAValue(); int64_t ra_val = get_register(ra); if (!instr->Bit(0)) { // if double reg (TX=0). set_d_register(frt, ra_val); } else { // if simd reg (TX=1). DCHECK_EQ(instr->Bit(0), 1); set_simd_register_by_lane<int64_t>(frt, 0, static_cast<int64_t>(ra_val)); // Low 64 bits of the result is undefined, // Which is simulated here by adding random bits. set_simd_register_by_lane<int64_t>( frt, 1, static_cast<int64_t>(0x123456789ABCD)); } break; } case MTVSRDD: { int xt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); set_simd_register_by_lane<int64_t>( xt, 0, static_cast<int64_t>(get_register(ra))); set_simd_register_by_lane<int64_t>( xt, 1, static_cast<int64_t>(get_register(rb))); break; } case MTVSRWA: { DCHECK(!instr->Bit(0)); int frt = instr->RTValue(); int ra = instr->RAValue(); int64_t ra_val = static_cast<int32_t>(get_register(ra)); set_d_register(frt, ra_val); break; } case MTVSRWZ: { DCHECK(!instr->Bit(0)); int frt = instr->RTValue(); int ra = instr->RAValue(); uint64_t ra_val = static_cast<uint32_t>(get_register(ra)); set_d_register(frt, ra_val); break; } #endif case CNTLZWX: { int rs = instr->RSValue(); int ra = instr->RAValue(); uintptr_t rs_val = get_register(rs); uintptr_t count = 0; int n = 0; uintptr_t bit = 0x80000000; for (; n < 32; n++) { if (bit & rs_val) break; count++; bit >>= 1; } set_register(ra, count); if (instr->Bit(0)) { // RC Bit set int bf = 0; if (count > 0) { bf |= 0x40000000; } if (count == 0) { bf |= 0x20000000; } condition_reg_ = (condition_reg_ & ~0xF0000000) | bf; } break; } case CNTLZDX: { int rs = instr->RSValue(); int ra = instr->RAValue(); uintptr_t rs_val = get_register(rs); uintptr_t count = 0; int n = 0; uintptr_t bit = 0x8000000000000000UL; for (; n < 64; n++) { if (bit & rs_val) break; count++; bit >>= 1; } set_register(ra, count); if (instr->Bit(0)) { // RC Bit set int bf = 0; if (count > 0) { bf |= 0x40000000; } if (count == 0) { bf |= 0x20000000; } condition_reg_ = (condition_reg_ & ~0xF0000000) | bf; } break; } case CNTTZWX: { int rs = instr->RSValue(); int ra = instr->RAValue(); uint32_t rs_val = static_cast<uint32_t>(get_register(rs)); uintptr_t count = rs_val == 0 ? 32 : __builtin_ctz(rs_val); set_register(ra, count); if (instr->Bit(0)) { // RC Bit set int bf = 0; if (count > 0) { bf |= 0x40000000; } if (count == 0) { bf |= 0x20000000; } condition_reg_ = (condition_reg_ & ~0xF0000000) | bf; } break; } case CNTTZDX: { int rs = instr->RSValue(); int ra = instr->RAValue(); uint64_t rs_val = get_register(rs); uintptr_t count = rs_val == 0 ? 64 : __builtin_ctzl(rs_val); set_register(ra, count); if (instr->Bit(0)) { // RC Bit set int bf = 0; if (count > 0) { bf |= 0x40000000; } if (count == 0) { bf |= 0x20000000; } condition_reg_ = (condition_reg_ & ~0xF0000000) | bf; } break; } case ANDX: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t rs_val = get_register(rs); intptr_t rb_val = get_register(rb); intptr_t alu_out = rs_val & rb_val; set_register(ra, alu_out); if (instr->Bit(0)) { // RC Bit set SetCR0(alu_out); } break; } case ANDCX: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t rs_val = get_register(rs); intptr_t rb_val = get_register(rb); intptr_t alu_out = rs_val & ~rb_val; set_register(ra, alu_out); if (instr->Bit(0)) { // RC Bit set SetCR0(alu_out); } break; } case CMPL: { int ra = instr->RAValue(); int rb = instr->RBValue(); int cr = instr->Bits(25, 23); uint32_t bf = 0; #if V8_TARGET_ARCH_PPC64 int L = instr->Bit(21); if (L) { #endif uintptr_t ra_val = get_register(ra); uintptr_t rb_val = get_register(rb); if (ra_val < rb_val) { bf |= 0x80000000; } if (ra_val > rb_val) { bf |= 0x40000000; } if (ra_val == rb_val) { bf |= 0x20000000; } #if V8_TARGET_ARCH_PPC64 } else { uint32_t ra_val = get_register(ra); uint32_t rb_val = get_register(rb); if (ra_val < rb_val) { bf |= 0x80000000; } if (ra_val > rb_val) { bf |= 0x40000000; } if (ra_val == rb_val) { bf |= 0x20000000; } } #endif uint32_t condition_mask = 0xF0000000U >> (cr * 4); uint32_t condition = bf >> (cr * 4); condition_reg_ = (condition_reg_ & ~condition_mask) | condition; break; } case SUBFX: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); // int oe = instr->Bit(10); intptr_t ra_val = get_register(ra); intptr_t rb_val = get_register(rb); intptr_t alu_out = rb_val - ra_val; // todo - figure out underflow set_register(rt, alu_out); if (instr->Bit(0)) { // RC Bit set SetCR0(alu_out); } // todo - handle OE bit break; } case ADDZEX: { int rt = instr->RTValue(); int ra = instr->RAValue(); intptr_t ra_val = get_register(ra); if (special_reg_xer_ & 0x20000000) { ra_val += 1; } set_register(rt, ra_val); if (instr->Bit(0)) { // RC bit set SetCR0(ra_val); } // todo - handle OE bit break; } case NORX: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t rs_val = get_register(rs); intptr_t rb_val = get_register(rb); intptr_t alu_out = ~(rs_val | rb_val); set_register(ra, alu_out); if (instr->Bit(0)) { // RC bit set SetCR0(alu_out); } break; } case MULLW: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); int32_t ra_val = (get_register(ra) & 0xFFFFFFFF); int32_t rb_val = (get_register(rb) & 0xFFFFFFFF); int32_t alu_out = ra_val * rb_val; set_register(rt, alu_out); if (instr->Bit(0)) { // RC bit set SetCR0(alu_out); } // todo - handle OE bit break; } #if V8_TARGET_ARCH_PPC64 case MULLD: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); int64_t ra_val = get_register(ra); int64_t rb_val = get_register(rb); int64_t alu_out = ra_val * rb_val; set_register(rt, alu_out); if (instr->Bit(0)) { // RC bit set SetCR0(alu_out); } // todo - handle OE bit break; } #endif case DIVW: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); int32_t ra_val = get_register(ra); int32_t rb_val = get_register(rb); bool overflow = (ra_val == kMinInt && rb_val == -1); // result is undefined if divisor is zero or if operation // is 0x80000000 / -1. int32_t alu_out = (rb_val == 0 || overflow) ? -1 : ra_val / rb_val; set_register(rt, alu_out); if (instr->Bit(10)) { // OE bit set if (overflow) { special_reg_xer_ |= 0xC0000000; // set SO,OV } else { special_reg_xer_ &= ~0x40000000; // clear OV } } if (instr->Bit(0)) { // RC bit set bool setSO = (special_reg_xer_ & 0x80000000); SetCR0(alu_out, setSO); } break; } case DIVWU: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); uint32_t ra_val = get_register(ra); uint32_t rb_val = get_register(rb); bool overflow = (rb_val == 0); // result is undefined if divisor is zero uint32_t alu_out = (overflow) ? -1 : ra_val / rb_val; set_register(rt, alu_out); if (instr->Bit(10)) { // OE bit set if (overflow) { special_reg_xer_ |= 0xC0000000; // set SO,OV } else { special_reg_xer_ &= ~0x40000000; // clear OV } } if (instr->Bit(0)) { // RC bit set bool setSO = (special_reg_xer_ & 0x80000000); SetCR0(alu_out, setSO); } break; } #if V8_TARGET_ARCH_PPC64 case DIVD: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); int64_t ra_val = get_register(ra); int64_t rb_val = get_register(rb); int64_t one = 1; // work-around gcc int64_t kMinLongLong = (one << 63); // result is undefined if divisor is zero or if operation // is 0x80000000_00000000 / -1. int64_t alu_out = (rb_val == 0 || (ra_val == kMinLongLong && rb_val == -1)) ? -1 : ra_val / rb_val; set_register(rt, alu_out); if (instr->Bit(0)) { // RC bit set SetCR0(alu_out); } // todo - handle OE bit break; } case DIVDU: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); uint64_t ra_val = get_register(ra); uint64_t rb_val = get_register(rb); // result is undefined if divisor is zero uint64_t alu_out = (rb_val == 0) ? -1 : ra_val / rb_val; set_register(rt, alu_out); if (instr->Bit(0)) { // RC bit set SetCR0(alu_out); } // todo - handle OE bit break; } #endif case ADDX: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); // int oe = instr->Bit(10); intptr_t ra_val = get_register(ra); intptr_t rb_val = get_register(rb); intptr_t alu_out = ra_val + rb_val; set_register(rt, alu_out); if (instr->Bit(0)) { // RC bit set SetCR0(alu_out); } // todo - handle OE bit break; } case XORX: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t rs_val = get_register(rs); intptr_t rb_val = get_register(rb); intptr_t alu_out = rs_val ^ rb_val; set_register(ra, alu_out); if (instr->Bit(0)) { // RC bit set SetCR0(alu_out); } break; } case ORX: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t rs_val = get_register(rs); intptr_t rb_val = get_register(rb); intptr_t alu_out = rs_val | rb_val; set_register(ra, alu_out); if (instr->Bit(0)) { // RC bit set SetCR0(alu_out); } break; } case ORC: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t rs_val = get_register(rs); intptr_t rb_val = get_register(rb); intptr_t alu_out = rs_val | ~rb_val; set_register(ra, alu_out); if (instr->Bit(0)) { // RC bit set SetCR0(alu_out); } break; } case MFSPR: { int rt = instr->RTValue(); int spr = instr->Bits(20, 11); if (spr != 256) { UNIMPLEMENTED(); // Only LRLR supported } set_register(rt, special_reg_lr_); break; } case MTSPR: { int rt = instr->RTValue(); intptr_t rt_val = get_register(rt); int spr = instr->Bits(20, 11); if (spr == 256) { special_reg_lr_ = rt_val; } else if (spr == 288) { special_reg_ctr_ = rt_val; } else if (spr == 32) { special_reg_xer_ = rt_val; } else { UNIMPLEMENTED(); // Only LR supported } break; } case MFCR: { int rt = instr->RTValue(); set_register(rt, condition_reg_); break; } case STWUX: case STWX: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); int32_t rs_val = get_register(rs); intptr_t rb_val = get_register(rb); WriteW(ra_val + rb_val, rs_val); if (opcode == STWUX) { DCHECK_NE(ra, 0); set_register(ra, ra_val + rb_val); } break; } case STBUX: case STBX: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); int8_t rs_val = get_register(rs); intptr_t rb_val = get_register(rb); WriteB(ra_val + rb_val, rs_val); if (opcode == STBUX) { DCHECK_NE(ra, 0); set_register(ra, ra_val + rb_val); } break; } case STHUX: case STHX: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); int16_t rs_val = get_register(rs); intptr_t rb_val = get_register(rb); WriteH(ra_val + rb_val, rs_val); if (opcode == STHUX) { DCHECK_NE(ra, 0); set_register(ra, ra_val + rb_val); } break; } case LWZX: case LWZUX: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); intptr_t rb_val = get_register(rb); set_register(rt, ReadWU(ra_val + rb_val)); if (opcode == LWZUX) { DCHECK(ra != 0 && ra != rt); set_register(ra, ra_val + rb_val); } break; } #if V8_TARGET_ARCH_PPC64 case LWAX: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); intptr_t rb_val = get_register(rb); set_register(rt, ReadW(ra_val + rb_val)); break; } case LDX: case LDUX: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); intptr_t rb_val = get_register(rb); intptr_t result = ReadDW(ra_val + rb_val); set_register(rt, result); if (opcode == LDUX) { DCHECK(ra != 0 && ra != rt); set_register(ra, ra_val + rb_val); } break; } case LDBRX: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); intptr_t rb_val = get_register(rb); intptr_t result = ByteReverse<int64_t>(ReadDW(ra_val + rb_val)); set_register(rt, result); break; } case LWBRX: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); intptr_t rb_val = get_register(rb); intptr_t result = ByteReverse<int32_t>(ReadW(ra_val + rb_val)); set_register(rt, result); break; } case STDBRX: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); intptr_t rs_val = get_register(rs); intptr_t rb_val = get_register(rb); WriteDW(ra_val + rb_val, ByteReverse<int64_t>(rs_val)); break; } case STWBRX: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); intptr_t rs_val = get_register(rs); intptr_t rb_val = get_register(rb); WriteW(ra_val + rb_val, ByteReverse<int32_t>(rs_val)); break; } case STHBRX: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); intptr_t rs_val = get_register(rs); intptr_t rb_val = get_register(rb); WriteH(ra_val + rb_val, ByteReverse<int16_t>(rs_val)); break; } case STDX: case STDUX: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); intptr_t rs_val = get_register(rs); intptr_t rb_val = get_register(rb); WriteDW(ra_val + rb_val, rs_val); if (opcode == STDUX) { DCHECK_NE(ra, 0); set_register(ra, ra_val + rb_val); } break; } #endif case LBZX: case LBZUX: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); intptr_t rb_val = get_register(rb); set_register(rt, ReadBU(ra_val + rb_val) & 0xFF); if (opcode == LBZUX) { DCHECK(ra != 0 && ra != rt); set_register(ra, ra_val + rb_val); } break; } case LHZX: case LHZUX: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); intptr_t rb_val = get_register(rb); set_register(rt, ReadHU(ra_val + rb_val) & 0xFFFF); if (opcode == LHZUX) { DCHECK(ra != 0 && ra != rt); set_register(ra, ra_val + rb_val); } break; } case LHAX: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); intptr_t rb_val = get_register(rb); set_register(rt, ReadH(ra_val + rb_val)); break; } case LBARX: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); intptr_t rb_val = get_register(rb); set_register(rt, ReadExBU(ra_val + rb_val) & 0xFF); break; } case LHARX: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); intptr_t rb_val = get_register(rb); set_register(rt, ReadExHU(ra_val + rb_val)); break; } case LWARX: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); intptr_t rb_val = get_register(rb); set_register(rt, ReadExWU(ra_val + rb_val)); break; } case LDARX: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); intptr_t rb_val = get_register(rb); set_register(rt, ReadExDWU(ra_val + rb_val)); break; } case DCBF: { // todo - simulate dcbf break; } case ISEL: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); int condition_bit = instr->RCValue(); int condition_mask = 0x80000000 >> condition_bit; intptr_t ra_val = (ra == 0) ? 0 : get_register(ra); intptr_t rb_val = get_register(rb); intptr_t value = (condition_reg_ & condition_mask) ? ra_val : rb_val; set_register(rt, value); break; } case STBU: case STB: { int ra = instr->RAValue(); int rs = instr->RSValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); int8_t rs_val = get_register(rs); int offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); WriteB(ra_val + offset, rs_val); if (opcode == STBU) { DCHECK_NE(ra, 0); set_register(ra, ra_val + offset); } break; } case LHZU: case LHZ: { int ra = instr->RAValue(); int rt = instr->RTValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); int offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); uintptr_t result = ReadHU(ra_val + offset) & 0xFFFF; set_register(rt, result); if (opcode == LHZU) { set_register(ra, ra_val + offset); } break; } case LHA: case LHAU: { int ra = instr->RAValue(); int rt = instr->RTValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); int offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); intptr_t result = ReadH(ra_val + offset); set_register(rt, result); if (opcode == LHAU) { set_register(ra, ra_val + offset); } break; } case STHU: case STH: { int ra = instr->RAValue(); int rs = instr->RSValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); int16_t rs_val = get_register(rs); int offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); WriteH(ra_val + offset, rs_val); if (opcode == STHU) { DCHECK_NE(ra, 0); set_register(ra, ra_val + offset); } break; } case LMW: case STMW: { UNIMPLEMENTED(); } case LFSU: case LFS: { int frt = instr->RTValue(); int ra = instr->RAValue(); int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); int32_t val = ReadW(ra_val + offset); float* fptr = reinterpret_cast<float*>(&val); #if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64 // Conversion using double changes sNan to qNan on ia32/x64 if ((val & 0x7F800000) == 0x7F800000) { int64_t dval = static_cast<int64_t>(val); dval = ((dval & 0xC0000000) << 32) | ((dval & 0x40000000) << 31) | ((dval & 0x40000000) << 30) | ((dval & 0x7FFFFFFF) << 29) | 0x0; set_d_register(frt, dval); } else { set_d_register_from_double(frt, static_cast<double>(*fptr)); } #else set_d_register_from_double(frt, static_cast<double>(*fptr)); #endif if (opcode == LFSU) { DCHECK_NE(ra, 0); set_register(ra, ra_val + offset); } break; } case LFDU: case LFD: { int frt = instr->RTValue(); int ra = instr->RAValue(); int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); int64_t dptr = ReadDW(ra_val + offset); set_d_register(frt, dptr); if (opcode == LFDU) { DCHECK_NE(ra, 0); set_register(ra, ra_val + offset); } break; } case STFSU: V8_FALLTHROUGH; case STFS: { int frs = instr->RSValue(); int ra = instr->RAValue(); int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); float frs_val = static_cast<float>(get_double_from_d_register(frs)); int32_t* p; #if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64 // Conversion using double changes sNan to qNan on ia32/x64 int32_t sval = 0; int64_t dval = get_d_register(frs); if ((dval & 0x7FF0000000000000) == 0x7FF0000000000000) { sval = ((dval & 0xC000000000000000) >> 32) | ((dval & 0x07FFFFFFE0000000) >> 29); p = &sval; } else { p = reinterpret_cast<int32_t*>(&frs_val); } #else p = reinterpret_cast<int32_t*>(&frs_val); #endif WriteW(ra_val + offset, *p); if (opcode == STFSU) { DCHECK_NE(ra, 0); set_register(ra, ra_val + offset); } break; } case STFDU: case STFD: { int frs = instr->RSValue(); int ra = instr->RAValue(); int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); int64_t frs_val = get_d_register(frs); WriteDW(ra_val + offset, frs_val); if (opcode == STFDU) { DCHECK_NE(ra, 0); set_register(ra, ra_val + offset); } break; } case BRW: { constexpr int kBitsPerWord = 32; int rs = instr->RSValue(); int ra = instr->RAValue(); uint64_t rs_val = get_register(rs); uint32_t rs_high = rs_val >> kBitsPerWord; uint32_t rs_low = (rs_val << kBitsPerWord) >> kBitsPerWord; uint64_t result = ByteReverse<int32_t>(rs_high); result = (result << kBitsPerWord) | ByteReverse<int32_t>(rs_low); set_register(ra, result); break; } case BRD: { int rs = instr->RSValue(); int ra = instr->RAValue(); uint64_t rs_val = get_register(rs); set_register(ra, ByteReverse<int64_t>(rs_val)); break; } case FCFIDS: { // fcfids int frt = instr->RTValue(); int frb = instr->RBValue(); int64_t frb_val = get_d_register(frb); double frt_val = static_cast<float>(frb_val); set_d_register_from_double(frt, frt_val); return; } case FCFIDUS: { // fcfidus int frt = instr->RTValue(); int frb = instr->RBValue(); uint64_t frb_val = get_d_register(frb); double frt_val = static_cast<float>(frb_val); set_d_register_from_double(frt, frt_val); return; } case FDIV: { int frt = instr->RTValue(); int fra = instr->RAValue(); int frb = instr->RBValue(); double fra_val = get_double_from_d_register(fra); double frb_val = get_double_from_d_register(frb); double frt_val = fra_val / frb_val; set_d_register_from_double(frt, frt_val); return; } case FSUB: { int frt = instr->RTValue(); int fra = instr->RAValue(); int frb = instr->RBValue(); double fra_val = get_double_from_d_register(fra); double frb_val = get_double_from_d_register(frb); double frt_val = fra_val - frb_val; set_d_register_from_double(frt, frt_val); return; } case FADD: { int frt = instr->RTValue(); int fra = instr->RAValue(); int frb = instr->RBValue(); double fra_val = get_double_from_d_register(fra); double frb_val = get_double_from_d_register(frb); double frt_val = fra_val + frb_val; set_d_register_from_double(frt, frt_val); return; } case FSQRT: { int frt = instr->RTValue(); int frb = instr->RBValue(); double frb_val = get_double_from_d_register(frb); double frt_val = std::sqrt(frb_val); set_d_register_from_double(frt, frt_val); return; } case FSEL: { int frt = instr->RTValue(); int fra = instr->RAValue(); int frb = instr->RBValue(); int frc = instr->RCValue(); double fra_val = get_double_from_d_register(fra); double frb_val = get_double_from_d_register(frb); double frc_val = get_double_from_d_register(frc); double frt_val = ((fra_val >= 0.0) ? frc_val : frb_val); set_d_register_from_double(frt, frt_val); return; } case FMUL: { int frt = instr->RTValue(); int fra = instr->RAValue(); int frc = instr->RCValue(); double fra_val = get_double_from_d_register(fra); double frc_val = get_double_from_d_register(frc); double frt_val = fra_val * frc_val; set_d_register_from_double(frt, frt_val); return; } case FMSUB: { int frt = instr->RTValue(); int fra = instr->RAValue(); int frb = instr->RBValue(); int frc = instr->RCValue(); double fra_val = get_double_from_d_register(fra); double frb_val = get_double_from_d_register(frb); double frc_val = get_double_from_d_register(frc); double frt_val = (fra_val * frc_val) - frb_val; set_d_register_from_double(frt, frt_val); return; } case FMADD: { int frt = instr->RTValue(); int fra = instr->RAValue(); int frb = instr->RBValue(); int frc = instr->RCValue(); double fra_val = get_double_from_d_register(fra); double frb_val = get_double_from_d_register(frb); double frc_val = get_double_from_d_register(frc); double frt_val = (fra_val * frc_val) + frb_val; set_d_register_from_double(frt, frt_val); return; } case FCMPU: { int fra = instr->RAValue(); int frb = instr->RBValue(); double fra_val = get_double_from_d_register(fra); double frb_val = get_double_from_d_register(frb); int cr = instr->Bits(25, 23); int bf = 0; if (fra_val < frb_val) { bf |= 0x80000000; } if (fra_val > frb_val) { bf |= 0x40000000; } if (fra_val == frb_val) { bf |= 0x20000000; } if (std::isunordered(fra_val, frb_val)) { bf |= 0x10000000; } int condition_mask = 0xF0000000 >> (cr * 4); int condition = bf >> (cr * 4); condition_reg_ = (condition_reg_ & ~condition_mask) | condition; return; } case FRIN: { int frt = instr->RTValue(); int frb = instr->RBValue(); double frb_val = get_double_from_d_register(frb); double frt_val = std::round(frb_val); set_d_register_from_double(frt, frt_val); if (instr->Bit(0)) { // RC bit set // UNIMPLEMENTED(); } return; } case FRIZ: { int frt = instr->RTValue(); int frb = instr->RBValue(); double frb_val = get_double_from_d_register(frb); double frt_val = std::trunc(frb_val); set_d_register_from_double(frt, frt_val); if (instr->Bit(0)) { // RC bit set // UNIMPLEMENTED(); } return; } case FRIP: { int frt = instr->RTValue(); int frb = instr->RBValue(); double frb_val = get_double_from_d_register(frb); double frt_val = std::ceil(frb_val); set_d_register_from_double(frt, frt_val); if (instr->Bit(0)) { // RC bit set // UNIMPLEMENTED(); } return; } case FRIM: { int frt = instr->RTValue(); int frb = instr->RBValue(); double frb_val = get_double_from_d_register(frb); double frt_val = std::floor(frb_val); set_d_register_from_double(frt, frt_val); if (instr->Bit(0)) { // RC bit set // UNIMPLEMENTED(); } return; } case FRSP: { int frt = instr->RTValue(); int frb = instr->RBValue(); // frsp round 8-byte double-precision value to // single-precision value double frb_val = get_double_from_d_register(frb); double frt_val = static_cast<float>(frb_val); set_d_register_from_double(frt, frt_val); if (instr->Bit(0)) { // RC bit set // UNIMPLEMENTED(); } return; } case FCFID: { int frt = instr->RTValue(); int frb = instr->RBValue(); int64_t frb_val = get_d_register(frb); double frt_val = static_cast<double>(frb_val); set_d_register_from_double(frt, frt_val); return; } case FCFIDU: { int frt = instr->RTValue(); int frb = instr->RBValue(); uint64_t frb_val = get_d_register(frb); double frt_val = static_cast<double>(frb_val); set_d_register_from_double(frt, frt_val); return; } case FCTID: case FCTIDZ: { int frt = instr->RTValue(); int frb = instr->RBValue(); double frb_val = get_double_from_d_register(frb); int mode = (opcode == FCTIDZ) ? kRoundToZero : (fp_condition_reg_ & kFPRoundingModeMask); int64_t frt_val; int64_t one = 1; // work-around gcc int64_t kMinVal = (one << 63); int64_t kMaxVal = kMinVal - 1; bool invalid_convert = false; if (std::isnan(frb_val)) { frt_val = kMinVal; invalid_convert = true; } else { switch (mode) { case kRoundToZero: frb_val = std::trunc(frb_val); break; case kRoundToPlusInf: frb_val = std::ceil(frb_val); break; case kRoundToMinusInf: frb_val = std::floor(frb_val); break; default: UNIMPLEMENTED(); // Not used by V8. } if (frb_val < static_cast<double>(kMinVal)) { frt_val = kMinVal; invalid_convert = true; } else if (frb_val >= static_cast<double>(kMaxVal)) { frt_val = kMaxVal; invalid_convert = true; } else { frt_val = (int64_t)frb_val; } } set_d_register(frt, frt_val); if (invalid_convert) SetFPSCR(VXCVI); return; } case FCTIDU: case FCTIDUZ: { int frt = instr->RTValue(); int frb = instr->RBValue(); double frb_val = get_double_from_d_register(frb); int mode = (opcode == FCTIDUZ) ? kRoundToZero : (fp_condition_reg_ & kFPRoundingModeMask); uint64_t frt_val; uint64_t kMinVal = 0; uint64_t kMaxVal = kMinVal - 1; bool invalid_convert = false; if (std::isnan(frb_val)) { frt_val = kMinVal; invalid_convert = true; } else { switch (mode) { case kRoundToZero: frb_val = std::trunc(frb_val); break; case kRoundToPlusInf: frb_val = std::ceil(frb_val); break; case kRoundToMinusInf: frb_val = std::floor(frb_val); break; default: UNIMPLEMENTED(); // Not used by V8. } if (frb_val < static_cast<double>(kMinVal)) { frt_val = kMinVal; invalid_convert = true; } else if (frb_val >= static_cast<double>(kMaxVal)) { frt_val = kMaxVal; invalid_convert = true; } else { frt_val = (uint64_t)frb_val; } } set_d_register(frt, frt_val); if (invalid_convert) SetFPSCR(VXCVI); return; } case FCTIW: case FCTIWZ: { int frt = instr->RTValue(); int frb = instr->RBValue(); double frb_val = get_double_from_d_register(frb); int mode = (opcode == FCTIWZ) ? kRoundToZero : (fp_condition_reg_ & kFPRoundingModeMask); int64_t frt_val; int64_t kMinVal = kMinInt; int64_t kMaxVal = kMaxInt; bool invalid_convert = false; if (std::isnan(frb_val)) { frt_val = kMinVal; } else { switch (mode) { case kRoundToZero: frb_val = std::trunc(frb_val); break; case kRoundToPlusInf: frb_val = std::ceil(frb_val); break; case kRoundToMinusInf: frb_val = std::floor(frb_val); break; case kRoundToNearest: { double orig = frb_val; frb_val = lround(frb_val); // Round to even if exactly halfway. (lround rounds up) if (std::fabs(frb_val - orig) == 0.5 && ((int64_t)frb_val % 2)) { frb_val += ((frb_val > 0) ? -1.0 : 1.0); } break; } default: UNIMPLEMENTED(); // Not used by V8. } if (frb_val < kMinVal) { frt_val = kMinVal; invalid_convert = true; } else if (frb_val > kMaxVal) { frt_val = kMaxVal; invalid_convert = true; } else { frt_val = (int64_t)frb_val; } } set_d_register(frt, frt_val); if (invalid_convert) SetFPSCR(VXCVI); return; } case FCTIWU: case FCTIWUZ: { int frt = instr->RTValue(); int frb = instr->RBValue(); double frb_val = get_double_from_d_register(frb); int mode = (opcode == FCTIWUZ) ? kRoundToZero : (fp_condition_reg_ & kFPRoundingModeMask); uint64_t frt_val; uint64_t kMinVal = kMinUInt32; uint64_t kMaxVal = kMaxUInt32; bool invalid_convert = false; if (std::isnan(frb_val)) { frt_val = kMinVal; } else { switch (mode) { case kRoundToZero: frb_val = std::trunc(frb_val); break; case kRoundToPlusInf: frb_val = std::ceil(frb_val); break; case kRoundToMinusInf: frb_val = std::floor(frb_val); break; default: UNIMPLEMENTED(); // Not used by V8. } if (frb_val < kMinVal) { frt_val = kMinVal; invalid_convert = true; } else if (frb_val > kMaxVal) { frt_val = kMaxVal; invalid_convert = true; } else { frt_val = (uint64_t)frb_val; } } set_d_register(frt, frt_val); if (invalid_convert) SetFPSCR(VXCVI); return; } case FNEG: { int frt = instr->RTValue(); int frb = instr->RBValue(); double frb_val = get_double_from_d_register(frb); double frt_val = -frb_val; set_d_register_from_double(frt, frt_val); return; } case FCPSGN: { int frt = instr->RTValue(); int frb = instr->RBValue(); int fra = instr->RAValue(); double frb_val = get_double_from_d_register(frb); double fra_val = get_double_from_d_register(fra); double frt_val = std::copysign(frb_val, fra_val); set_d_register_from_double(frt, frt_val); return; } case FMR: { int frt = instr->RTValue(); int frb = instr->RBValue(); int64_t frb_val = get_d_register(frb); set_d_register(frt, frb_val); return; } case MTFSFI: { int bf = instr->Bits(25, 23); int imm = instr->Bits(15, 12); int fp_condition_mask = 0xF0000000 >> (bf * 4); fp_condition_reg_ &= ~fp_condition_mask; fp_condition_reg_ |= (imm << (28 - (bf * 4))); if (instr->Bit(0)) { // RC bit set condition_reg_ &= 0xF0FFFFFF; condition_reg_ |= (imm << 23); } return; } case MTFSF: { int frb = instr->RBValue(); int64_t frb_dval = get_d_register(frb); int32_t frb_ival = static_cast<int32_t>((frb_dval)&0xFFFFFFFF); int l = instr->Bits(25, 25); if (l == 1) { fp_condition_reg_ = frb_ival; } else { UNIMPLEMENTED(); } if (instr->Bit(0)) { // RC bit set UNIMPLEMENTED(); // int w = instr->Bits(16, 16); // int flm = instr->Bits(24, 17); } return; } case MFFS: { int frt = instr->RTValue(); int64_t lval = static_cast<int64_t>(fp_condition_reg_); set_d_register(frt, lval); return; } case MCRFS: { int bf = instr->Bits(25, 23); int bfa = instr->Bits(20, 18); int cr_shift = (7 - bf) * CRWIDTH; int fp_shift = (7 - bfa) * CRWIDTH; int field_val = (fp_condition_reg_ >> fp_shift) & 0xF; condition_reg_ &= ~(0x0F << cr_shift); condition_reg_ |= (field_val << cr_shift); // Clear copied exception bits switch (bfa) { case 5: ClearFPSCR(VXSOFT); ClearFPSCR(VXSQRT); ClearFPSCR(VXCVI); break; default: UNIMPLEMENTED(); } return; } case MTFSB0: { int bt = instr->Bits(25, 21); ClearFPSCR(bt); if (instr->Bit(0)) { // RC bit set UNIMPLEMENTED(); } return; } case MTFSB1: { int bt = instr->Bits(25, 21); SetFPSCR(bt); if (instr->Bit(0)) { // RC bit set UNIMPLEMENTED(); } return; } case FABS: { int frt = instr->RTValue(); int frb = instr->RBValue(); double frb_val = get_double_from_d_register(frb); double frt_val = std::fabs(frb_val); set_d_register_from_double(frt, frt_val); return; } #if V8_TARGET_ARCH_PPC64 case RLDICL: { int ra = instr->RAValue(); int rs = instr->RSValue(); uintptr_t rs_val = get_register(rs); int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5)); int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5)); DCHECK(sh >= 0 && sh <= 63); DCHECK(mb >= 0 && mb <= 63); uintptr_t result = base::bits::RotateLeft64(rs_val, sh); uintptr_t mask = 0xFFFFFFFFFFFFFFFF >> mb; result &= mask; set_register(ra, result); if (instr->Bit(0)) { // RC bit set SetCR0(result); } return; } case RLDICR: { int ra = instr->RAValue(); int rs = instr->RSValue(); uintptr_t rs_val = get_register(rs); int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5)); int me = (instr->Bits(10, 6) | (instr->Bit(5) << 5)); DCHECK(sh >= 0 && sh <= 63); DCHECK(me >= 0 && me <= 63); uintptr_t result = base::bits::RotateLeft64(rs_val, sh); uintptr_t mask = 0xFFFFFFFFFFFFFFFF << (63 - me); result &= mask; set_register(ra, result); if (instr->Bit(0)) { // RC bit set SetCR0(result); } return; } case RLDIC: { int ra = instr->RAValue(); int rs = instr->RSValue(); uintptr_t rs_val = get_register(rs); int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5)); int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5)); DCHECK(sh >= 0 && sh <= 63); DCHECK(mb >= 0 && mb <= 63); uintptr_t result = base::bits::RotateLeft64(rs_val, sh); uintptr_t mask = (0xFFFFFFFFFFFFFFFF >> mb) & (0xFFFFFFFFFFFFFFFF << sh); result &= mask; set_register(ra, result); if (instr->Bit(0)) { // RC bit set SetCR0(result); } return; } case RLDIMI: { int ra = instr->RAValue(); int rs = instr->RSValue(); uintptr_t rs_val = get_register(rs); intptr_t ra_val = get_register(ra); int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5)); int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5)); int me = 63 - sh; uintptr_t result = base::bits::RotateLeft64(rs_val, sh); uintptr_t mask = 0; if (mb < me + 1) { uintptr_t bit = 0x8000000000000000 >> mb; for (; mb <= me; mb++) { mask |= bit; bit >>= 1; } } else if (mb == me + 1) { mask = 0xFFFFFFFFFFFFFFFF; } else { // mb > me+1 uintptr_t bit = 0x8000000000000000 >> (me + 1); // needs to be tested mask = 0xFFFFFFFFFFFFFFFF; for (; me < mb; me++) { mask ^= bit; bit >>= 1; } } result &= mask; ra_val &= ~mask; result |= ra_val; set_register(ra, result); if (instr->Bit(0)) { // RC bit set SetCR0(result); } return; } case RLDCL: { int ra = instr->RAValue(); int rs = instr->RSValue(); int rb = instr->RBValue(); uintptr_t rs_val = get_register(rs); uintptr_t rb_val = get_register(rb); int sh = (rb_val & 0x3F); int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5)); DCHECK(sh >= 0 && sh <= 63); DCHECK(mb >= 0 && mb <= 63); uintptr_t result = base::bits::RotateLeft64(rs_val, sh); uintptr_t mask = 0xFFFFFFFFFFFFFFFF >> mb; result &= mask; set_register(ra, result); if (instr->Bit(0)) { // RC bit set SetCR0(result); } return; } case LD: case LDU: case LWA: { int ra = instr->RAValue(); int rt = instr->RTValue(); int64_t ra_val = ra == 0 ? 0 : get_register(ra); int offset = SIGN_EXT_IMM16(instr->Bits(15, 0) & ~3); switch (instr->Bits(1, 0)) { case 0: { // ld intptr_t result = ReadDW(ra_val + offset); set_register(rt, result); break; } case 1: { // ldu intptr_t result = ReadDW(ra_val + offset); set_register(rt, result); DCHECK_NE(ra, 0); set_register(ra, ra_val + offset); break; } case 2: { // lwa intptr_t result = ReadW(ra_val + offset); set_register(rt, result); break; } } break; } case STD: case STDU: { int ra = instr->RAValue(); int rs = instr->RSValue(); int64_t ra_val = ra == 0 ? 0 : get_register(ra); int64_t rs_val = get_register(rs); int offset = SIGN_EXT_IMM16(instr->Bits(15, 0) & ~3); WriteDW(ra_val + offset, rs_val); if (opcode == STDU) { DCHECK_NE(ra, 0); set_register(ra, ra_val + offset); } break; } #endif case XSADDDP: { int frt = instr->RTValue(); int fra = instr->RAValue(); int frb = instr->RBValue(); double fra_val = get_double_from_d_register(fra); double frb_val = get_double_from_d_register(frb); double frt_val = fra_val + frb_val; set_d_register_from_double(frt, frt_val); return; } case XSSUBDP: { int frt = instr->RTValue(); int fra = instr->RAValue(); int frb = instr->RBValue(); double fra_val = get_double_from_d_register(fra); double frb_val = get_double_from_d_register(frb); double frt_val = fra_val - frb_val; set_d_register_from_double(frt, frt_val); return; } case XSMULDP: { int frt = instr->RTValue(); int fra = instr->RAValue(); int frb = instr->RBValue(); double fra_val = get_double_from_d_register(fra); double frb_val = get_double_from_d_register(frb); double frt_val = fra_val * frb_val; set_d_register_from_double(frt, frt_val); return; } case XSDIVDP: { int frt = instr->RTValue(); int fra = instr->RAValue(); int frb = instr->RBValue(); double fra_val = get_double_from_d_register(fra); double frb_val = get_double_from_d_register(frb); double frt_val = fra_val / frb_val; set_d_register_from_double(frt, frt_val); return; } case MTCRF: { int rs = instr->RSValue(); uint32_t rs_val = static_cast<int32_t>(get_register(rs)); uint8_t fxm = instr->Bits(19, 12); uint8_t bit_mask = 0x80; const int field_bit_count = 4; const int max_field_index = 7; uint32_t result = 0; for (int i = 0; i <= max_field_index; i++) { result <<= field_bit_count; uint32_t source = condition_reg_; if ((bit_mask & fxm) != 0) { // take it from rs. source = rs_val; } result |= ((source << i * field_bit_count) >> i * field_bit_count) >> (max_field_index - i) * field_bit_count; bit_mask >>= 1; } condition_reg_ = result; break; } // Vector instructions. case LVX: { DECODE_VX_INSTRUCTION(vrt, ra, rb, T) GET_ADDRESS(ra, rb, ra_val, rb_val) intptr_t addr = (ra_val + rb_val) & 0xFFFFFFFFFFFFFFF0; simdr_t* ptr = reinterpret_cast<simdr_t*>(addr); set_simd_register(vrt, *ptr); break; } case STVX: { DECODE_VX_INSTRUCTION(vrs, ra, rb, S) GET_ADDRESS(ra, rb, ra_val, rb_val) __int128 vrs_val = base::bit_cast<__int128>(get_simd_register(vrs).int8); WriteQW((ra_val + rb_val) & 0xFFFFFFFFFFFFFFF0, vrs_val); break; } case LXVD: { DECODE_VX_INSTRUCTION(xt, ra, rb, T) GET_ADDRESS(ra, rb, ra_val, rb_val) set_simd_register_by_lane<int64_t>(xt, 0, ReadDW(ra_val + rb_val)); set_simd_register_by_lane<int64_t>( xt, 1, ReadDW(ra_val + rb_val + kSystemPointerSize)); break; } case LXVX: { DECODE_VX_INSTRUCTION(vrt, ra, rb, T) GET_ADDRESS(ra, rb, ra_val, rb_val) intptr_t addr = ra_val + rb_val; simdr_t* ptr = reinterpret_cast<simdr_t*>(addr); set_simd_register(vrt, *ptr); break; } case STXVD: { DECODE_VX_INSTRUCTION(xs, ra, rb, S) GET_ADDRESS(ra, rb, ra_val, rb_val) WriteDW(ra_val + rb_val, get_simd_register_by_lane<int64_t>(xs, 0)); WriteDW(ra_val + rb_val + kSystemPointerSize, get_simd_register_by_lane<int64_t>(xs, 1)); break; } case STXVX: { DECODE_VX_INSTRUCTION(vrs, ra, rb, S) GET_ADDRESS(ra, rb, ra_val, rb_val) intptr_t addr = ra_val + rb_val; __int128 vrs_val = base::bit_cast<__int128>(get_simd_register(vrs).int8); WriteQW(addr, vrs_val); break; } case LXSIBZX: { DECODE_VX_INSTRUCTION(xt, ra, rb, T) GET_ADDRESS(ra, rb, ra_val, rb_val) set_simd_register_by_lane<uint64_t>(xt, 0, ReadBU(ra_val + rb_val)); break; } case LXSIHZX: { DECODE_VX_INSTRUCTION(xt, ra, rb, T) GET_ADDRESS(ra, rb, ra_val, rb_val) set_simd_register_by_lane<uint64_t>(xt, 0, ReadHU(ra_val + rb_val)); break; } case LXSIWZX: { DECODE_VX_INSTRUCTION(xt, ra, rb, T) GET_ADDRESS(ra, rb, ra_val, rb_val) set_simd_register_by_lane<uint64_t>(xt, 0, ReadWU(ra_val + rb_val)); break; } case LXSDX: { DECODE_VX_INSTRUCTION(xt, ra, rb, T) GET_ADDRESS(ra, rb, ra_val, rb_val) set_simd_register_by_lane<int64_t>(xt, 0, ReadDW(ra_val + rb_val)); break; } case STXSIBX: { DECODE_VX_INSTRUCTION(xs, ra, rb, S) GET_ADDRESS(ra, rb, ra_val, rb_val) WriteB(ra_val + rb_val, get_simd_register_by_lane<int8_t>(xs, 7)); break; } case STXSIHX: { DECODE_VX_INSTRUCTION(xs, ra, rb, S) GET_ADDRESS(ra, rb, ra_val, rb_val) WriteH(ra_val + rb_val, get_simd_register_by_lane<int16_t>(xs, 3)); break; } case STXSIWX: { DECODE_VX_INSTRUCTION(xs, ra, rb, S) GET_ADDRESS(ra, rb, ra_val, rb_val) WriteW(ra_val + rb_val, get_simd_register_by_lane<int32_t>(xs, 1)); break; } case STXSDX: { DECODE_VX_INSTRUCTION(xs, ra, rb, S) GET_ADDRESS(ra, rb, ra_val, rb_val) WriteDW(ra_val + rb_val, get_simd_register_by_lane<int64_t>(xs, 0)); break; } case XXBRQ: { int t = instr->RTValue(); int b = instr->RBValue(); __int128 xb_val = base::bit_cast<__int128>(get_simd_register(b).int8); __int128 xb_val_reversed = __builtin_bswap128(xb_val); simdr_t simdr_xb = base::bit_cast<simdr_t>(xb_val_reversed); set_simd_register(t, simdr_xb); break; } #define VSPLT(type) \ uint8_t uim = instr->Bits(19, 16); \ int vrt = instr->RTValue(); \ int vrb = instr->RBValue(); \ type value = get_simd_register_by_lane<type>(vrb, uim); \ FOR_EACH_LANE(i, type) { set_simd_register_by_lane<type>(vrt, i, value); } case VSPLTW: { VSPLT(int32_t) break; } case VSPLTH: { VSPLT(int16_t) break; } case VSPLTB: { VSPLT(int8_t) break; } case XXSPLTIB: { int8_t imm8 = instr->Bits(18, 11); int t = instr->RTValue(); FOR_EACH_LANE(i, int8_t) { set_simd_register_by_lane<int8_t>(t, i, imm8); } break; } #undef VSPLT #define VSPLTI(type) \ type sim = static_cast<type>(SIGN_EXT_IMM5(instr->Bits(20, 16))); \ int vrt = instr->RTValue(); \ FOR_EACH_LANE(i, type) { set_simd_register_by_lane<type>(vrt, i, sim); } case VSPLTISW: { VSPLTI(int32_t) break; } case VSPLTISH: { VSPLTI(int16_t) break; } case VSPLTISB: { VSPLTI(int8_t) break; } #undef VSPLTI #define VINSERT(type, element) \ uint8_t uim = instr->Bits(19, 16); \ int vrt = instr->RTValue(); \ int vrb = instr->RBValue(); \ set_simd_register_bytes<type>( \ vrt, uim, get_simd_register_by_lane<type>(vrb, element)); case VINSERTD: { VINSERT(int64_t, 0) break; } case VINSERTW: { VINSERT(int32_t, 1) break; } case VINSERTH: { VINSERT(int16_t, 3) break; } case VINSERTB: { VINSERT(int8_t, 7) break; } #undef VINSERT #define VINSERT_IMMEDIATE(type) \ uint8_t uim = instr->Bits(19, 16); \ int vrt = instr->RTValue(); \ int rb = instr->RBValue(); \ type src = static_cast<type>(get_register(rb)); \ set_simd_register_bytes<type>(vrt, uim, src); case VINSD: { VINSERT_IMMEDIATE(int64_t) break; } case VINSW: { VINSERT_IMMEDIATE(int32_t) break; } #undef VINSERT_IMMEDIATE #define VEXTRACT(type, element) \ uint8_t uim = instr->Bits(19, 16); \ int vrt = instr->RTValue(); \ int vrb = instr->RBValue(); \ type val = get_simd_register_bytes<type>(vrb, uim); \ set_simd_register_by_lane<uint64_t>(vrt, 0, 0); \ set_simd_register_by_lane<uint64_t>(vrt, 1, 0); \ set_simd_register_by_lane<type>(vrt, element, val); case VEXTRACTD: { VEXTRACT(uint64_t, 0) break; } case VEXTRACTUW: { VEXTRACT(uint32_t, 1) break; } case VEXTRACTUH: { VEXTRACT(uint16_t, 3) break; } case VEXTRACTUB: { VEXTRACT(uint8_t, 7) break; } #undef VEXTRACT #define VECTOR_LOGICAL_OP(expr) \ DECODE_VX_INSTRUCTION(t, a, b, T) \ FOR_EACH_LANE(i, int64_t) { \ int64_t a_val = get_simd_register_by_lane<int64_t>(a, i); \ int64_t b_val = get_simd_register_by_lane<int64_t>(b, i); \ set_simd_register_by_lane<int64_t>(t, i, expr); \ } case VAND: { VECTOR_LOGICAL_OP(a_val & b_val) break; } case VANDC: { VECTOR_LOGICAL_OP(a_val & (~b_val)) break; } case VOR: { VECTOR_LOGICAL_OP(a_val | b_val) break; } case VNOR: { VECTOR_LOGICAL_OP(~(a_val | b_val)) break; } case VXOR: { VECTOR_LOGICAL_OP(a_val ^ b_val) break; } #undef VECTOR_LOGICAL_OP #define VECTOR_ARITHMETIC_OP(type, op) \ DECODE_VX_INSTRUCTION(t, a, b, T) \ FOR_EACH_LANE(i, type) { \ set_simd_register_by_lane<type>( \ t, i, \ get_simd_register_by_lane<type>(a, i) \ op get_simd_register_by_lane<type>(b, i)); \ } case XVADDDP: { VECTOR_ARITHMETIC_OP(double, +) break; } case XVSUBDP: { VECTOR_ARITHMETIC_OP(double, -) break; } case XVMULDP: { VECTOR_ARITHMETIC_OP(double, *) break; } case XVDIVDP: { VECTOR_ARITHMETIC_OP(double, /) break; } case VADDFP: { VECTOR_ARITHMETIC_OP(float, +) break; } case VSUBFP: { VECTOR_ARITHMETIC_OP(float, -) break; } case XVMULSP: { VECTOR_ARITHMETIC_OP(float, *) break; } case XVDIVSP: { VECTOR_ARITHMETIC_OP(float, /) break; } case VADDUDM: { VECTOR_ARITHMETIC_OP(int64_t, +) break; } case VSUBUDM: { VECTOR_ARITHMETIC_OP(int64_t, -) break; } case VMULLD: { VECTOR_ARITHMETIC_OP(int64_t, *) break; } case VADDUWM: { VECTOR_ARITHMETIC_OP(int32_t, +) break; } case VSUBUWM: { VECTOR_ARITHMETIC_OP(int32_t, -) break; } case VMULUWM: { VECTOR_ARITHMETIC_OP(int32_t, *) break; } case VADDUHM: { VECTOR_ARITHMETIC_OP(int16_t, +) break; } case VSUBUHM: { VECTOR_ARITHMETIC_OP(int16_t, -) break; } case VADDUBM: { VECTOR_ARITHMETIC_OP(int8_t, +) break; } case VSUBUBM: { VECTOR_ARITHMETIC_OP(int8_t, -) break; } #define VECTOR_MULTIPLY_EVEN_ODD(input_type, result_type, is_odd) \ DECODE_VX_INSTRUCTION(t, a, b, T) \ size_t i = 0, j = 0, k = 0; \ size_t lane_size = sizeof(input_type); \ if (is_odd) { \ i = 1; \ j = lane_size; \ } \ for (; j < kSimd128Size; i += 2, j += lane_size * 2, k++) { \ result_type src0 = \ static_cast<result_type>(get_simd_register_by_lane<input_type>(a, i)); \ result_type src1 = \ static_cast<result_type>(get_simd_register_by_lane<input_type>(b, i)); \ set_simd_register_by_lane<result_type>(t, k, src0 * src1); \ } case VMULEUB: { VECTOR_MULTIPLY_EVEN_ODD(uint8_t, uint16_t, false) break; } case VMULESB: { VECTOR_MULTIPLY_EVEN_ODD(int8_t, int16_t, false) break; } case VMULOUB: { VECTOR_MULTIPLY_EVEN_ODD(uint8_t, uint16_t, true) break; } case VMULOSB: { VECTOR_MULTIPLY_EVEN_ODD(int8_t, int16_t, true) break; } case VMULEUH: { VECTOR_MULTIPLY_EVEN_ODD(uint16_t, uint32_t, false) break; } case VMULESH: { VECTOR_MULTIPLY_EVEN_ODD(int16_t, int32_t, false) break; } case VMULOUH: { VECTOR_MULTIPLY_EVEN_ODD(uint16_t, uint32_t, true) break; } case VMULOSH: { VECTOR_MULTIPLY_EVEN_ODD(int16_t, int32_t, true) break; } case VMULEUW: { VECTOR_MULTIPLY_EVEN_ODD(uint32_t, uint64_t, false) break; } case VMULESW: { VECTOR_MULTIPLY_EVEN_ODD(int32_t, int64_t, false) break; } case VMULOUW: { VECTOR_MULTIPLY_EVEN_ODD(uint32_t, uint64_t, true) break; } case VMULOSW: { VECTOR_MULTIPLY_EVEN_ODD(int32_t, int64_t, true) break; } #undef VECTOR_MULTIPLY_EVEN_ODD #define VECTOR_MERGE(type, is_low_side) \ DECODE_VX_INSTRUCTION(t, a, b, T) \ constexpr size_t index_limit = (kSimd128Size / sizeof(type)) / 2; \ for (size_t i = 0, source_index = is_low_side ? i + index_limit : i; \ i < index_limit; i++, source_index++) { \ set_simd_register_by_lane<type>( \ t, 2 * i, get_simd_register_by_lane<type>(a, source_index)); \ set_simd_register_by_lane<type>( \ t, (2 * i) + 1, get_simd_register_by_lane<type>(b, source_index)); \ } case VMRGLW: { VECTOR_MERGE(int32_t, true) break; } case VMRGHW: { VECTOR_MERGE(int32_t, false) break; } case VMRGLH: { VECTOR_MERGE(int16_t, true) break; } case VMRGHH: { VECTOR_MERGE(int16_t, false) break; } #undef VECTOR_MERGE #undef VECTOR_ARITHMETIC_OP #define VECTOR_MIN_MAX_OP(type, op) \ DECODE_VX_INSTRUCTION(t, a, b, T) \ FOR_EACH_LANE(i, type) { \ type a_val = get_simd_register_by_lane<type>(a, i); \ type b_val = get_simd_register_by_lane<type>(b, i); \ set_simd_register_by_lane<type>(t, i, a_val op b_val ? a_val : b_val); \ } case XSMINDP: { DECODE_VX_INSTRUCTION(t, a, b, T) double a_val = get_double_from_d_register(a); double b_val = get_double_from_d_register(b); set_d_register_from_double(t, VSXFPMin<double>(a_val, b_val)); break; } case XSMAXDP: { DECODE_VX_INSTRUCTION(t, a, b, T) double a_val = get_double_from_d_register(a); double b_val = get_double_from_d_register(b); set_d_register_from_double(t, VSXFPMax<double>(a_val, b_val)); break; } case XVMINDP: { DECODE_VX_INSTRUCTION(t, a, b, T) FOR_EACH_LANE(i, double) { double a_val = get_simd_register_by_lane<double>(a, i); double b_val = get_simd_register_by_lane<double>(b, i); set_simd_register_by_lane<double>(t, i, VSXFPMin<double>(a_val, b_val)); } break; } case XVMAXDP: { DECODE_VX_INSTRUCTION(t, a, b, T) FOR_EACH_LANE(i, double) { double a_val = get_simd_register_by_lane<double>(a, i); double b_val = get_simd_register_by_lane<double>(b, i); set_simd_register_by_lane<double>(t, i, VSXFPMax<double>(a_val, b_val)); } break; } case VMINFP: { DECODE_VX_INSTRUCTION(t, a, b, T) FOR_EACH_LANE(i, float) { float a_val = get_simd_register_by_lane<float>(a, i); float b_val = get_simd_register_by_lane<float>(b, i); set_simd_register_by_lane<float>(t, i, VMXFPMin(a_val, b_val)); } break; } case VMAXFP: { DECODE_VX_INSTRUCTION(t, a, b, T) FOR_EACH_LANE(i, float) { float a_val = get_simd_register_by_lane<float>(a, i); float b_val = get_simd_register_by_lane<float>(b, i); set_simd_register_by_lane<float>(t, i, VMXFPMax(a_val, b_val)); } break; } case VMINSD: { VECTOR_MIN_MAX_OP(int64_t, <) break; } case VMINUD: { VECTOR_MIN_MAX_OP(uint64_t, <) break; } case VMINSW: { VECTOR_MIN_MAX_OP(int32_t, <) break; } case VMINUW: { VECTOR_MIN_MAX_OP(uint32_t, <) break; } case VMINSH: { VECTOR_MIN_MAX_OP(int16_t, <) break; } case VMINUH: { VECTOR_MIN_MAX_OP(uint16_t, <) break; } case VMINSB: { VECTOR_MIN_MAX_OP(int8_t, <) break; } case VMINUB: { VECTOR_MIN_MAX_OP(uint8_t, <) break; } case VMAXSD: { VECTOR_MIN_MAX_OP(int64_t, >) break; } case VMAXUD: { VECTOR_MIN_MAX_OP(uint64_t, >) break; } case VMAXSW: { VECTOR_MIN_MAX_OP(int32_t, >) break; } case VMAXUW: { VECTOR_MIN_MAX_OP(uint32_t, >) break; } case VMAXSH: { VECTOR_MIN_MAX_OP(int16_t, >) break; } case VMAXUH: { VECTOR_MIN_MAX_OP(uint16_t, >) break; } case VMAXSB: { VECTOR_MIN_MAX_OP(int8_t, >) break; } case VMAXUB: { VECTOR_MIN_MAX_OP(uint8_t, >) break; } #undef VECTOR_MIN_MAX_OP #define VECTOR_SHIFT_OP(type, op, mask) \ DECODE_VX_INSTRUCTION(t, a, b, T) \ FOR_EACH_LANE(i, type) { \ set_simd_register_by_lane<type>( \ t, i, \ get_simd_register_by_lane<type>(a, i) \ op(get_simd_register_by_lane<type>(b, i) & mask)); \ } case VSLD: { VECTOR_SHIFT_OP(int64_t, <<, 0x3f) break; } case VSRAD: { VECTOR_SHIFT_OP(int64_t, >>, 0x3f) break; } case VSRD: { VECTOR_SHIFT_OP(uint64_t, >>, 0x3f) break; } case VSLW: { VECTOR_SHIFT_OP(int32_t, <<, 0x1f) break; } case VSRAW: { VECTOR_SHIFT_OP(int32_t, >>, 0x1f) break; } case VSRW: { VECTOR_SHIFT_OP(uint32_t, >>, 0x1f) break; } case VSLH: { VECTOR_SHIFT_OP(int16_t, <<, 0xf) break; } case VSRAH: { VECTOR_SHIFT_OP(int16_t, >>, 0xf) break; } case VSRH: { VECTOR_SHIFT_OP(uint16_t, >>, 0xf) break; } case VSLB: { VECTOR_SHIFT_OP(int8_t, <<, 0x7) break; } case VSRAB: { VECTOR_SHIFT_OP(int8_t, >>, 0x7) break; } case VSRB: { VECTOR_SHIFT_OP(uint8_t, >>, 0x7) break; } #undef VECTOR_SHIFT_OP #define VECTOR_COMPARE_OP(type_in, type_out, is_fp, op) \ VectorCompareOp<type_in, type_out>( \ this, instr, is_fp, [](type_in a, type_in b) { return a op b; }); case XVCMPEQDP: { VECTOR_COMPARE_OP(double, int64_t, true, ==) break; } case XVCMPGEDP: { VECTOR_COMPARE_OP(double, int64_t, true, >=) break; } case XVCMPGTDP: { VECTOR_COMPARE_OP(double, int64_t, true, >) break; } case XVCMPEQSP: { VECTOR_COMPARE_OP(float, int32_t, true, ==) break; } case XVCMPGESP: { VECTOR_COMPARE_OP(float, int32_t, true, >=) break; } case XVCMPGTSP: { VECTOR_COMPARE_OP(float, int32_t, true, >) break; } case VCMPEQUD: { VECTOR_COMPARE_OP(uint64_t, int64_t, false, ==) break; } case VCMPGTSD: { VECTOR_COMPARE_OP(int64_t, int64_t, false, >) break; } case VCMPGTUD: { VECTOR_COMPARE_OP(uint64_t, int64_t, false, >) break; } case VCMPEQUW: { VECTOR_COMPARE_OP(uint32_t, int32_t, false, ==) break; } case VCMPGTSW: { VECTOR_COMPARE_OP(int32_t, int32_t, false, >) break; } case VCMPGTUW: { VECTOR_COMPARE_OP(uint32_t, int32_t, false, >) break; } case VCMPEQUH: { VECTOR_COMPARE_OP(uint16_t, int16_t, false, ==) break; } case VCMPGTSH: { VECTOR_COMPARE_OP(int16_t, int16_t, false, >) break; } case VCMPGTUH: { VECTOR_COMPARE_OP(uint16_t, int16_t, false, >) break; } case VCMPEQUB: { VECTOR_COMPARE_OP(uint8_t, int8_t, false, ==) break; } case VCMPGTSB: { VECTOR_COMPARE_OP(int8_t, int8_t, false, >) break; } case VCMPGTUB: { VECTOR_COMPARE_OP(uint8_t, int8_t, false, >) break; } #undef VECTOR_COMPARE_OP case XVCVSPSXWS: { VectorConverFromFPSaturate<float, int32_t>(this, instr, kMinInt, kMaxInt); break; } case XVCVSPUXWS: { VectorConverFromFPSaturate<float, uint32_t>(this, instr, 0, kMaxUInt32); break; } case XVCVDPSXWS: { VectorConverFromFPSaturate<double, int32_t>(this, instr, kMinInt, kMaxInt, true); break; } case XVCVDPUXWS: { VectorConverFromFPSaturate<double, uint32_t>(this, instr, 0, kMaxUInt32, true); break; } case XVCVSXWSP: { int t = instr->RTValue(); int b = instr->RBValue(); FOR_EACH_LANE(i, int32_t) { int32_t b_val = get_simd_register_by_lane<int32_t>(b, i); set_simd_register_by_lane<float>(t, i, static_cast<float>(b_val)); } break; } case XVCVUXWSP: { int t = instr->RTValue(); int b = instr->RBValue(); FOR_EACH_LANE(i, uint32_t) { uint32_t b_val = get_simd_register_by_lane<uint32_t>(b, i); set_simd_register_by_lane<float>(t, i, static_cast<float>(b_val)); } break; } case XVCVSXDDP: { int t = instr->RTValue(); int b = instr->RBValue(); FOR_EACH_LANE(i, int64_t) { int64_t b_val = get_simd_register_by_lane<int64_t>(b, i); set_simd_register_by_lane<double>(t, i, static_cast<double>(b_val)); } break; } case XVCVUXDDP: { int t = instr->RTValue(); int b = instr->RBValue(); FOR_EACH_LANE(i, uint64_t) { uint64_t b_val = get_simd_register_by_lane<uint64_t>(b, i); set_simd_register_by_lane<double>(t, i, static_cast<double>(b_val)); } break; } case XVCVSPDP: { int t = instr->RTValue(); int b = instr->RBValue(); FOR_EACH_LANE(i, double) { float b_val = get_simd_register_by_lane<float>(b, 2 * i); set_simd_register_by_lane<double>(t, i, static_cast<double>(b_val)); } break; } case XVCVDPSP: { int t = instr->RTValue(); int b = instr->RBValue(); FOR_EACH_LANE(i, double) { double b_val = get_simd_register_by_lane<double>(b, i); set_simd_register_by_lane<float>(t, 2 * i, static_cast<float>(b_val)); } break; } case XSCVSPDPN: { int t = instr->RTValue(); int b = instr->RBValue(); uint64_t double_bits = get_d_register(b); // Value is at the high 32 bits of the register. float f = base::bit_cast<float, uint32_t>( static_cast<uint32_t>(double_bits >> 32)); double_bits = base::bit_cast<uint64_t, double>(static_cast<double>(f)); // Preserve snan. if (is_snan(f)) { double_bits &= 0xFFF7FFFFFFFFFFFFU; // Clear bit 51. } set_d_register(t, double_bits); break; } case XSCVDPSPN: { int t = instr->RTValue(); int b = instr->RBValue(); double b_val = get_double_from_d_register(b); uint64_t float_bits = static_cast<uint64_t>( base::bit_cast<uint32_t, float>(static_cast<float>(b_val))); // Preserve snan. if (is_snan(b_val)) { float_bits &= 0xFFBFFFFFU; // Clear bit 22. } // fp result is placed in both 32bit halfs of the dst. float_bits = (float_bits << 32) | float_bits; set_d_register(t, float_bits); break; } #define VECTOR_UNPACK(S, D, if_high_side) \ int t = instr->RTValue(); \ int b = instr->RBValue(); \ constexpr size_t kItemCount = kSimd128Size / sizeof(D); \ D temps[kItemCount] = {0}; \ /* Avoid overwriting src if src and dst are the same register. */ \ FOR_EACH_LANE(i, D) { \ temps[i] = get_simd_register_by_lane<S>(b, i, if_high_side); \ } \ FOR_EACH_LANE(i, D) { \ set_simd_register_by_lane<D>(t, i, temps[i], if_high_side); \ } case VUPKHSB: { VECTOR_UNPACK(int8_t, int16_t, true) break; } case VUPKHSH: { VECTOR_UNPACK(int16_t, int32_t, true) break; } case VUPKHSW: { VECTOR_UNPACK(int32_t, int64_t, true) break; } case VUPKLSB: { VECTOR_UNPACK(int8_t, int16_t, false) break; } case VUPKLSH: { VECTOR_UNPACK(int16_t, int32_t, false) break; } case VUPKLSW: { VECTOR_UNPACK(int32_t, int64_t, false) break; } #undef VECTOR_UNPACK case VPKSWSS: { VectorPackSaturate<int32_t, int16_t>(this, instr, kMinInt16, kMaxInt16); break; } case VPKSWUS: { VectorPackSaturate<int32_t, uint16_t>(this, instr, 0, kMaxUInt16); break; } case VPKSHSS: { VectorPackSaturate<int16_t, int8_t>(this, instr, kMinInt8, kMaxInt8); break; } case VPKSHUS: { VectorPackSaturate<int16_t, uint8_t>(this, instr, 0, kMaxUInt8); break; } #define VECTOR_ADD_SUB_SATURATE(intermediate_type, result_type, op, min_val, \ max_val) \ DECODE_VX_INSTRUCTION(t, a, b, T) \ FOR_EACH_LANE(i, result_type) { \ intermediate_type a_val = static_cast<intermediate_type>( \ get_simd_register_by_lane<result_type>(a, i)); \ intermediate_type b_val = static_cast<intermediate_type>( \ get_simd_register_by_lane<result_type>(b, i)); \ intermediate_type t_val = a_val op b_val; \ if (t_val > max_val) \ t_val = max_val; \ else if (t_val < min_val) \ t_val = min_val; \ set_simd_register_by_lane<result_type>(t, i, \ static_cast<result_type>(t_val)); \ } case VADDSHS: { VECTOR_ADD_SUB_SATURATE(int32_t, int16_t, +, kMinInt16, kMaxInt16) break; } case VSUBSHS: { VECTOR_ADD_SUB_SATURATE(int32_t, int16_t, -, kMinInt16, kMaxInt16) break; } case VADDUHS: { VECTOR_ADD_SUB_SATURATE(int32_t, uint16_t, +, 0, kMaxUInt16) break; } case VSUBUHS: { VECTOR_ADD_SUB_SATURATE(int32_t, uint16_t, -, 0, kMaxUInt16) break; } case VADDSBS: { VECTOR_ADD_SUB_SATURATE(int16_t, int8_t, +, kMinInt8, kMaxInt8) break; } case VSUBSBS: { VECTOR_ADD_SUB_SATURATE(int16_t, int8_t, -, kMinInt8, kMaxInt8) break; } case VADDUBS: { VECTOR_ADD_SUB_SATURATE(int16_t, uint8_t, +, 0, kMaxUInt8) break; } case VSUBUBS: { VECTOR_ADD_SUB_SATURATE(int16_t, uint8_t, -, 0, kMaxUInt8) break; } #undef VECTOR_ADD_SUB_SATURATE #define VECTOR_FP_ROUNDING(type, op) \ int t = instr->RTValue(); \ int b = instr->RBValue(); \ FOR_EACH_LANE(i, type) { \ type b_val = get_simd_register_by_lane<type>(b, i); \ set_simd_register_by_lane<type>(t, i, std::op(b_val)); \ } case XVRDPIP: { VECTOR_FP_ROUNDING(double, ceil) break; } case XVRDPIM: { VECTOR_FP_ROUNDING(double, floor) break; } case XVRDPIZ: { VECTOR_FP_ROUNDING(double, trunc) break; } case XVRDPI: { VECTOR_FP_ROUNDING(double, nearbyint) break; } case XVRSPIP: { VECTOR_FP_ROUNDING(float, ceilf) break; } case XVRSPIM: { VECTOR_FP_ROUNDING(float, floorf) break; } case XVRSPIZ: { VECTOR_FP_ROUNDING(float, truncf) break; } case XVRSPI: { VECTOR_FP_ROUNDING(float, nearbyintf) break; } #undef VECTOR_FP_ROUNDING case VSEL: { int vrt = instr->RTValue(); int vra = instr->RAValue(); int vrb = instr->RBValue(); int vrc = instr->RCValue(); unsigned __int128 src_1 = base::bit_cast<__int128>(get_simd_register(vra).int8); unsigned __int128 src_2 = base::bit_cast<__int128>(get_simd_register(vrb).int8); unsigned __int128 src_3 = base::bit_cast<__int128>(get_simd_register(vrc).int8); unsigned __int128 tmp = (src_1 & ~src_3) | (src_2 & src_3); simdr_t* result = base::bit_cast<simdr_t*>(&tmp); set_simd_register(vrt, *result); break; } case VPERM: { int vrt = instr->RTValue(); int vra = instr->RAValue(); int vrb = instr->RBValue(); int vrc = instr->RCValue(); int8_t temp[kSimd128Size] = {0}; FOR_EACH_LANE(i, int8_t) { int8_t lane_num = get_simd_register_by_lane<int8_t>(vrc, i); // Get the five least significant bits. lane_num = (lane_num << 3) >> 3; int reg = vra; if (lane_num >= kSimd128Size) { lane_num = lane_num - kSimd128Size; reg = vrb; } temp[i] = get_simd_register_by_lane<int8_t>(reg, lane_num); } FOR_EACH_LANE(i, int8_t) { set_simd_register_by_lane<int8_t>(vrt, i, temp[i]); } break; } case VBPERMQ: { DECODE_VX_INSTRUCTION(t, a, b, T) uint16_t result_bits = 0; unsigned __int128 src_bits = base::bit_cast<__int128>(get_simd_register(a).int8); for (int i = 0; i < kSimd128Size; i++) { result_bits <<= 1; uint8_t selected_bit_index = get_simd_register_by_lane<uint8_t>(b, i); if (selected_bit_index < (kSimd128Size * kBitsPerByte)) { unsigned __int128 bit_value = (src_bits << selected_bit_index) >> (kSimd128Size * kBitsPerByte - 1); result_bits |= bit_value; } } set_simd_register_by_lane<uint64_t>(t, 0, 0); set_simd_register_by_lane<uint64_t>(t, 1, 0); set_simd_register_by_lane<uint16_t>(t, 3, result_bits); break; } #define VECTOR_FP_QF(type, sign) \ DECODE_VX_INSTRUCTION(t, a, b, T) \ FOR_EACH_LANE(i, type) { \ type a_val = get_simd_register_by_lane<type>(a, i); \ type b_val = get_simd_register_by_lane<type>(b, i); \ type t_val = get_simd_register_by_lane<type>(t, i); \ type reuslt = sign * ((sign * b_val) + (a_val * t_val)); \ if (isinf(a_val)) reuslt = a_val; \ if (isinf(b_val)) reuslt = b_val; \ if (isinf(t_val)) reuslt = t_val; \ set_simd_register_by_lane<type>(t, i, reuslt); \ } case XVMADDMDP: { VECTOR_FP_QF(double, +1) break; } case XVNMSUBMDP: { VECTOR_FP_QF(double, -1) break; } case XVMADDMSP: { VECTOR_FP_QF(float, +1) break; } case XVNMSUBMSP: { VECTOR_FP_QF(float, -1) break; } #undef VECTOR_FP_QF case VMHRADDSHS: { int vrt = instr->RTValue(); int vra = instr->RAValue(); int vrb = instr->RBValue(); int vrc = instr->RCValue(); FOR_EACH_LANE(i, int16_t) { int16_t vra_val = get_simd_register_by_lane<int16_t>(vra, i); int16_t vrb_val = get_simd_register_by_lane<int16_t>(vrb, i); int16_t vrc_val = get_simd_register_by_lane<int16_t>(vrc, i); int32_t temp = vra_val * vrb_val; temp = (temp + 0x00004000) >> 15; temp += vrc_val; if (temp > kMaxInt16) temp = kMaxInt16; else if (temp < kMinInt16) temp = kMinInt16; set_simd_register_by_lane<int16_t>(vrt, i, static_cast<int16_t>(temp)); } break; } case VMSUMMBM: { int vrt = instr->RTValue(); int vra = instr->RAValue(); int vrb = instr->RBValue(); int vrc = instr->RCValue(); FOR_EACH_LANE(i, int32_t) { int8_t vra_1_val = get_simd_register_by_lane<int8_t>(vra, 4 * i), vra_2_val = get_simd_register_by_lane<int8_t>(vra, (4 * i) + 1), vra_3_val = get_simd_register_by_lane<int8_t>(vra, (4 * i) + 2), vra_4_val = get_simd_register_by_lane<int8_t>(vra, (4 * i) + 3); uint8_t vrb_1_val = get_simd_register_by_lane<uint8_t>(vrb, 4 * i), vrb_2_val = get_simd_register_by_lane<uint8_t>(vrb, (4 * i) + 1), vrb_3_val = get_simd_register_by_lane<uint8_t>(vrb, (4 * i) + 2), vrb_4_val = get_simd_register_by_lane<uint8_t>(vrb, (4 * i) + 3); int32_t vrc_val = get_simd_register_by_lane<int32_t>(vrc, i); int32_t temp1 = vra_1_val * vrb_1_val, temp2 = vra_2_val * vrb_2_val, temp3 = vra_3_val * vrb_3_val, temp4 = vra_4_val * vrb_4_val; temp1 = temp1 + temp2 + temp3 + temp4 + vrc_val; set_simd_register_by_lane<int32_t>(vrt, i, temp1); } break; } case VMSUMSHM: { int vrt = instr->RTValue(); int vra = instr->RAValue(); int vrb = instr->RBValue(); int vrc = instr->RCValue(); FOR_EACH_LANE(i, int32_t) { int16_t vra_1_val = get_simd_register_by_lane<int16_t>(vra, 2 * i); int16_t vra_2_val = get_simd_register_by_lane<int16_t>(vra, (2 * i) + 1); int16_t vrb_1_val = get_simd_register_by_lane<int16_t>(vrb, 2 * i); int16_t vrb_2_val = get_simd_register_by_lane<int16_t>(vrb, (2 * i) + 1); int32_t vrc_val = get_simd_register_by_lane<int32_t>(vrc, i); int32_t temp1 = vra_1_val * vrb_1_val, temp2 = vra_2_val * vrb_2_val; temp1 = temp1 + temp2 + vrc_val; set_simd_register_by_lane<int32_t>(vrt, i, temp1); } break; } case VMLADDUHM: { int vrt = instr->RTValue(); int vra = instr->RAValue(); int vrb = instr->RBValue(); int vrc = instr->RCValue(); FOR_EACH_LANE(i, uint16_t) { uint16_t vra_val = get_simd_register_by_lane<uint16_t>(vra, i); uint16_t vrb_val = get_simd_register_by_lane<uint16_t>(vrb, i); uint16_t vrc_val = get_simd_register_by_lane<uint16_t>(vrc, i); set_simd_register_by_lane<uint16_t>(vrt, i, (vra_val * vrb_val) + vrc_val); } break; } #define VECTOR_UNARY_OP(type, op) \ int t = instr->RTValue(); \ int b = instr->RBValue(); \ FOR_EACH_LANE(i, type) { \ set_simd_register_by_lane<type>( \ t, i, op(get_simd_register_by_lane<type>(b, i))); \ } case XVABSDP: { VECTOR_UNARY_OP(double, std::abs) break; } case XVNEGDP: { VECTOR_UNARY_OP(double, -) break; } case XVSQRTDP: { VECTOR_UNARY_OP(double, std::sqrt) break; } case XVABSSP: { VECTOR_UNARY_OP(float, std::abs) break; } case XVNEGSP: { VECTOR_UNARY_OP(float, -) break; } case XVSQRTSP: { VECTOR_UNARY_OP(float, std::sqrt) break; } case XVRESP: { VECTOR_UNARY_OP(float, base::Recip) break; } case XVRSQRTESP: { VECTOR_UNARY_OP(float, base::RecipSqrt) break; } case VNEGW: { VECTOR_UNARY_OP(int32_t, -) break; } case VNEGD: { VECTOR_UNARY_OP(int64_t, -) break; } #undef VECTOR_UNARY_OP #define VECTOR_ROUNDING_AVERAGE(intermediate_type, result_type) \ DECODE_VX_INSTRUCTION(t, a, b, T) \ FOR_EACH_LANE(i, result_type) { \ intermediate_type a_val = static_cast<intermediate_type>( \ get_simd_register_by_lane<result_type>(a, i)); \ intermediate_type b_val = static_cast<intermediate_type>( \ get_simd_register_by_lane<result_type>(b, i)); \ intermediate_type t_val = ((a_val + b_val) + 1) >> 1; \ set_simd_register_by_lane<result_type>(t, i, \ static_cast<result_type>(t_val)); \ } case VAVGUH: { VECTOR_ROUNDING_AVERAGE(uint32_t, uint16_t) break; } case VAVGUB: { VECTOR_ROUNDING_AVERAGE(uint16_t, uint8_t) break; } #undef VECTOR_ROUNDING_AVERAGE case VPOPCNTB: { int t = instr->RTValue(); int b = instr->RBValue(); FOR_EACH_LANE(i, uint8_t) { set_simd_register_by_lane<uint8_t>( t, i, base::bits::CountPopulation( get_simd_register_by_lane<uint8_t>(b, i))); } break; } #define EXTRACT_MASK(type) \ int rt = instr->RTValue(); \ int vrb = instr->RBValue(); \ uint64_t result = 0; \ FOR_EACH_LANE(i, type) { \ if (i > 0) result <<= 1; \ result |= std::signbit(get_simd_register_by_lane<type>(vrb, i)); \ } \ set_register(rt, result); case VEXTRACTDM: { EXTRACT_MASK(int64_t) break; } case VEXTRACTWM: { EXTRACT_MASK(int32_t) break; } case VEXTRACTHM: { EXTRACT_MASK(int16_t) break; } case VEXTRACTBM: { EXTRACT_MASK(int8_t) break; } #undef EXTRACT_MASK #undef FOR_EACH_LANE #undef DECODE_VX_INSTRUCTION #undef GET_ADDRESS default: { UNIMPLEMENTED(); } } } void Simulator::Trace(Instruction* instr) { disasm::NameConverter converter; disasm::Disassembler dasm(converter); // use a reasonably large buffer v8::base::EmbeddedVector<char, 256> buffer; dasm.InstructionDecode(buffer, reinterpret_cast<uint8_t*>(instr)); PrintF("%05d %08" V8PRIxPTR " %s\n", icount_, reinterpret_cast<intptr_t>(instr), buffer.begin()); } // Executes the current instruction. void Simulator::ExecuteInstruction(Instruction* instr) { if (v8_flags.check_icache) { CheckICache(i_cache(), instr); } pc_modified_ = false; if (v8_flags.trace_sim) { Trace(instr); } uint32_t opcode = instr->OpcodeField(); if (opcode == TWI) { SoftwareInterrupt(instr); } else { ExecuteGeneric(instr); } if (!pc_modified_) { set_pc(reinterpret_cast<intptr_t>(instr) + kInstrSize); } } void Simulator::Execute() { // Get the PC to simulate. Cannot use the accessor here as we need the // raw PC value and not the one used as input to arithmetic instructions. intptr_t program_counter = get_pc(); if (v8_flags.stop_sim_at == 0) { // Fast version of the dispatch loop without checking whether the simulator // should be stopping at a particular executed instruction. while (program_counter != end_sim_pc) { Instruction* instr = reinterpret_cast<Instruction*>(program_counter); icount_++; ExecuteInstruction(instr); program_counter = get_pc(); } } else { // v8_flags.stop_sim_at is at the non-default value. Stop in the debugger // when we reach the particular instruction count. while (program_counter != end_sim_pc) { Instruction* instr = reinterpret_cast<Instruction*>(program_counter); icount_++; if (icount_ == v8_flags.stop_sim_at) { PPCDebugger dbg(this); dbg.Debug(); } else { ExecuteInstruction(instr); } program_counter = get_pc(); } } } void Simulator::CallInternal(Address entry) { // Adjust JS-based stack limit to C-based stack limit. isolate_->stack_guard()->AdjustStackLimitForSimulator(); // Prepare to execute the code at entry if (ABI_USES_FUNCTION_DESCRIPTORS) { // entry is the function descriptor set_pc(*(base::bit_cast<intptr_t*>(entry))); } else { // entry is the instruction address set_pc(static_cast<intptr_t>(entry)); } if (ABI_CALL_VIA_IP) { // Put target address in ip (for JS prologue). set_register(r12, get_pc()); } // Put down marker for end of simulation. The simulator will stop simulation // when the PC reaches this value. By saving the "end simulation" value into // the LR the simulation stops when returning to this call point. special_reg_lr_ = end_sim_pc; // Remember the values of non-volatile registers. intptr_t r2_val = get_register(r2); intptr_t r13_val = get_register(r13); intptr_t r14_val = get_register(r14); intptr_t r15_val = get_register(r15); intptr_t r16_val = get_register(r16); intptr_t r17_val = get_register(r17); intptr_t r18_val = get_register(r18); intptr_t r19_val = get_register(r19); intptr_t r20_val = get_register(r20); intptr_t r21_val = get_register(r21); intptr_t r22_val = get_register(r22); intptr_t r23_val = get_register(r23); intptr_t r24_val = get_register(r24); intptr_t r25_val = get_register(r25); intptr_t r26_val = get_register(r26); intptr_t r27_val = get_register(r27); intptr_t r28_val = get_register(r28); intptr_t r29_val = get_register(r29); intptr_t r30_val = get_register(r30); intptr_t r31_val = get_register(fp); // Set up the non-volatile registers with a known value. To be able to check // that they are preserved properly across JS execution. intptr_t callee_saved_value = icount_; set_register(r2, callee_saved_value); set_register(r13, callee_saved_value); set_register(r14, callee_saved_value); set_register(r15, callee_saved_value); set_register(r16, callee_saved_value); set_register(r17, callee_saved_value); set_register(r18, callee_saved_value); set_register(r19, callee_saved_value); set_register(r20, callee_saved_value); set_register(r21, callee_saved_value); set_register(r22, callee_saved_value); set_register(r23, callee_saved_value); set_register(r24, callee_saved_value); set_register(r25, callee_saved_value); set_register(r26, callee_saved_value); set_register(r27, callee_saved_value); set_register(r28, callee_saved_value); set_register(r29, callee_saved_value); set_register(r30, callee_saved_value); set_register(fp, callee_saved_value); // Start the simulation Execute(); // Check that the non-volatile registers have been preserved. if (ABI_TOC_REGISTER != 2) { CHECK_EQ(callee_saved_value, get_register(r2)); } if (ABI_TOC_REGISTER != 13) { CHECK_EQ(callee_saved_value, get_register(r13)); } CHECK_EQ(callee_saved_value, get_register(r14)); CHECK_EQ(callee_saved_value, get_register(r15)); CHECK_EQ(callee_saved_value, get_register(r16)); CHECK_EQ(callee_saved_value, get_register(r17)); CHECK_EQ(callee_saved_value, get_register(r18)); CHECK_EQ(callee_saved_value, get_register(r19)); CHECK_EQ(callee_saved_value, get_register(r20)); CHECK_EQ(callee_saved_value, get_register(r21)); CHECK_EQ(callee_saved_value, get_register(r22)); CHECK_EQ(callee_saved_value, get_register(r23)); CHECK_EQ(callee_saved_value, get_register(r24)); CHECK_EQ(callee_saved_value, get_register(r25)); CHECK_EQ(callee_saved_value, get_register(r26)); CHECK_EQ(callee_saved_value, get_register(r27)); CHECK_EQ(callee_saved_value, get_register(r28)); CHECK_EQ(callee_saved_value, get_register(r29)); CHECK_EQ(callee_saved_value, get_register(r30)); CHECK_EQ(callee_saved_value, get_register(fp)); // Restore non-volatile registers with the original value. set_register(r2, r2_val); set_register(r13, r13_val); set_register(r14, r14_val); set_register(r15, r15_val); set_register(r16, r16_val); set_register(r17, r17_val); set_register(r18, r18_val); set_register(r19, r19_val); set_register(r20, r20_val); set_register(r21, r21_val); set_register(r22, r22_val); set_register(r23, r23_val); set_register(r24, r24_val); set_register(r25, r25_val); set_register(r26, r26_val); set_register(r27, r27_val); set_register(r28, r28_val); set_register(r29, r29_val); set_register(r30, r30_val); set_register(fp, r31_val); } intptr_t Simulator::CallImpl(Address entry, int argument_count, const intptr_t* arguments) { // Set up arguments // First eight arguments passed in registers r3-r10. int reg_arg_count = std::min(8, argument_count); int stack_arg_count = argument_count - reg_arg_count; for (int i = 0; i < reg_arg_count; i++) { set_register(i + 3, arguments[i]); } // Remaining arguments passed on stack. intptr_t original_stack = get_register(sp); // Compute position of stack on entry to generated code. intptr_t entry_stack = (original_stack - (kNumRequiredStackFrameSlots + stack_arg_count) * sizeof(intptr_t)); if (base::OS::ActivationFrameAlignment() != 0) { entry_stack &= -base::OS::ActivationFrameAlignment(); } // Store remaining arguments on stack, from low to high memory. // +2 is a hack for the LR slot + old SP on PPC intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack) + kStackFrameExtraParamSlot; memcpy(stack_argument, arguments + reg_arg_count, stack_arg_count * sizeof(*arguments)); set_register(sp, entry_stack); CallInternal(entry); // Pop stack passed arguments. CHECK_EQ(entry_stack, get_register(sp)); set_register(sp, original_stack); return get_register(r3); } void Simulator::CallFP(Address entry, double d0, double d1) { set_d_register_from_double(1, d0); set_d_register_from_double(2, d1); CallInternal(entry); } int32_t Simulator::CallFPReturnsInt(Address entry, double d0, double d1) { CallFP(entry, d0, d1); int32_t result = get_register(r3); return result; } double Simulator::CallFPReturnsDouble(Address entry, double d0, double d1) { CallFP(entry, d0, d1); return get_double_from_d_register(1); } uintptr_t Simulator::PushAddress(uintptr_t address) { uintptr_t new_sp = get_register(sp) - sizeof(uintptr_t); uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp); *stack_slot = address; set_register(sp, new_sp); return new_sp; } uintptr_t Simulator::PopAddress() { uintptr_t current_sp = get_register(sp); uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp); uintptr_t address = *stack_slot; set_register(sp, current_sp + sizeof(uintptr_t)); return address; } void Simulator::GlobalMonitor::Clear() { access_state_ = MonitorAccess::Open; tagged_addr_ = 0; size_ = TransactionSize::None; thread_id_ = ThreadId::Invalid(); } void Simulator::GlobalMonitor::NotifyLoadExcl(uintptr_t addr, TransactionSize size, ThreadId thread_id) { // TODO(s390): By using Global Monitors, we are effectively limiting one // active reservation across all processors. This would potentially serialize // parallel threads executing load&reserve + store conditional on unrelated // memory. Technically, this implementation would still make the simulator // adhere to the spec, but seems overly heavy-handed. access_state_ = MonitorAccess::Exclusive; tagged_addr_ = addr; size_ = size; thread_id_ = thread_id; } void Simulator::GlobalMonitor::NotifyStore(uintptr_t addr, TransactionSize size, ThreadId thread_id) { if (access_state_ == MonitorAccess::Exclusive) { // Calculate if the transaction has been overlapped uintptr_t transaction_start = addr; uintptr_t transaction_end = addr + static_cast<uintptr_t>(size); uintptr_t exclusive_transaction_start = tagged_addr_; uintptr_t exclusive_transaction_end = tagged_addr_ + static_cast<uintptr_t>(size_); bool is_not_overlapped = transaction_end < exclusive_transaction_start || exclusive_transaction_end < transaction_start; if (!is_not_overlapped && thread_id_ != thread_id) { Clear(); } } } bool Simulator::GlobalMonitor::NotifyStoreExcl(uintptr_t addr, TransactionSize size, ThreadId thread_id) { bool permission = access_state_ == MonitorAccess::Exclusive && addr == tagged_addr_ && size_ == size && thread_id_ == thread_id; // The reservation is cleared if the processor holding the reservation // executes a store conditional instruction to any address. Clear(); return permission; } } // namespace internal } // namespace v8 #undef SScanF #endif // USE_SIMULATOR