%PDF- %PDF-
Direktori : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/handles/ |
Current File : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/handles/handles.h |
// Copyright 2011 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_HANDLES_HANDLES_H_ #define V8_HANDLES_HANDLES_H_ #include <type_traits> #include "src/base/functional.h" #include "src/base/macros.h" #include "src/common/checks.h" #include "src/common/globals.h" #include "src/objects/tagged.h" #include "src/zone/zone.h" #ifdef V8_ENABLE_DIRECT_HANDLE #include "src/flags/flags.h" #endif namespace v8 { class HandleScope; namespace internal { // Forward declarations. class HandleScopeImplementer; class Isolate; class LocalHeap; class LocalIsolate; class TaggedIndex; class Object; class OrderedHashMap; class OrderedHashSet; class OrderedNameDictionary; class RootVisitor; class SmallOrderedHashMap; class SmallOrderedHashSet; class SmallOrderedNameDictionary; class SwissNameDictionary; class WasmExportedFunctionData; constexpr Address kTaggedNullAddress = 0x1; // ---------------------------------------------------------------------------- // Base class for Handle instantiations. Don't use directly. class HandleBase { public: // Check if this handle refers to the exact same object as the other handle. V8_INLINE bool is_identical_to(const HandleBase& that) const; V8_INLINE bool is_null() const { return location_ == nullptr; } // Returns the raw address where this handle is stored. This should only be // used for hashing handles; do not ever try to dereference it. V8_INLINE Address address() const { return base::bit_cast<Address>(location_); } // Returns the address to where the raw pointer is stored. // TODO(leszeks): This should probably be a const Address*, to encourage using // PatchValue for modifying the handle's value. V8_INLINE Address* location() const { SLOW_DCHECK(location_ == nullptr || IsDereferenceAllowed()); return location_; } protected: V8_INLINE explicit HandleBase(Address* location) : location_(location) {} V8_INLINE explicit HandleBase(Address object, Isolate* isolate); V8_INLINE explicit HandleBase(Address object, LocalIsolate* isolate); V8_INLINE explicit HandleBase(Address object, LocalHeap* local_heap); #ifdef DEBUG bool V8_EXPORT_PRIVATE IsDereferenceAllowed() const; #else V8_INLINE bool V8_EXPORT_PRIVATE IsDereferenceAllowed() const { return true; } #endif // DEBUG // This uses type Address* as opposed to a pointer type to a typed // wrapper class, because it doesn't point to instances of such a // wrapper class. Design overview: https://goo.gl/Ph4CGz Address* location_; }; // ---------------------------------------------------------------------------- // A Handle provides a reference to an object that survives relocation by // the garbage collector. // // Handles are only valid within a HandleScope. When a handle is created // for an object a cell is allocated in the current HandleScope. // // Also note that Handles do not provide default equality comparison or hashing // operators on purpose. Such operators would be misleading, because intended // semantics is ambiguous between Handle location and object identity. Instead // use either {is_identical_to} or {location} explicitly. template <typename T> class Handle final : public HandleBase { public: V8_INLINE Handle() : HandleBase(nullptr) {} V8_INLINE explicit Handle(Address* location) : HandleBase(location) { // TODO(jkummerow): Runtime type check here as a SLOW_DCHECK? } V8_INLINE Handle(Tagged<T> object, Isolate* isolate); V8_INLINE Handle(Tagged<T> object, LocalIsolate* isolate); V8_INLINE Handle(Tagged<T> object, LocalHeap* local_heap); // Allocate a new handle for the object. V8_INLINE static Handle<T> New(Tagged<T> object, Isolate* isolate); // Constructor for handling automatic up casting. // Ex. Handle<JSFunction> can be passed when Handle<Object> is expected. template <typename S, typename = std::enable_if_t<is_subtype_v<S, T>>> V8_INLINE Handle(Handle<S> handle) : HandleBase(handle) {} // Access a member of the T object referenced by this handle. // // This is actually a double dereference -- first it dereferences the Handle // pointing to a Tagged<T>, and then continues through Tagged<T>::operator->. // This means that this is only permitted for Tagged<T> with an operator->, // i.e. for on-heap object T. V8_INLINE Tagged<T> operator->() const { if constexpr (is_subtype_v<T, HeapObject>) { return **this; } else { // `static_assert(false)` in this else clause was an unconditional error // before CWG2518. See https://reviews.llvm.org/D144285 #if defined(__clang__) && __clang_major__ >= 17 // For non-HeapObjects, there's no on-heap object to dereference, so // disallow using operator->. // // If you got an error here and want to access the Tagged<T>, use // operator* -- e.g. for `Tagged<Smi>::value()`, use `(*handle).value()`. static_assert( false, "This handle does not reference a heap object. Use `(*handle).foo`."); #endif } } V8_INLINE Tagged<T> operator*() const { // This static type check also fails for forward class declarations. We // check on access instead of on construction to allow Handles to forward // declared types. static_assert(is_taggable_v<T>, "static type violation"); // Direct construction of Tagged from address, without a type check, because // we rather trust Handle<T> to contain a T than include all the respective // -inl.h headers for SLOW_DCHECKs. SLOW_DCHECK(IsDereferenceAllowed()); return Tagged<T>(*location()); } template <typename S> inline static const Handle<T> cast(Handle<S> that); // Consider declaring values that contain empty handles as // MaybeHandle to force validation before being used as handles. static const Handle<T> null() { return Handle<T>(); } // Location equality. bool equals(Handle<T> other) const { return address() == other.address(); } // Patches this Handle's value, in-place, with a new value. All handles with // the same location will see this update. void PatchValue(Tagged<T> new_value) { SLOW_DCHECK(location_ != nullptr && IsDereferenceAllowed()); *location_ = new_value.ptr(); } // Provide function object for location equality comparison. struct equal_to { V8_INLINE bool operator()(Handle<T> lhs, Handle<T> rhs) const { return lhs.equals(rhs); } }; // Provide function object for location hashing. struct hash { V8_INLINE size_t operator()(Handle<T> const& handle) const { return base::hash<Address>()(handle.address()); } }; private: // Handles of different classes are allowed to access each other's location_. template <typename> friend class Handle; // MaybeHandle is allowed to access location_. template <typename> friend class MaybeHandle; }; template <typename T> std::ostream& operator<<(std::ostream& os, Handle<T> handle); // ---------------------------------------------------------------------------- // A stack-allocated class that governs a number of local handles. // After a handle scope has been created, all local handles will be // allocated within that handle scope until either the handle scope is // deleted or another handle scope is created. If there is already a // handle scope and a new one is created, all allocations will take // place in the new handle scope until it is deleted. After that, // new handles will again be allocated in the original handle scope. // // After the handle scope of a local handle has been deleted the // garbage collector will no longer track the object stored in the // handle and may deallocate it. The behavior of accessing a handle // for which the handle scope has been deleted is undefined. class V8_NODISCARD HandleScope { public: explicit V8_INLINE HandleScope(Isolate* isolate); inline HandleScope(HandleScope&& other) V8_NOEXCEPT; HandleScope(const HandleScope&) = delete; HandleScope& operator=(const HandleScope&) = delete; // Allow placement new. void* operator new(size_t size, void* storage) { return ::operator new(size, storage); } // Prevent heap allocation or illegal handle scopes. void* operator new(size_t size) = delete; void operator delete(void* size_t) = delete; V8_INLINE ~HandleScope(); inline HandleScope& operator=(HandleScope&& other) V8_NOEXCEPT; // Counts the number of allocated handles. V8_EXPORT_PRIVATE static int NumberOfHandles(Isolate* isolate); // Creates a new handle with the given value. V8_INLINE static Address* CreateHandle(Isolate* isolate, Address value); // Deallocates any extensions used by the current scope. V8_EXPORT_PRIVATE static void DeleteExtensions(Isolate* isolate); static Address current_next_address(Isolate* isolate); static Address current_limit_address(Isolate* isolate); static Address current_level_address(Isolate* isolate); // Closes the HandleScope (invalidating all handles // created in the scope of the HandleScope) and returns // a Handle backed by the parent scope holding the // value of the argument handle. template <typename T> Handle<T> CloseAndEscape(Handle<T> handle_value); Isolate* isolate() { return isolate_; } // Limit for number of handles with --check-handle-count. This is // large enough to compile natives and pass unit tests with some // slack for future changes to natives. static const int kCheckHandleThreshold = 30 * 1024; private: Isolate* isolate_; Address* prev_next_; Address* prev_limit_; // Close the handle scope resetting limits to a previous state. static V8_INLINE void CloseScope(Isolate* isolate, Address* prev_next, Address* prev_limit); // Extend the handle scope making room for more handles. V8_EXPORT_PRIVATE V8_NOINLINE static Address* Extend(Isolate* isolate); #ifdef ENABLE_HANDLE_ZAPPING // Zaps the handles in the half-open interval [start, end). V8_EXPORT_PRIVATE static void ZapRange(Address* start, Address* end); #endif friend class v8::HandleScope; friend class HandleScopeImplementer; friend class Isolate; friend class LocalHandles; friend class LocalHandleScope; friend class PersistentHandles; }; // Forward declaration for CanonicalHandlesMap. template <typename V, class AllocationPolicy> class IdentityMap; using CanonicalHandlesMap = IdentityMap<Address*, ZoneAllocationPolicy>; // Seal off the current HandleScope so that new handles can only be created // if a new HandleScope is entered. class V8_NODISCARD SealHandleScope final { public: #ifndef DEBUG explicit SealHandleScope(Isolate* isolate) {} ~SealHandleScope() = default; #else explicit inline SealHandleScope(Isolate* isolate); inline ~SealHandleScope(); private: Isolate* isolate_; Address* prev_limit_; int prev_sealed_level_; #endif }; struct HandleScopeData final { static constexpr uint32_t kSizeInBytes = 2 * kSystemPointerSize + 2 * kInt32Size; Address* next; Address* limit; int level; int sealed_level; void Initialize() { next = limit = nullptr; sealed_level = level = 0; } }; static_assert(HandleScopeData::kSizeInBytes == sizeof(HandleScopeData)); #ifdef V8_ENABLE_DIRECT_HANDLE // Direct handles should not be used without conservative stack scanning, // as this would break the correctness of the GC. static_assert(V8_ENABLE_CONSERVATIVE_STACK_SCANNING_BOOL); // ---------------------------------------------------------------------------- // Base class for DirectHandle instantiations. Don't use directly. class DirectHandleBase { public: // Check if this handle refers to the exact same object as the other handle. V8_INLINE bool is_identical_to(const DirectHandleBase& that) const; V8_INLINE bool is_null() const { return obj_ == kTaggedNullAddress; } V8_INLINE Address address() const { return obj_; } protected: V8_INLINE explicit DirectHandleBase(Address object) : obj_(object) { #ifdef DEBUG VerifyOnStackAndMainThread(); #endif } V8_INLINE explicit DirectHandleBase(Address object, Isolate* isolate); V8_INLINE explicit DirectHandleBase(Address object, LocalIsolate* isolate); V8_INLINE explicit DirectHandleBase(Address object, LocalHeap* local_heap); #ifdef DEBUG bool V8_EXPORT_PRIVATE IsDereferenceAllowed() const; V8_EXPORT_PRIVATE void VerifyOnStackAndMainThread() const; #else V8_INLINE bool V8_EXPORT_PRIVATE IsDereferenceAllowed() const { return true; } #endif // DEBUG // This is a direct pointer to either a tagged object or SMI. Design overview: // https://docs.google.com/document/d/1uRGYQM76vk1fc_aDqDH3pm2qhaJtnK2oyzeVng4cS6I/ Address obj_; }; // ---------------------------------------------------------------------------- // A DirectHandle provides a reference to an object without an intermediate // pointer. // // A DirectHandle is a simple wrapper around a tagged pointer to a heap object // or a SMI. Its methods are symmetrical with Handle, so that Handles can be // easily migrated. // // DirectHandles are intended to be used with conservative stack scanning, as // they do not provide a mechanism for keeping an object alive across a garbage // collection. // // Further motivation is explained in the design doc: // https://docs.google.com/document/d/1uRGYQM76vk1fc_aDqDH3pm2qhaJtnK2oyzeVng4cS6I/ template <typename T> class DirectHandle final : public DirectHandleBase { public: V8_INLINE DirectHandle() : DirectHandle(kTaggedNullAddress) {} V8_INLINE explicit DirectHandle(Address object) : DirectHandleBase(object) {} V8_INLINE explicit DirectHandle(Tagged<T> object); V8_INLINE DirectHandle(Tagged<T> object, Isolate* isolate) : DirectHandle(object) {} V8_INLINE DirectHandle(Tagged<T> object, LocalIsolate* isolate) : DirectHandle(object) {} V8_INLINE DirectHandle(Tagged<T> object, LocalHeap* local_heap) : DirectHandle(object) {} V8_INLINE explicit DirectHandle(Address* address) : DirectHandle(address == nullptr ? kTaggedNullAddress : *address) {} V8_INLINE static DirectHandle<T> New(Tagged<T> object, Isolate* isolate) { return DirectHandle<T>(object); } // Constructor for handling automatic up casting. // Ex. DirectHandle<JSFunction> can be passed when DirectHandle<Object> is // expected. template <typename S, typename = std::enable_if_t<is_subtype_v<S, T>>> V8_INLINE DirectHandle(DirectHandle<S> handle) : DirectHandle(handle.obj_) {} template <typename S, typename = std::enable_if_t<is_subtype_v<S, T>>> V8_INLINE DirectHandle(Handle<S> handle) : DirectHandle(handle.location() != nullptr ? *handle.location() : kTaggedNullAddress) {} V8_INLINE Tagged<T> operator->() const { if constexpr (std::is_base_of_v<HeapObject, T> || std::is_convertible_v<T*, HeapObject*>) { return **this; } else { // For non-HeapObjects, there's no on-heap object to dereference, so // disallow using operator->. // // If you got an error here and want to access the Tagged<T>, use // operator* -- e.g. for `Tagged<Smi>::value()`, use `(*handle).value()`. static_assert( false, "This handle does not reference a heap object. Use `(*handle).foo`."); } } V8_INLINE Tagged<T> operator*() const { // This static type check also fails for forward class declarations. We // check on access instead of on construction to allow DirectHandles to // forward declared types. static_assert(is_taggable_v<T>, "static type violation"); // Direct construction of Tagged from address, without a type check, because // we rather trust DirectHandle<T> to contain a T than include all the // respective -inl.h headers for SLOW_DCHECKs. SLOW_DCHECK(IsDereferenceAllowed()); return Tagged<T>(address()); } template <typename S> V8_INLINE static const DirectHandle<T> cast(DirectHandle<S> that); template <typename S> V8_INLINE static const DirectHandle<T> cast(Handle<S> that); // Consider declaring values that contain empty handles as // MaybeDirectHandle to force validation before being used as handles. V8_INLINE static const DirectHandle<T> null() { return DirectHandle<T>(); } private: // DirectHandles of different classes are allowed to access each other's // obj_. template <typename> friend class DirectHandle; // MaybeDirectHandle is allowed to access obj_. template <typename> friend class MaybeDirectHandle; }; template <typename T> std::ostream& operator<<(std::ostream& os, DirectHandle<T> handle); #endif // V8_ENABLE_DIRECT_HANDLE } // namespace internal } // namespace v8 #endif // V8_HANDLES_HANDLES_H_