%PDF- %PDF-
Direktori : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/execution/ |
Current File : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/execution/stack-guard.h |
// Copyright 2019 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_EXECUTION_STACK_GUARD_H_ #define V8_EXECUTION_STACK_GUARD_H_ #include "include/v8-internal.h" #include "src/base/atomicops.h" #include "src/common/globals.h" namespace v8 { namespace internal { class ExecutionAccess; class InterruptsScope; class Isolate; class Object; class RootVisitor; // StackGuard contains the handling of the limits that are used to limit the // number of nested invocations of JavaScript and the stack size used in each // invocation. class V8_EXPORT_PRIVATE V8_NODISCARD StackGuard final { public: StackGuard(const StackGuard&) = delete; StackGuard& operator=(const StackGuard&) = delete; explicit StackGuard(Isolate* isolate) : isolate_(isolate) {} // Pass the address beyond which the stack should not grow. The stack // is assumed to grow downwards. // When executing on the simulator, we set the stack limits to the limits of // the simulator's stack instead of using {limit}. void SetStackLimit(uintptr_t limit); // Similar to the method above, with one important difference: With Wasm // stack switching, we always want to switch to {limit}, even when running on // the simulator, since we might be switching to a Wasm continuation that's // not on the main stack. void SetStackLimitForStackSwitching(uintptr_t limit); // The simulator uses a separate JS stack. Limits on the JS stack might have // to be adjusted in order to reflect overflows of the C stack, because we // cannot rely on the interleaving of frames on the simulator. void AdjustStackLimitForSimulator(); // Threading support. char* ArchiveStackGuard(char* to); char* RestoreStackGuard(char* from); static int ArchiveSpacePerThread() { return sizeof(ThreadLocal); } void FreeThreadResources(); // Sets up the default stack guard for this thread. void InitThread(const ExecutionAccess& lock); // Code locations that check for interrupts might only handle a subset of the // available interrupts, expressed as an `InterruptLevel`. These levels are // also associated with side effects that are allowed for the respective // level. The levels are inclusive, which is specified using the order in the // enum. For example, a site that handles `kAnyEffect` will also handle the // preceding levels. enum class InterruptLevel { kNoGC, kNoHeapWrites, kAnyEffect }; static constexpr int kNumberOfInterruptLevels = 3; #define INTERRUPT_LIST(V) \ V(TERMINATE_EXECUTION, TerminateExecution, 0, InterruptLevel::kNoGC) \ V(GC_REQUEST, GC, 1, InterruptLevel::kNoHeapWrites) \ V(INSTALL_CODE, InstallCode, 2, InterruptLevel::kAnyEffect) \ V(INSTALL_BASELINE_CODE, InstallBaselineCode, 3, InterruptLevel::kAnyEffect) \ V(API_INTERRUPT, ApiInterrupt, 4, InterruptLevel::kNoHeapWrites) \ V(DEOPT_MARKED_ALLOCATION_SITES, DeoptMarkedAllocationSites, 5, \ InterruptLevel::kNoHeapWrites) \ V(GROW_SHARED_MEMORY, GrowSharedMemory, 6, InterruptLevel::kAnyEffect) \ V(LOG_WASM_CODE, LogWasmCode, 7, InterruptLevel::kAnyEffect) \ V(WASM_CODE_GC, WasmCodeGC, 8, InterruptLevel::kNoHeapWrites) \ V(INSTALL_MAGLEV_CODE, InstallMaglevCode, 9, InterruptLevel::kAnyEffect) \ V(GLOBAL_SAFEPOINT, GlobalSafepoint, 10, InterruptLevel::kNoHeapWrites) \ V(START_INCREMENTAL_MARKING, StartIncrementalMarking, 11, \ InterruptLevel::kNoHeapWrites) #define V(NAME, Name, id, interrupt_level) \ inline bool Check##Name() { return CheckInterrupt(NAME); } \ inline void Request##Name() { RequestInterrupt(NAME); } \ inline void Clear##Name() { ClearInterrupt(NAME); } INTERRUPT_LIST(V) #undef V // Flag used to set the interrupt causes. enum InterruptFlag : uint32_t { #define V(NAME, Name, id, interrupt_level) NAME = (1 << id), INTERRUPT_LIST(V) #undef V #define V(NAME, Name, id, interrupt_level) NAME | ALL_INTERRUPTS = INTERRUPT_LIST(V) 0 #undef V }; static_assert(InterruptFlag::ALL_INTERRUPTS < std::numeric_limits<uint32_t>::max()); static constexpr InterruptFlag InterruptLevelMask(InterruptLevel level) { #define V(NAME, Name, id, interrupt_level) \ | (interrupt_level <= level ? NAME : 0) return static_cast<InterruptFlag>(0 INTERRUPT_LIST(V)); #undef V } uintptr_t climit() { return thread_local_.climit(); } uintptr_t jslimit() { return thread_local_.jslimit(); } // This provides an asynchronous read of the stack limits for the current // thread. There are no locks protecting this, but it is assumed that you // have the global V8 lock if you are using multiple V8 threads. uintptr_t real_climit() { return thread_local_.real_climit_; } uintptr_t real_jslimit() { return thread_local_.real_jslimit_; } Address address_of_jslimit() { return reinterpret_cast<Address>(&thread_local_.jslimit_); } Address address_of_real_jslimit() { return reinterpret_cast<Address>(&thread_local_.real_jslimit_); } Address address_of_interrupt_request(InterruptLevel level) { return reinterpret_cast<Address>( &thread_local_.interrupt_requested_[static_cast<int>(level)]); } // If the stack guard is triggered, but it is not an actual // stack overflow, then handle the interruption accordingly. // Only interrupts that match the given `InterruptLevel` will be handled, // leaving other interrupts pending as if this method had not been called. Tagged<Object> HandleInterrupts( InterruptLevel level = InterruptLevel::kAnyEffect); // Special case of {HandleInterrupts}: checks for termination requests only. // This is guaranteed to never cause GC, so can be used to interrupt // long-running computations that are not GC-safe. bool HasTerminationRequest(); static constexpr int kSizeInBytes = 8 * kSystemPointerSize; static char* Iterate(RootVisitor* v, char* thread_storage) { return thread_storage + ArchiveSpacePerThread(); } private: bool CheckInterrupt(InterruptFlag flag); void RequestInterrupt(InterruptFlag flag); void ClearInterrupt(InterruptFlag flag); int FetchAndClearInterrupts(InterruptLevel level); void SetStackLimitInternal(const ExecutionAccess& lock, uintptr_t limit, uintptr_t jslimit); // You should hold the ExecutionAccess lock when calling this method. bool has_pending_interrupts(const ExecutionAccess& lock) { return thread_local_.interrupt_flags_ != 0; } // You should hold the ExecutionAccess lock when calling this method. inline void update_interrupt_requests_and_stack_limits( const ExecutionAccess& lock); #if V8_TARGET_ARCH_64_BIT static const uintptr_t kInterruptLimit = uintptr_t{0xfffffffffffffffe}; static const uintptr_t kIllegalLimit = uintptr_t{0xfffffffffffffff8}; #else static const uintptr_t kInterruptLimit = 0xfffffffe; static const uintptr_t kIllegalLimit = 0xfffffff8; #endif void PushInterruptsScope(InterruptsScope* scope); void PopInterruptsScope(); class ThreadLocal final { public: ThreadLocal() {} void Initialize(Isolate* isolate, const ExecutionAccess& lock); // The stack limit is split into a JavaScript and a C++ stack limit. These // two are the same except when running on a simulator where the C++ and // JavaScript stacks are separate. Each of the two stack limits have two // values. The one with the real_ prefix is the actual stack limit // set for the VM. The one without the real_ prefix has the same value as // the actual stack limit except when there is an interruption (e.g. debug // break or preemption) in which case it is lowered to make stack checks // fail. Both the generated code and the runtime system check against the // one without the real_ prefix. // Actual JavaScript stack limit set for the VM. uintptr_t real_jslimit_ = kIllegalLimit; // Actual C++ stack limit set for the VM. uintptr_t real_climit_ = kIllegalLimit; // jslimit_ and climit_ can be read without any lock. // Writing requires the ExecutionAccess lock. base::AtomicWord jslimit_ = kIllegalLimit; base::AtomicWord climit_ = kIllegalLimit; uintptr_t jslimit() { return base::bit_cast<uintptr_t>(base::Relaxed_Load(&jslimit_)); } void set_jslimit(uintptr_t limit) { return base::Relaxed_Store(&jslimit_, static_cast<base::AtomicWord>(limit)); } uintptr_t climit() { return base::bit_cast<uintptr_t>(base::Relaxed_Load(&climit_)); } void set_climit(uintptr_t limit) { return base::Relaxed_Store(&climit_, static_cast<base::AtomicWord>(limit)); } // Interrupt request bytes can be read without any lock. // Writing requires the ExecutionAccess lock. base::Atomic8 interrupt_requested_[kNumberOfInterruptLevels] = { false, false, false}; void set_interrupt_requested(InterruptLevel level, bool requested) { base::Relaxed_Store(&interrupt_requested_[static_cast<int>(level)], requested); } bool has_interrupt_requested(InterruptLevel level) { return base::Relaxed_Load(&interrupt_requested_[static_cast<int>(level)]); } InterruptsScope* interrupt_scopes_ = nullptr; uint32_t interrupt_flags_ = 0; }; // TODO(isolates): Technically this could be calculated directly from a // pointer to StackGuard. Isolate* isolate_; ThreadLocal thread_local_; friend class Isolate; friend class StackLimitCheck; friend class InterruptsScope; }; static_assert(StackGuard::kSizeInBytes == sizeof(StackGuard)); } // namespace internal } // namespace v8 #endif // V8_EXECUTION_STACK_GUARD_H_