%PDF- %PDF-
Mini Shell

Mini Shell

Direktori : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/flags/
Upload File :
Create Path :
Current File : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/flags/flags.cc

// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/flags/flags.h"

#include <cctype>
#include <cerrno>
#include <cinttypes>
#include <cstdlib>
#include <cstring>
#include <iomanip>
#include <set>
#include <sstream>

#include "src/base/functional.h"
#include "src/base/logging.h"
#include "src/base/platform/platform.h"
#include "src/codegen/cpu-features.h"
#include "src/logging/counters.h"
#include "src/logging/tracing-flags.h"
#include "src/tracing/tracing-category-observer.h"
#include "src/utils/allocation.h"
#include "src/utils/memcopy.h"
#include "src/utils/ostreams.h"
#include "src/utils/utils.h"

#if V8_ENABLE_WEBASSEMBLY
#include "src/wasm/wasm-limits.h"
#endif  // V8_ENABLE_WEBASSEMBLY

namespace v8::internal {

// Define {v8_flags}, declared in flags.h.
FlagValues v8_flags;

// {v8_flags} needs to be aligned to a memory page, and the size needs to be a
// multiple of a page size. This is required for memory-protection of the memory
// holding the {v8_flags} struct.
// Both is guaranteed by the {alignas(kMinimumOSPageSize)} annotation on
// {FlagValues}.
static_assert(alignof(FlagValues) == kMinimumOSPageSize);
static_assert(sizeof(FlagValues) % kMinimumOSPageSize == 0);

// Define all of our flags default values.
#define FLAG_MODE_DEFINE_DEFAULTS
#include "src/flags/flag-definitions.h"  // NOLINT(build/include)
#undef FLAG_MODE_DEFINE_DEFAULTS

namespace {

char NormalizeChar(char ch) { return ch == '_' ? '-' : ch; }

struct Flag;
Flag* FindFlagByPointer(const void* ptr);
Flag* FindFlagByName(const char* name);

// Helper struct for printing normalized flag names.
struct FlagName {
  const char* name;
  bool negated;

  constexpr FlagName(const char* name, bool negated)
      : name(name), negated(negated) {
    DCHECK_NE('\0', name[0]);
    DCHECK_NE('!', name[0]);
  }

  constexpr explicit FlagName(const char* name)
      : FlagName(name[0] == '!' ? name + 1 : name, name[0] == '!') {}
};

std::ostream& operator<<(std::ostream& os, FlagName flag_name) {
  os << (flag_name.negated ? "--no-" : "--");
  for (const char* p = flag_name.name; *p; ++p) os << NormalizeChar(*p);
  return os;
}

// This structure represents a single entry in the flag system, with a pointer
// to the actual flag, default value, comment, etc.  This is designed to be POD
// initialized as to avoid requiring static constructors.
struct Flag {
  enum FlagType {
    TYPE_BOOL,
    TYPE_MAYBE_BOOL,
    TYPE_INT,
    TYPE_UINT,
    TYPE_UINT64,
    TYPE_FLOAT,
    TYPE_SIZE_T,
    TYPE_STRING,
  };

  enum class SetBy { kDefault, kWeakImplication, kImplication, kCommandLine };

  constexpr bool IsAnyImplication(Flag::SetBy set_by) {
    return set_by == SetBy::kWeakImplication || set_by == SetBy::kImplication;
  }

  FlagType type_;       // What type of flag, bool, int, or string.
  const char* name_;    // Name of the flag, ex "my_flag".
  void* valptr_;        // Pointer to the global flag variable.
  const void* defptr_;  // Pointer to the default value.
  const char* cmt_;     // A comment about the flags purpose.
  bool owns_ptr_;       // Does the flag own its string value?
  SetBy set_by_ = SetBy::kDefault;
  // Name of the flag implying this flag, if any.
  const char* implied_by_ = nullptr;
#ifdef DEBUG
  // Pointer to the flag implying this flag, if any.
  const Flag* implied_by_ptr_ = nullptr;
#endif

  FlagType type() const { return type_; }

  const char* name() const { return name_; }

  const char* comment() const { return cmt_; }

  bool PointsTo(const void* ptr) const { return valptr_ == ptr; }

#ifdef DEBUG
  bool ImpliedBy(const void* ptr) const {
    const Flag* current = this->implied_by_ptr_;
    while (current != nullptr) {
      if (current->PointsTo(ptr)) return true;
      current = current->implied_by_ptr_;
    }
    return false;
  }
#endif

  bool bool_variable() const { return GetValue<TYPE_BOOL, bool>(); }

  void set_bool_variable(bool value, SetBy set_by) {
    SetValue<TYPE_BOOL, bool>(value, set_by);
  }

  base::Optional<bool> maybe_bool_variable() const {
    return GetValue<TYPE_MAYBE_BOOL, base::Optional<bool>>();
  }

  void set_maybe_bool_variable(base::Optional<bool> value, SetBy set_by) {
    SetValue<TYPE_MAYBE_BOOL, base::Optional<bool>>(value, set_by);
  }

  int int_variable() const { return GetValue<TYPE_INT, int>(); }

  void set_int_variable(int value, SetBy set_by) {
    SetValue<TYPE_INT, int>(value, set_by);
  }

  unsigned int uint_variable() const {
    return GetValue<TYPE_UINT, unsigned int>();
  }

  void set_uint_variable(unsigned int value, SetBy set_by) {
    SetValue<TYPE_UINT, unsigned int>(value, set_by);
  }

  uint64_t uint64_variable() const { return GetValue<TYPE_UINT64, uint64_t>(); }

  void set_uint64_variable(uint64_t value, SetBy set_by) {
    SetValue<TYPE_UINT64, uint64_t>(value, set_by);
  }

  double float_variable() const { return GetValue<TYPE_FLOAT, double>(); }

  void set_float_variable(double value, SetBy set_by) {
    SetValue<TYPE_FLOAT, double>(value, set_by);
  }

  size_t size_t_variable() const { return GetValue<TYPE_SIZE_T, size_t>(); }

  void set_size_t_variable(size_t value, SetBy set_by) {
    SetValue<TYPE_SIZE_T, size_t>(value, set_by);
  }

  const char* string_value() const {
    return GetValue<TYPE_STRING, const char*>();
  }

  void set_string_value(const char* new_value, bool owns_new_value,
                        SetBy set_by) {
    DCHECK_EQ(TYPE_STRING, type_);
    DCHECK_IMPLIES(owns_new_value, new_value != nullptr);
    auto* flag_value = reinterpret_cast<FlagValue<const char*>*>(valptr_);
    const char* old_value = *flag_value;
    DCHECK_IMPLIES(owns_ptr_, old_value != nullptr);
    bool change_flag =
        old_value ? !new_value || std::strcmp(old_value, new_value) != 0
                  : !!new_value;
    change_flag = CheckFlagChange(set_by, change_flag);
    if (change_flag) {
      if (owns_ptr_) DeleteArray(old_value);
      *flag_value = new_value;
      owns_ptr_ = owns_new_value;
    } else {
      if (owns_new_value) DeleteArray(new_value);
    }
  }

  template <typename T>
  T GetDefaultValue() const {
    return *reinterpret_cast<const T*>(defptr_);
  }

  bool bool_default() const {
    DCHECK_EQ(TYPE_BOOL, type_);
    return GetDefaultValue<bool>();
  }

  int int_default() const {
    DCHECK_EQ(TYPE_INT, type_);
    return GetDefaultValue<int>();
  }

  unsigned int uint_default() const {
    DCHECK_EQ(TYPE_UINT, type_);
    return GetDefaultValue<unsigned int>();
  }

  uint64_t uint64_default() const {
    DCHECK_EQ(TYPE_UINT64, type_);
    return GetDefaultValue<uint64_t>();
  }

  double float_default() const {
    DCHECK_EQ(TYPE_FLOAT, type_);
    return GetDefaultValue<double>();
  }

  size_t size_t_default() const {
    DCHECK_EQ(TYPE_SIZE_T, type_);
    return GetDefaultValue<size_t>();
  }

  const char* string_default() const {
    DCHECK_EQ(TYPE_STRING, type_);
    return GetDefaultValue<const char*>();
  }

  static bool ShouldCheckFlagContradictions() {
    if (v8_flags.allow_overwriting_for_next_flag) {
      // Setting the flag manually to false before calling Reset() avoids this
      // becoming re-entrant.
      v8_flags.allow_overwriting_for_next_flag = false;
      FindFlagByPointer(&v8_flags.allow_overwriting_for_next_flag)->Reset();
      return false;
    }
    return v8_flags.abort_on_contradictory_flags && !v8_flags.fuzzing;
  }

  // {change_flag} indicates if we're going to change the flag value.
  // Returns an updated value for {change_flag}, which is changed to false if a
  // weak implication is being ignored beause a flag is already set by a normal
  // implication or from the command-line.
  bool CheckFlagChange(SetBy new_set_by, bool change_flag,
                       const char* implied_by = nullptr) {
    if (new_set_by == SetBy::kWeakImplication &&
        (set_by_ == SetBy::kImplication || set_by_ == SetBy::kCommandLine)) {
      return false;
    }
    if (ShouldCheckFlagContradictions()) {
      static constexpr const char kHint[] =
          "If a test variant caused this, it might be necessary to specify "
          "additional contradictory flags in "
          "tools/testrunner/local/variants.py.";
      struct FatalError : public std::ostringstream {
        // MSVC complains about non-returning destructor; disable that.
        MSVC_SUPPRESS_WARNING(4722)
        ~FatalError() { FATAL("%s.\n%s", str().c_str(), kHint); }
      };
      // Readonly flags cannot change value.
      if (change_flag && IsReadOnly()) {
        // Exit instead of abort for certain testing situations.
        if (v8_flags.exit_on_contradictory_flags) base::OS::ExitProcess(0);
        if (implied_by == nullptr) {
          FatalError{} << "Contradictory value for readonly flag "
                       << FlagName{name()};
        } else {
          DCHECK(IsAnyImplication(new_set_by));
          FatalError{} << "Contradictory value for readonly flag "
                       << FlagName{name()} << " implied by " << implied_by;
        }
      }
      // For bool flags, we only check for a conflict if the value actually
      // changes. So specifying the same flag with the same value multiple times
      // is allowed.
      // For other flags, we disallow specifying them explicitly or in the
      // presence of an implication even if the value is the same.
      // This is to simplify the rules describing conflicts in variants.py: A
      // repeated non-boolean flag is considered an error independently of its
      // value.
      bool is_bool_flag = type_ == TYPE_MAYBE_BOOL || type_ == TYPE_BOOL;
      bool check_implications = change_flag;
      bool check_command_line_flags = change_flag || !is_bool_flag;
      switch (set_by_) {
        case SetBy::kDefault:
          break;
        case SetBy::kWeakImplication:
          if (new_set_by == SetBy::kWeakImplication && check_implications) {
            FatalError{} << "Contradictory weak flag implications from "
                         << FlagName{implied_by_} << " and "
                         << FlagName{implied_by} << " for flag "
                         << FlagName{name()};
          }
          break;
        case SetBy::kImplication:
          if (new_set_by == SetBy::kImplication && check_implications) {
            FatalError{} << "Contradictory flag implications from "
                         << FlagName{implied_by_} << " and "
                         << FlagName{implied_by} << " for flag "
                         << FlagName{name()};
          }
          break;
        case SetBy::kCommandLine:
          if (new_set_by == SetBy::kImplication && check_command_line_flags) {
            // Exit instead of abort for certain testing situations.
            if (v8_flags.exit_on_contradictory_flags) base::OS::ExitProcess(0);
            if (is_bool_flag) {
              FatalError{} << "Flag " << FlagName{name()}
                           << ": value implied by " << FlagName{implied_by}
                           << " conflicts with explicit specification";
            } else {
              FatalError{} << "Flag " << FlagName{name()} << " is implied by "
                           << FlagName{implied_by}
                           << " but also specified explicitly";
            }
          } else if (new_set_by == SetBy::kCommandLine &&
                     check_command_line_flags) {
            // Exit instead of abort for certain testing situations.
            if (v8_flags.exit_on_contradictory_flags) base::OS::ExitProcess(0);
            if (is_bool_flag) {
              FatalError{} << "Command-line provided flag " << FlagName{name()}
                           << " specified as both true and false";
            } else {
              FatalError{} << "Command-line provided flag " << FlagName{name()}
                           << " specified multiple times";
            }
          }
          break;
      }
    }
    if (change_flag && IsReadOnly()) {
      // Readonly flags must never change value.
      return false;
    }
    set_by_ = new_set_by;
    if (IsAnyImplication(new_set_by)) {
      DCHECK_NOT_NULL(implied_by);
      implied_by_ = implied_by;
#ifdef DEBUG
      // This only works when implied_by is a flag_name or !flag_name, but it
      // can also be a condition e.g. flag_name > 3. Since this is only used for
      // checks in DEBUG mode, we will just ignore the more complex conditions
      // for now - that will just lead to a nullptr which won't be followed.
      implied_by_ptr_ = static_cast<Flag*>(
          FindFlagByName(implied_by[0] == '!' ? implied_by + 1 : implied_by));
      DCHECK_NE(implied_by_ptr_, this);
#endif
    }
    return change_flag;
  }

  bool IsReadOnly() const {
    // See the FLAG_READONLY definition for FLAG_MODE_META.
    return valptr_ == nullptr;
  }

  template <FlagType flag_type, typename T>
  T GetValue() const {
    DCHECK_EQ(flag_type, type_);
    if (IsReadOnly()) return GetDefaultValue<T>();
    return *reinterpret_cast<const FlagValue<T>*>(valptr_);
  }

  template <FlagType flag_type, typename T>
  void SetValue(T new_value, SetBy set_by) {
    DCHECK_EQ(flag_type, type_);
    bool change_flag = GetValue<flag_type, T>() != new_value;
    change_flag = CheckFlagChange(set_by, change_flag);
    if (change_flag) {
      DCHECK(!IsReadOnly());
      *reinterpret_cast<FlagValue<T>*>(valptr_) = new_value;
    }
  }

  // Compare this flag's current value against the default.
  bool IsDefault() const {
    switch (type_) {
      case TYPE_BOOL:
        return bool_variable() == bool_default();
      case TYPE_MAYBE_BOOL:
        return maybe_bool_variable().has_value() == false;
      case TYPE_INT:
        return int_variable() == int_default();
      case TYPE_UINT:
        return uint_variable() == uint_default();
      case TYPE_UINT64:
        return uint64_variable() == uint64_default();
      case TYPE_FLOAT:
        return float_variable() == float_default();
      case TYPE_SIZE_T:
        return size_t_variable() == size_t_default();
      case TYPE_STRING: {
        const char* str1 = string_value();
        const char* str2 = string_default();
        if (str2 == nullptr) return str1 == nullptr;
        if (str1 == nullptr) return str2 == nullptr;
        return strcmp(str1, str2) == 0;
      }
    }
    UNREACHABLE();
  }

  void ReleaseDynamicAllocations() {
    if (type_ != TYPE_STRING) return;
    if (owns_ptr_) DeleteArray(string_value());
  }

  // Set a flag back to it's default value.
  void Reset() {
    switch (type_) {
      case TYPE_BOOL:
        set_bool_variable(bool_default(), SetBy::kDefault);
        break;
      case TYPE_MAYBE_BOOL:
        set_maybe_bool_variable(base::nullopt, SetBy::kDefault);
        break;
      case TYPE_INT:
        set_int_variable(int_default(), SetBy::kDefault);
        break;
      case TYPE_UINT:
        set_uint_variable(uint_default(), SetBy::kDefault);
        break;
      case TYPE_UINT64:
        set_uint64_variable(uint64_default(), SetBy::kDefault);
        break;
      case TYPE_FLOAT:
        set_float_variable(float_default(), SetBy::kDefault);
        break;
      case TYPE_SIZE_T:
        set_size_t_variable(size_t_default(), SetBy::kDefault);
        break;
      case TYPE_STRING:
        set_string_value(string_default(), false, SetBy::kDefault);
        break;
    }
  }

  void AllowOverwriting() { set_by_ = SetBy::kDefault; }
};

Flag flags[] = {
#define FLAG_MODE_META
#include "src/flags/flag-definitions.h"  // NOLINT(build/include)
#undef FLAG_MODE_META
};

constexpr size_t kNumFlags = arraysize(flags);

bool EqualNames(const char* a, const char* b) {
  for (int i = 0; NormalizeChar(a[i]) == NormalizeChar(b[i]); i++) {
    if (a[i] == '\0') {
      return true;
    }
  }
  return false;
}

Flag* FindFlagByName(const char* name) {
  for (size_t i = 0; i < kNumFlags; ++i) {
    if (EqualNames(name, flags[i].name())) return &flags[i];
  }
  return nullptr;
}

Flag* FindFlagByPointer(const void* ptr) {
  for (size_t i = 0; i < kNumFlags; ++i) {
    if (flags[i].PointsTo(ptr)) return &flags[i];
  }
  return nullptr;
}

static const char* Type2String(Flag::FlagType type) {
  switch (type) {
    case Flag::TYPE_BOOL:
      return "bool";
    case Flag::TYPE_MAYBE_BOOL:
      return "maybe_bool";
    case Flag::TYPE_INT:
      return "int";
    case Flag::TYPE_UINT:
      return "uint";
    case Flag::TYPE_UINT64:
      return "uint64";
    case Flag::TYPE_FLOAT:
      return "float";
    case Flag::TYPE_SIZE_T:
      return "size_t";
    case Flag::TYPE_STRING:
      return "string";
  }
}

// Helper for printing flag values.
struct PrintFlagValue {
  const Flag& flag;
};

std::ostream& operator<<(std::ostream& os, PrintFlagValue flag_value) {
  const Flag& flag = flag_value.flag;
  switch (flag.type()) {
    case Flag::TYPE_BOOL:
      os << (flag.bool_variable() ? "true" : "false");
      break;
    case Flag::TYPE_MAYBE_BOOL:
      os << (flag.maybe_bool_variable().has_value()
                 ? (flag.maybe_bool_variable().value() ? "true" : "false")
                 : "unset");
      break;
    case Flag::TYPE_INT:
      os << flag.int_variable();
      break;
    case Flag::TYPE_UINT:
      os << flag.uint_variable();
      break;
    case Flag::TYPE_UINT64:
      os << flag.uint64_variable();
      break;
    case Flag::TYPE_FLOAT:
      os << flag.float_variable();
      break;
    case Flag::TYPE_SIZE_T:
      os << flag.size_t_variable();
      break;
    case Flag::TYPE_STRING: {
      const char* str = flag.string_value();
      os << std::quoted(str ? str : "");
      break;
    }
  }
  return os;
}

std::ostream& operator<<(std::ostream& os, const Flag& flag) {
  if (flag.type() == Flag::TYPE_BOOL) {
    os << FlagName{flag.name(), !flag.bool_variable()};
  } else {
    os << FlagName{flag.name()} << "=" << PrintFlagValue{flag};
  }
  return os;
}

static std::atomic<uint32_t> flag_hash{0};
static std::atomic<bool> flags_frozen{false};

uint32_t ComputeFlagListHash() {
  std::ostringstream modified_args_as_string;
  if (COMPRESS_POINTERS_BOOL) modified_args_as_string << "ptr-compr";
  if (DEBUG_BOOL) modified_args_as_string << "debug";

#ifdef DEBUG
  // These two sets are used to check that we don't leave out any flags
  // implied by --predictable in the list below.
  std::set<const char*> flags_implied_by_predictable;
  std::set<const char*> flags_ignored_because_of_predictable;
#endif

  for (const Flag& flag : flags) {
    if (flag.IsDefault()) continue;
#ifdef DEBUG
    if (flag.ImpliedBy(&v8_flags.predictable)) {
      flags_implied_by_predictable.insert(flag.name());
    }
#endif
    // We want to be able to flip --profile-deserialization without
    // causing the code cache to get invalidated by this hash.
    if (flag.PointsTo(&v8_flags.profile_deserialization)) continue;
    // Skip v8_flags.random_seed and v8_flags.predictable to allow predictable
    // code caching.
    if (flag.PointsTo(&v8_flags.random_seed)) continue;
    if (flag.PointsTo(&v8_flags.predictable)) continue;

    // The following flags are implied by --predictable (some negated).
    if (flag.PointsTo(&v8_flags.concurrent_sparkplug) ||
        flag.PointsTo(&v8_flags.concurrent_recompilation) ||
#ifdef V8_ENABLE_MAGLEV
        flag.PointsTo(&v8_flags.maglev_deopt_data_on_background) ||
        flag.PointsTo(&v8_flags.maglev_build_code_on_background) ||
#endif
        flag.PointsTo(&v8_flags.parallel_scavenge) ||
        flag.PointsTo(&v8_flags.concurrent_marking) ||
        flag.PointsTo(&v8_flags.concurrent_minor_ms_marking) ||
        flag.PointsTo(&v8_flags.concurrent_array_buffer_sweeping) ||
        flag.PointsTo(&v8_flags.parallel_marking) ||
        flag.PointsTo(&v8_flags.concurrent_sweeping) ||
        flag.PointsTo(&v8_flags.parallel_compaction) ||
        flag.PointsTo(&v8_flags.parallel_pointer_update) ||
        flag.PointsTo(&v8_flags.parallel_weak_ref_clearing) ||
        flag.PointsTo(&v8_flags.memory_reducer) ||
        flag.PointsTo(&v8_flags.cppheap_concurrent_marking) ||
        flag.PointsTo(&v8_flags.cppheap_incremental_marking) ||
        flag.PointsTo(&v8_flags.single_threaded_gc)) {
#ifdef DEBUG
      if (flag.ImpliedBy(&v8_flags.predictable)) {
        flags_ignored_because_of_predictable.insert(flag.name());
      }
#endif
      continue;
    }
    modified_args_as_string << flag;
  }

#ifdef DEBUG
  for (const char* name : flags_implied_by_predictable) {
    if (flags_ignored_because_of_predictable.find(name) ==
        flags_ignored_because_of_predictable.end()) {
      PrintF(
          "%s should be added to the list of "
          "flags_ignored_because_of_predictable\n",
          name);
      UNREACHABLE();
    }
  }
#endif

  std::string args(modified_args_as_string.str());
  // Generate a hash that is not 0.
  uint32_t hash = static_cast<uint32_t>(base::hash_range(
                      args.c_str(), args.c_str() + args.length())) |
                  1;
  DCHECK_NE(hash, 0);
  return hash;
}

}  // namespace

// Helper function to parse flags: Takes an argument arg and splits it into
// a flag name and flag value (or nullptr if they are missing). negated is set
// if the arg started with "-no" or "--no". The buffer may be used to NUL-
// terminate the name, it must be large enough to hold any possible name.
static void SplitArgument(const char* arg, char* buffer, int buffer_size,
                          const char** name, const char** value,
                          bool* negated) {
  *name = nullptr;
  *value = nullptr;
  *negated = false;

  if (arg != nullptr && *arg == '-') {
    // find the begin of the flag name
    arg++;  // remove 1st '-'
    if (*arg == '-') {
      arg++;                    // remove 2nd '-'
      DCHECK_NE('\0', arg[0]);  // '--' arguments are handled in the caller.
    }
    if (arg[0] == 'n' && arg[1] == 'o') {
      arg += 2;                                 // remove "no"
      if (NormalizeChar(arg[0]) == '-') arg++;  // remove dash after "no".
      *negated = true;
    }
    *name = arg;

    // find the end of the flag name
    while (*arg != '\0' && *arg != '=') arg++;

    // get the value if any
    if (*arg == '=') {
      // make a copy so we can NUL-terminate flag name
      size_t n = arg - *name;
      CHECK(n < static_cast<size_t>(buffer_size));  // buffer is too small
      MemCopy(buffer, *name, n);
      buffer[n] = '\0';
      *name = buffer;
      // get the value
      *value = arg + 1;
    }
  }
}

template <typename T>
bool TryParseUnsigned(Flag* flag, const char* arg, const char* value,
                      char** endp, T* out_val) {
  // We do not use strtoul because it accepts negative numbers.
  // Rejects values >= 2**63 when T is 64 bits wide but that
  // seems like an acceptable trade-off.
  uint64_t max = static_cast<uint64_t>(std::numeric_limits<T>::max());
  errno = 0;
  int64_t val = static_cast<int64_t>(strtoll(value, endp, 10));
  if (val < 0 || static_cast<uint64_t>(val) > max || errno != 0) {
    PrintF(stderr,
           "Error: Value for flag %s of type %s is out of bounds "
           "[0-%" PRIu64 "]\n",
           arg, Type2String(flag->type()), max);
    return false;
  }
  *out_val = static_cast<T>(val);
  return true;
}

// static
int FlagList::SetFlagsFromCommandLine(int* argc, char** argv, bool remove_flags,
                                      HelpOptions help_options) {
  int return_code = 0;
  // parse arguments
  for (int i = 1; i < *argc;) {
    int j = i;  // j > 0
    const char* arg = argv[i++];

    // split arg into flag components
    char buffer[1 * KB];
    const char* name;
    const char* value;
    bool negated;
    SplitArgument(arg, buffer, sizeof buffer, &name, &value, &negated);

    if (name != nullptr) {
      // lookup the flag
      Flag* flag = FindFlagByName(name);
      if (flag == nullptr) {
        if (remove_flags) {
          // We don't recognize this flag but since we're removing
          // the flags we recognize we assume that the remaining flags
          // will be processed somewhere else so this flag might make
          // sense there.
          continue;
        } else {
          PrintF(stderr, "Error: unrecognized flag %s\n", arg);
          return_code = j;
          break;
        }
      }

      // if we still need a flag value, use the next argument if available
      if (flag->type() != Flag::TYPE_BOOL &&
          flag->type() != Flag::TYPE_MAYBE_BOOL && value == nullptr) {
        if (i < *argc) {
          value = argv[i++];
        }
        if (!value) {
          PrintF(stderr, "Error: missing value for flag %s of type %s\n", arg,
                 Type2String(flag->type()));
          return_code = j;
          break;
        }
      }

      // set the flag
      char* endp = const_cast<char*>("");  // *endp is only read
      switch (flag->type()) {
        case Flag::TYPE_BOOL:
          flag->set_bool_variable(!negated, Flag::SetBy::kCommandLine);
          break;
        case Flag::TYPE_MAYBE_BOOL:
          flag->set_maybe_bool_variable(!negated, Flag::SetBy::kCommandLine);
          break;
        case Flag::TYPE_INT:
          flag->set_int_variable(static_cast<int>(strtol(value, &endp, 10)),
                                 Flag::SetBy::kCommandLine);
          break;
        case Flag::TYPE_UINT: {
          unsigned int parsed_value;
          if (TryParseUnsigned(flag, arg, value, &endp, &parsed_value)) {
            flag->set_uint_variable(parsed_value, Flag::SetBy::kCommandLine);
          } else {
            return_code = j;
          }
          break;
        }
        case Flag::TYPE_UINT64: {
          uint64_t parsed_value;
          if (TryParseUnsigned(flag, arg, value, &endp, &parsed_value)) {
            flag->set_uint64_variable(parsed_value, Flag::SetBy::kCommandLine);
          } else {
            return_code = j;
          }
          break;
        }
        case Flag::TYPE_FLOAT:
          flag->set_float_variable(strtod(value, &endp),
                                   Flag::SetBy::kCommandLine);
          break;
        case Flag::TYPE_SIZE_T: {
          size_t parsed_value;
          if (TryParseUnsigned(flag, arg, value, &endp, &parsed_value)) {
            flag->set_size_t_variable(parsed_value, Flag::SetBy::kCommandLine);
          } else {
            return_code = j;
          }
          break;
        }
        case Flag::TYPE_STRING:
          flag->set_string_value(value ? StrDup(value) : nullptr, true,
                                 Flag::SetBy::kCommandLine);
          break;
      }

      // handle errors
      bool is_bool_type = flag->type() == Flag::TYPE_BOOL ||
                          flag->type() == Flag::TYPE_MAYBE_BOOL;
      if ((is_bool_type && value != nullptr) || (!is_bool_type && negated) ||
          *endp != '\0') {
        // TODO(neis): TryParseUnsigned may return with {*endp == '\0'} even in
        // an error case.
        PrintF(stderr, "Error: illegal value for flag %s of type %s\n", arg,
               Type2String(flag->type()));
        if (is_bool_type) {
          PrintF(stderr,
                 "To set or unset a boolean flag, use --flag or --no-flag.\n");
        }
        return_code = j;
        break;
      }

      // remove the flag & value from the command
      if (remove_flags) {
        while (j < i) {
          argv[j++] = nullptr;
        }
      }
    }
  }

  if (v8_flags.help) {
    if (help_options.HasUsage()) {
      PrintF(stdout, "%s", help_options.usage());
    }
    PrintHelp();
    if (help_options.ShouldExit()) {
      exit(0);
    }
  }

  if (remove_flags) {
    // shrink the argument list
    int j = 1;
    for (int i = 1; i < *argc; i++) {
      if (argv[i] != nullptr) argv[j++] = argv[i];
    }
    *argc = j;
  } else if (return_code != 0) {
    if (return_code + 1 < *argc) {
      PrintF(stderr, "The remaining arguments were ignored:");
      for (int i = return_code + 1; i < *argc; ++i) {
        PrintF(stderr, " %s", argv[i]);
      }
      PrintF(stderr, "\n");
    }
  }
  if (return_code != 0) PrintF(stderr, "Try --help for options\n");

  return return_code;
}

static char* SkipWhiteSpace(char* p) {
  while (*p != '\0' && isspace(*p) != 0) p++;
  return p;
}

static char* SkipBlackSpace(char* p) {
  while (*p != '\0' && isspace(*p) == 0) p++;
  return p;
}

// static
int FlagList::SetFlagsFromString(const char* str, size_t len) {
  // make a 0-terminated copy of str
  std::unique_ptr<char[]> copy0{NewArray<char>(len + 1)};
  MemCopy(copy0.get(), str, len);
  copy0[len] = '\0';

  // strip leading white space
  char* copy = SkipWhiteSpace(copy0.get());

  // count the number of 'arguments'
  int argc = 1;  // be compatible with SetFlagsFromCommandLine()
  for (char* p = copy; *p != '\0'; argc++) {
    p = SkipBlackSpace(p);
    p = SkipWhiteSpace(p);
  }

  // allocate argument array
  base::ScopedVector<char*> argv(argc);

  // split the flags string into arguments
  argc = 1;  // be compatible with SetFlagsFromCommandLine()
  for (char* p = copy; *p != '\0'; argc++) {
    argv[argc] = p;
    p = SkipBlackSpace(p);
    if (*p != '\0') *p++ = '\0';  // 0-terminate argument
    p = SkipWhiteSpace(p);
  }

  return SetFlagsFromCommandLine(&argc, argv.begin(), false);
}

// static
void FlagList::FreezeFlags() {
  // Disallow changes via the API by setting {flags_frozen}.
  flags_frozen.store(true, std::memory_order_relaxed);
  // Also memory-protect the memory that holds the flag values. This makes it
  // impossible for attackers to overwrite values, except if they find a way to
  // first unprotect the memory again.
  // Note that for string flags we only protect the pointer itself, but not the
  // string storage. TODO(12887): Fix this.
  base::OS::SetDataReadOnly(&v8_flags, sizeof(v8_flags));
}

// static
bool FlagList::IsFrozen() {
  return flags_frozen.load(std::memory_order_relaxed);
}

// static
void FlagList::ReleaseDynamicAllocations() {
  flag_hash = 0;
  for (size_t i = 0; i < kNumFlags; ++i) {
    flags[i].ReleaseDynamicAllocations();
  }
}

// static
void FlagList::PrintHelp() {
  CpuFeatures::Probe(false);
  CpuFeatures::PrintTarget();
  CpuFeatures::PrintFeatures();

  StdoutStream os;
  os << "The following syntax for options is accepted (both '-' and '--' are "
        "ok):\n"
        "  --flag        (bool flags only)\n"
        "  --no-flag     (bool flags only)\n"
        "  --flag=value  (non-bool flags only, no spaces around '=')\n"
        "  --flag value  (non-bool flags only)\n"
        "  --            (captures all remaining args in JavaScript)\n\n";
  os << "Options:\n";

  for (const Flag& f : flags) {
    os << "  " << FlagName{f.name()} << " (" << f.comment() << ")\n"
       << "        type: " << Type2String(f.type()) << "  default: " << f
       << "\n";
  }
}

// static
void FlagList::PrintValues() {
  StdoutStream os;
  for (const Flag& f : flags) {
    os << f << "\n";
  }
}

namespace {

class ImplicationProcessor {
 public:
  // Returns {true} if any flag value was changed.
  bool EnforceImplications() {
    bool changed = false;
#define FLAG_MODE_DEFINE_IMPLICATIONS
#include "src/flags/flag-definitions.h"  // NOLINT(build/include)
#undef FLAG_MODE_DEFINE_IMPLICATIONS
    CheckForCycle();
    return changed;
  }

 private:
  // Called from {DEFINE_*_IMPLICATION} in flag-definitions.h.
  template <class T>
  bool TriggerImplication(bool premise, const char* premise_name,
                          FlagValue<T>* conclusion_value,
                          const char* conclusion_name, T value,
                          bool weak_implication) {
    if (!premise) return false;
    Flag* conclusion_flag = FindFlagByName(conclusion_name);
    if (!conclusion_flag->CheckFlagChange(
            weak_implication ? Flag::SetBy::kWeakImplication
                             : Flag::SetBy::kImplication,
            conclusion_value->value() != value, premise_name)) {
      return false;
    }
    if (V8_UNLIKELY(num_iterations_ >= kMaxNumIterations)) {
      cycle_ << "\n" << FlagName{premise_name} << " -> ";
      if constexpr (std::is_same_v<T, bool>) {
        cycle_ << FlagName{conclusion_flag->name(), !value};
      } else {
        cycle_ << FlagName{conclusion_flag->name()} << " = " << value;
      }
    }
    *conclusion_value = value;
    return true;
  }

  // Called from {DEFINE_*_IMPLICATION} in flag-definitions.h, when the
  // conclusion flag is read-only (note this is the const overload of the
  // function just above).
  template <class T>
  bool TriggerImplication(bool premise, const char* premise_name,
                          const FlagValue<T>* conclusion_value,
                          const char* conclusion_name, T value,
                          bool weak_implication) {
    if (!premise) return false;
    Flag* conclusion_flag = FindFlagByName(conclusion_name);
    // Because this is the `const FlagValue*` overload:
    DCHECK(conclusion_flag->IsReadOnly());
    if (!conclusion_flag->CheckFlagChange(
            weak_implication ? Flag::SetBy::kWeakImplication
                             : Flag::SetBy::kImplication,
            conclusion_value->value() != value, premise_name)) {
      return false;
    }
    // Must equal the default value, otherwise CheckFlagChange should've
    // returned false.
    DCHECK_EQ(value, conclusion_flag->GetDefaultValue<T>());
    return true;
  }

  void CheckForCycle() {
    // Make sure flag implications reach a fixed point within
    // {kMaxNumIterations} iterations.
    if (++num_iterations_ < kMaxNumIterations) return;

    if (num_iterations_ == kMaxNumIterations) {
      // Start cycle detection.
      DCHECK(cycle_.str().empty());
      cycle_start_hash_ = ComputeFlagListHash();
      return;
    }

    DCHECK_NE(0, cycle_start_hash_);
    // We accept spurious but highly unlikely hash collisions here. This is
    // only a debug output anyway.
    if (ComputeFlagListHash() == cycle_start_hash_) {
      DCHECK(!cycle_.str().empty());
      // {cycle_} starts with a newline.
      FATAL("Cycle in flag implications:%s", cycle_.str().c_str());
    }
    // We must have found a cycle within another {kMaxNumIterations}.
    DCHECK_GE(2 * kMaxNumIterations, num_iterations_);
  }

  static constexpr size_t kMaxNumIterations = kNumFlags;
  size_t num_iterations_ = 0;
  // After {kMaxNumIterations} we use the following two fields for finding
  // cycles in flags.
  uint32_t cycle_start_hash_;
  std::ostringstream cycle_;
};

}  // namespace

// static
void FlagList::EnforceFlagImplications() {
  for (ImplicationProcessor proc; proc.EnforceImplications();) {
    // Continue processing (recursive) implications. The processor has an
    // internal limit to avoid endless recursion.
  }
}

// static
uint32_t FlagList::Hash() {
  if (uint32_t hash = flag_hash.load(std::memory_order_relaxed)) return hash;
  uint32_t hash = ComputeFlagListHash();
  flag_hash.store(hash, std::memory_order_relaxed);
  return hash;
}

// static
void FlagList::ResetFlagHash() {
  // If flags are frozen, we should not need to reset the hash since we cannot
  // change flag values anyway.
  CHECK(!IsFrozen());
  flag_hash = 0;
}

}  // namespace v8::internal

Zerion Mini Shell 1.0