%PDF- %PDF-
Direktori : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/heap/ |
Current File : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/heap/factory.h |
// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_HEAP_FACTORY_H_ #define V8_HEAP_FACTORY_H_ // Clients of this interface shouldn't depend on lots of heap internals. // Do not include anything from src/heap here! #include "src/base/strings.h" #include "src/base/vector.h" #include "src/baseline/baseline.h" #include "src/builtins/builtins.h" #include "src/common/globals.h" #include "src/execution/messages.h" #include "src/handles/handles.h" #include "src/handles/maybe-handles.h" #include "src/heap/factory-base.h" #include "src/heap/heap.h" // TODO(leszeks): Remove this by forward declaring JSRegExp::Flags. #include "src/objects/js-regexp.h" namespace unibrow { enum class Utf8Variant : uint8_t; } namespace v8 { namespace internal { // Forward declarations. class AliasedArgumentsEntry; class ObjectBoilerplateDescription; class BasicBlockProfilerData; class BreakPoint; class BreakPointInfo; class CallableTask; class CallbackTask; class CallHandlerInfo; class CallSiteInfo; class Expression; class EmbedderDataArray; class ArrayBoilerplateDescription; class CoverageInfo; class DebugInfo; class DeoptimizationData; class DeoptimizationLiteralArray; class EnumCache; class FreshlyAllocatedBigInt; class Isolate; class JSArrayBufferView; class JSDataView; class JSGeneratorObject; class JSMap; class JSMapIterator; class JSModuleNamespace; class JSPromise; class JSProxy; class JSSet; class JSSetIterator; class JSTypedArray; class JSWeakMap; class LoadHandler; class NativeContext; class PromiseResolveThenableJobTask; class RegExpMatchInfo; class ScriptContextTable; template <typename> class Signature; class SourceTextModule; class StackFrameInfo; class StringSet; class StoreHandler; class SyntheticModule; class TemplateObjectDescription; class WasmCapiFunctionData; class WasmExportedFunctionData; class WasmJSFunctionData; class WeakCell; #if V8_ENABLE_WEBASSEMBLY namespace wasm { class ArrayType; class StructType; struct WasmElemSegment; class WasmValue; enum class OnResume : int; enum Suspend : bool; enum Promise : bool; class ValueType; using FunctionSig = Signature<ValueType>; } // namespace wasm #endif enum class SharedFlag : uint8_t; enum class InitializedFlag : uint8_t; enum FunctionMode { kWithNameBit = 1 << 0, kWithWritablePrototypeBit = 1 << 1, kWithReadonlyPrototypeBit = 1 << 2, kWithPrototypeBits = kWithWritablePrototypeBit | kWithReadonlyPrototypeBit, // Without prototype. FUNCTION_WITHOUT_PROTOTYPE = 0, METHOD_WITH_NAME = kWithNameBit, // With writable prototype. FUNCTION_WITH_WRITEABLE_PROTOTYPE = kWithWritablePrototypeBit, FUNCTION_WITH_NAME_AND_WRITEABLE_PROTOTYPE = kWithWritablePrototypeBit | kWithNameBit, // With readonly prototype. FUNCTION_WITH_READONLY_PROTOTYPE = kWithReadonlyPrototypeBit, FUNCTION_WITH_NAME_AND_READONLY_PROTOTYPE = kWithReadonlyPrototypeBit | kWithNameBit, }; enum class ArrayStorageAllocationMode { DONT_INITIALIZE_ARRAY_ELEMENTS, INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE }; // Interface for handle based allocation. class V8_EXPORT_PRIVATE Factory : public FactoryBase<Factory> { public: inline ReadOnlyRoots read_only_roots() const; Handle<Oddball> NewOddball(Handle<Map> map, const char* to_string, Handle<Object> to_number, const char* type_of, uint8_t kind); Handle<Hole> NewHole(); // Marks self references within code generation. Handle<Oddball> NewSelfReferenceMarker(); // Marks references to a function's basic-block usage counters array during // code generation. Handle<Oddball> NewBasicBlockCountersMarker(); // Allocates a property array initialized with undefined values. Handle<PropertyArray> NewPropertyArray( int length, AllocationType allocation = AllocationType::kYoung); // Tries allocating a fixed array initialized with undefined values. // In case of an allocation failure (OOM) an empty handle is returned. // The caller has to manually signal an // v8::internal::Heap::FatalProcessOutOfMemory typically by calling // NewFixedArray as a fallback. V8_WARN_UNUSED_RESULT MaybeHandle<FixedArray> TryNewFixedArray( int length, AllocationType allocation = AllocationType::kYoung); // Allocates a closure feedback cell array whose feedback cells are // initialized with undefined values. Handle<ClosureFeedbackCellArray> NewClosureFeedbackCellArray(int num_slots); // Allocates a feedback vector whose slots are initialized with undefined // values. Handle<FeedbackVector> NewFeedbackVector( Handle<SharedFunctionInfo> shared, Handle<ClosureFeedbackCellArray> closure_feedback_cell_array, Handle<FeedbackCell> parent_feedback_cell); // Allocates a clean embedder data array with given capacity. Handle<EmbedderDataArray> NewEmbedderDataArray(int length); // Allocate a new fixed double array with hole values. Handle<FixedArrayBase> NewFixedDoubleArrayWithHoles(int size); // Allocates a NameDictionary with an internal capacity calculated such that // |at_least_space_for| entries can be added without reallocating. Handle<NameDictionary> NewNameDictionary(int at_least_space_for); Handle<OrderedHashSet> NewOrderedHashSet(); Handle<OrderedHashMap> NewOrderedHashMap(); Handle<SmallOrderedHashSet> NewSmallOrderedHashSet( int capacity = kSmallOrderedHashSetMinCapacity, AllocationType allocation = AllocationType::kYoung); Handle<SmallOrderedHashMap> NewSmallOrderedHashMap( int capacity = kSmallOrderedHashMapMinCapacity, AllocationType allocation = AllocationType::kYoung); Handle<SmallOrderedNameDictionary> NewSmallOrderedNameDictionary( int capacity = kSmallOrderedHashMapMinCapacity, AllocationType allocation = AllocationType::kYoung); Handle<SwissNameDictionary> CreateCanonicalEmptySwissNameDictionary(); // Create a new PrototypeInfo struct. Handle<PrototypeInfo> NewPrototypeInfo(); // Create a new EnumCache struct. Handle<EnumCache> NewEnumCache( Handle<FixedArray> keys, Handle<FixedArray> indices, AllocationType allocation = AllocationType::kOld); // Create a new Tuple2 struct. Handle<Tuple2> NewTuple2Uninitialized(AllocationType allocation); Handle<Tuple2> NewTuple2(Handle<Object> value1, Handle<Object> value2, AllocationType allocation); // Create a new PropertyDescriptorObject struct. Handle<PropertyDescriptorObject> NewPropertyDescriptorObject(); // Finds the internalized copy for string in the string table. // If not found, a new string is added to the table and returned. Handle<String> InternalizeUtf8String(base::Vector<const char> str); Handle<String> InternalizeUtf8String(const char* str) { return InternalizeUtf8String(base::CStrVector(str)); } // Import InternalizeString overloads from base class. using FactoryBase::InternalizeString; Handle<String> InternalizeString(base::Vector<const char> str, bool convert_encoding = false) { return InternalizeString(base::Vector<const uint8_t>::cast(str)); } Handle<String> InternalizeString(const char* str, bool convert_encoding = false) { return InternalizeString(base::OneByteVector(str)); } template <typename SeqString> Handle<String> InternalizeString(Handle<SeqString>, int from, int length, bool convert_encoding = false); // Internalized strings are created in the old generation (data space). inline Handle<String> InternalizeString(Handle<String> string); inline Handle<Name> InternalizeName(Handle<Name> name); // String creation functions. Most of the string creation functions take // an AllocationType argument to optionally request that they be // allocated in the old generation. Otherwise the default is // AllocationType::kYoung. // // Creates a new String object. There are two String encodings: one-byte and // two-byte. One should choose between the three string factory functions // based on the encoding of the string buffer that the string is // initialized from. // - ...FromOneByte (defined in FactoryBase) initializes the string from a // buffer that is Latin1 encoded (it does not check that the buffer is // Latin1 encoded) and the result will be Latin1 encoded. // - ...FromUtf8 initializes the string from a buffer that is UTF-8 // encoded. If the characters are all ASCII characters, the result // will be Latin1 encoded, otherwise it will converted to two-byte. // - ...FromTwoByte initializes the string from a buffer that is two-byte // encoded. If the characters are all Latin1 characters, the result // will be converted to Latin1, otherwise it will be left as two-byte. // // One-byte strings are pretenured when used as keys in the SourceCodeCache. template <size_t N> inline Handle<String> NewStringFromStaticChars( const char (&str)[N], AllocationType allocation = AllocationType::kYoung); inline Handle<String> NewStringFromAsciiChecked( const char* str, AllocationType allocation = AllocationType::kYoung); // UTF8 strings are pretenured when used for regexp literal patterns and // flags in the parser. V8_WARN_UNUSED_RESULT MaybeHandle<String> NewStringFromUtf8( base::Vector<const char> str, AllocationType allocation = AllocationType::kYoung); V8_WARN_UNUSED_RESULT MaybeHandle<String> NewStringFromUtf8( base::Vector<const uint8_t> str, unibrow::Utf8Variant utf8_variant, AllocationType allocation = AllocationType::kYoung); #if V8_ENABLE_WEBASSEMBLY V8_WARN_UNUSED_RESULT MaybeHandle<String> NewStringFromUtf8( Handle<WasmArray> array, uint32_t begin, uint32_t end, unibrow::Utf8Variant utf8_variant, AllocationType allocation = AllocationType::kYoung); V8_WARN_UNUSED_RESULT MaybeHandle<String> NewStringFromUtf8( Handle<ByteArray> array, uint32_t start, uint32_t end, unibrow::Utf8Variant utf8_variant, AllocationType allocation = AllocationType::kYoung); V8_WARN_UNUSED_RESULT MaybeHandle<String> NewStringFromUtf16( Handle<WasmArray> array, uint32_t start, uint32_t end, AllocationType allocation = AllocationType::kYoung); #endif // V8_ENABLE_WEBASSEMBLY V8_WARN_UNUSED_RESULT MaybeHandle<String> NewStringFromUtf8SubString( Handle<SeqOneByteString> str, int begin, int end, AllocationType allocation = AllocationType::kYoung); V8_WARN_UNUSED_RESULT MaybeHandle<String> NewStringFromTwoByte( base::Vector<const base::uc16> str, AllocationType allocation = AllocationType::kYoung); V8_WARN_UNUSED_RESULT MaybeHandle<String> NewStringFromTwoByte( const ZoneVector<base::uc16>* str, AllocationType allocation = AllocationType::kYoung); #if V8_ENABLE_WEBASSEMBLY // Usually the two-byte encodings are in the native endianness, but for // WebAssembly linear memory, they are explicitly little-endian. V8_WARN_UNUSED_RESULT MaybeHandle<String> NewStringFromTwoByteLittleEndian( base::Vector<const base::uc16> str, AllocationType allocation = AllocationType::kYoung); #endif // V8_ENABLE_WEBASSEMBLY Handle<JSStringIterator> NewJSStringIterator(Handle<String> string); Handle<String> NewInternalizedStringImpl(Handle<String> string, int len, uint32_t hash_field); // Compute the internalization strategy for the input string. // // Old-generation sequential strings can be internalized by mutating their map // and return kInPlace, along with the matching internalized string map for // string stored in internalized_map. // // Internalized strings return kAlreadyTransitioned. // // All other strings are internalized by flattening and copying and return // kCopy. V8_WARN_UNUSED_RESULT StringTransitionStrategy ComputeInternalizationStrategyForString(Handle<String> string, MaybeHandle<Map>* internalized_map); // Creates an internalized copy of an external string. |string| must be // of type StringClass. template <class StringClass> Handle<StringClass> InternalizeExternalString(Handle<String> string); // Compute the sharing strategy for the input string. // // Old-generation sequential and thin strings can be shared by mutating their // map and return kInPlace, along with the matching shared string map for the // string stored in shared_map. // // Already-shared strings return kAlreadyTransitioned. // // All other strings are shared by flattening and copying into a sequential // string then sharing that sequential string, and return kCopy. V8_WARN_UNUSED_RESULT StringTransitionStrategy ComputeSharingStrategyForString(Handle<String> string, MaybeHandle<Map>* shared_map); // Create or lookup a single character string made up of a utf16 surrogate // pair. Handle<String> NewSurrogatePairString(uint16_t lead, uint16_t trail); // Create a new string object which holds a proper substring of a string. Handle<String> NewProperSubString(Handle<String> str, int begin, int end); // Same, but always copies (never creates a SlicedString). // {str} must be flat, {length} must be non-zero. Handle<String> NewCopiedSubstring(Handle<String> str, int begin, int length); // Create a new string object which holds a substring of a string. inline Handle<String> NewSubString(Handle<String> str, int begin, int end); // Creates a new external String object. There are two String encodings // in the system: one-byte and two-byte. Unlike other String types, it does // not make sense to have a UTF-8 factory function for external strings, // because we cannot change the underlying buffer. Note that these strings // are backed by a string resource that resides outside the V8 heap. V8_WARN_UNUSED_RESULT MaybeHandle<String> NewExternalStringFromOneByte( const v8::String::ExternalOneByteStringResource* resource); V8_WARN_UNUSED_RESULT MaybeHandle<String> NewExternalStringFromTwoByte( const v8::String::ExternalStringResource* resource); // Create a symbol in old or read-only space. Handle<Symbol> NewSymbol(AllocationType allocation = AllocationType::kOld); Handle<Symbol> NewPrivateSymbol( AllocationType allocation = AllocationType::kOld); Handle<Symbol> NewPrivateNameSymbol(Handle<String> name); // Create a global (but otherwise uninitialized) context. Handle<NativeContext> NewNativeContext(); // Create a script context. Handle<Context> NewScriptContext(Handle<NativeContext> outer, Handle<ScopeInfo> scope_info); // Create an empty script context table. Handle<ScriptContextTable> NewScriptContextTable(); // Create a module context. Handle<Context> NewModuleContext(Handle<SourceTextModule> module, Handle<NativeContext> outer, Handle<ScopeInfo> scope_info); // Create a function or eval context. Handle<Context> NewFunctionContext(Handle<Context> outer, Handle<ScopeInfo> scope_info); // Create a catch context. Handle<Context> NewCatchContext(Handle<Context> previous, Handle<ScopeInfo> scope_info, Handle<Object> thrown_object); // Create a 'with' context. Handle<Context> NewWithContext(Handle<Context> previous, Handle<ScopeInfo> scope_info, Handle<JSReceiver> extension); Handle<Context> NewDebugEvaluateContext(Handle<Context> previous, Handle<ScopeInfo> scope_info, Handle<JSReceiver> extension, Handle<Context> wrapped); // Create a block context. Handle<Context> NewBlockContext(Handle<Context> previous, Handle<ScopeInfo> scope_info); // Create a context that's used by builtin functions. // // These are similar to function context but don't have a previous // context or any scope info. These are used to store spec defined // context values. Handle<Context> NewBuiltinContext(Handle<NativeContext> native_context, int length); Handle<AliasedArgumentsEntry> NewAliasedArgumentsEntry( int aliased_context_slot); Handle<AccessorInfo> NewAccessorInfo(); Handle<ErrorStackData> NewErrorStackData( Handle<Object> call_site_infos_or_formatted_stack, Handle<Object> limit_or_stack_frame_infos); Handle<Script> CloneScript(Handle<Script> script, Handle<String> source); Handle<BreakPointInfo> NewBreakPointInfo(int source_position); Handle<BreakPoint> NewBreakPoint(int id, Handle<String> condition); Handle<CallSiteInfo> NewCallSiteInfo(Handle<Object> receiver_or_instance, Handle<Object> function, Handle<HeapObject> code_object, int code_offset_or_source_position, int flags, Handle<FixedArray> parameters); Handle<StackFrameInfo> NewStackFrameInfo( Handle<HeapObject> shared_or_script, int bytecode_offset_or_source_position, Handle<String> function_name, bool is_constructor); Handle<PromiseOnStack> NewPromiseOnStack(Handle<Object> prev, Handle<JSObject> promise); // Allocate various microtasks. Handle<CallableTask> NewCallableTask(Handle<JSReceiver> callable, Handle<Context> context); Handle<CallbackTask> NewCallbackTask(Handle<Foreign> callback, Handle<Foreign> data); Handle<PromiseResolveThenableJobTask> NewPromiseResolveThenableJobTask( Handle<JSPromise> promise_to_resolve, Handle<JSReceiver> thenable, Handle<JSReceiver> then, Handle<Context> context); // Foreign objects are pretenured when allocated by the bootstrapper. Handle<Foreign> NewForeign( Address addr, AllocationType allocation_type = AllocationType::kYoung); Handle<Cell> NewCell(Tagged<Smi> value); Handle<Cell> NewCell(); Handle<PropertyCell> NewPropertyCell( Handle<Name> name, PropertyDetails details, Handle<Object> value, AllocationType allocation = AllocationType::kOld); Handle<PropertyCell> NewProtector(); Handle<FeedbackCell> NewNoClosuresCell(Handle<HeapObject> value); Handle<FeedbackCell> NewOneClosureCell(Handle<HeapObject> value); Handle<FeedbackCell> NewManyClosuresCell(Handle<HeapObject> value); Handle<TransitionArray> NewTransitionArray(int number_of_transitions, int slack = 0); // Allocate a tenured AllocationSite. Its payload is null. Handle<AllocationSite> NewAllocationSite(bool with_weak_next); // Allocates and initializes a new Map. Handle<Map> NewMap(InstanceType type, int instance_size, ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND, int inobject_properties = 0, AllocationType allocation_type = AllocationType::kMap); // Initializes the fields of a newly created Map using roots from the // passed-in Heap. Exposed for tests and heap setup; other code should just // call NewMap which takes care of it. Tagged<Map> InitializeMap(Tagged<Map> map, InstanceType type, int instance_size, ElementsKind elements_kind, int inobject_properties, Heap* roots); // Allocate a block of memory of the given AllocationType (filled with a // filler). Used as a fall-back for generated code when the space is full. Handle<HeapObject> NewFillerObject( int size, AllocationAlignment alignment, AllocationType allocation, AllocationOrigin origin = AllocationOrigin::kRuntime); Handle<JSObject> NewFunctionPrototype(Handle<JSFunction> function); // Returns a deep copy of the JavaScript object. // Properties and elements are copied too. Handle<JSObject> CopyJSObject(Handle<JSObject> object); // Same as above, but also takes an AllocationSite to be appended in an // AllocationMemento. Handle<JSObject> CopyJSObjectWithAllocationSite(Handle<JSObject> object, Handle<AllocationSite> site); Handle<FixedArray> CopyFixedArrayWithMap( Handle<FixedArray> array, Handle<Map> map, AllocationType allocation = AllocationType::kYoung); Handle<FixedArray> CopyFixedArrayAndGrow( Handle<FixedArray> array, int grow_by, AllocationType allocation = AllocationType::kYoung); Handle<WeakArrayList> NewWeakArrayList( int capacity, AllocationType allocation = AllocationType::kYoung); Handle<WeakFixedArray> CopyWeakFixedArrayAndGrow(Handle<WeakFixedArray> array, int grow_by); Handle<WeakArrayList> CopyWeakArrayListAndGrow( Handle<WeakArrayList> array, int grow_by, AllocationType allocation = AllocationType::kYoung); Handle<WeakArrayList> CompactWeakArrayList( Handle<WeakArrayList> array, int new_capacity, AllocationType allocation = AllocationType::kYoung); Handle<PropertyArray> CopyPropertyArrayAndGrow(Handle<PropertyArray> array, int grow_by); Handle<FixedArray> CopyFixedArrayUpTo( Handle<FixedArray> array, int new_len, AllocationType allocation = AllocationType::kYoung); Handle<FixedArray> CopyFixedArray(Handle<FixedArray> array); Handle<FixedDoubleArray> CopyFixedDoubleArray(Handle<FixedDoubleArray> array); template <ExternalPointerTag tag> Handle<ExternalPointerArray> CopyExternalPointerArrayAndGrow( Handle<ExternalPointerArray> src, int grow_by, AllocationType alloction = AllocationType::kYoung) { int old_len = src->length(); int new_len = old_len + grow_by; Handle<ExternalPointerArray> result = NewExternalPointerArray(new_len); // Copy the pointers one-by-one. We can't just do a memcpy here since when // the sandbox is enabled, this array will contain external pointer handles // which must not be copied/moved between objects. for (int i = 0; i < old_len; i++) { result->set<tag>(i, isolate(), src->get<tag>(i, isolate())); } return result; } // Creates a new HeapNumber in read-only space if possible otherwise old // space. Handle<HeapNumber> NewHeapNumberForCodeAssembler(double value); Handle<JSObject> NewArgumentsObject(Handle<JSFunction> callee, int length); // Allocates and initializes a new JavaScript object based on a // constructor. // JS objects are pretenured when allocated by the bootstrapper and // runtime. Handle<JSObject> NewJSObject( Handle<JSFunction> constructor, AllocationType allocation = AllocationType::kYoung); // JSObject without a prototype. Handle<JSObject> NewJSObjectWithNullProto(); // JSObject without a prototype, in dictionary mode. Handle<JSObject> NewSlowJSObjectWithNullProto(); // Global objects are pretenured and initialized based on a constructor. Handle<JSGlobalObject> NewJSGlobalObject(Handle<JSFunction> constructor); // Allocates and initializes a new JavaScript object based on a map. // Passing an allocation site means that a memento will be created that // points to the site. // JS objects are pretenured when allocated by the bootstrapper and // runtime. Handle<JSObject> NewJSObjectFromMap( Handle<Map> map, AllocationType allocation = AllocationType::kYoung, Handle<AllocationSite> allocation_site = Handle<AllocationSite>::null()); // Like NewJSObjectFromMap, but includes allocating a properties dictionary.); Handle<JSObject> NewSlowJSObjectFromMap( Handle<Map> map, int number_of_slow_properties, AllocationType allocation = AllocationType::kYoung, Handle<AllocationSite> allocation_site = Handle<AllocationSite>::null()); Handle<JSObject> NewSlowJSObjectFromMap(Handle<Map> map); // Calls NewJSObjectFromMap or NewSlowJSObjectFromMap depending on whether the // map is a dictionary map. inline Handle<JSObject> NewFastOrSlowJSObjectFromMap( Handle<Map> map, int number_of_slow_properties, AllocationType allocation = AllocationType::kYoung, Handle<AllocationSite> allocation_site = Handle<AllocationSite>::null()); inline Handle<JSObject> NewFastOrSlowJSObjectFromMap(Handle<Map> map); // Allocates and initializes a new JavaScript object with the given // {prototype} and {properties}. The newly created object will be // in dictionary properties mode. The {elements} can either be the // empty fixed array, in which case the resulting object will have // fast elements, or a NumberDictionary, in which case the resulting // object will have dictionary elements. Handle<JSObject> NewSlowJSObjectWithPropertiesAndElements( Handle<HeapObject> prototype, Handle<HeapObject> properties, Handle<FixedArrayBase> elements); // JS arrays are pretenured when allocated by the parser. // Create a JSArray with a specified length and elements initialized // according to the specified mode. Handle<JSArray> NewJSArray( ElementsKind elements_kind, int length, int capacity, ArrayStorageAllocationMode mode = ArrayStorageAllocationMode::DONT_INITIALIZE_ARRAY_ELEMENTS, AllocationType allocation = AllocationType::kYoung); Handle<JSArray> NewJSArray( int capacity, ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND, AllocationType allocation = AllocationType::kYoung) { if (capacity != 0) { elements_kind = GetHoleyElementsKind(elements_kind); } return NewJSArray( elements_kind, 0, capacity, ArrayStorageAllocationMode::INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE, allocation); } // Create a JSArray with the given elements. Handle<JSArray> NewJSArrayWithElements( Handle<FixedArrayBase> elements, ElementsKind elements_kind, int length, AllocationType allocation = AllocationType::kYoung); inline Handle<JSArray> NewJSArrayWithElements( Handle<FixedArrayBase> elements, ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND, AllocationType allocation = AllocationType::kYoung); Handle<JSArray> NewJSArrayForTemplateLiteralArray( Handle<FixedArray> cooked_strings, Handle<FixedArray> raw_strings, int function_literal_id, int slot_id); void NewJSArrayStorage( Handle<JSArray> array, int length, int capacity, ArrayStorageAllocationMode mode = ArrayStorageAllocationMode::DONT_INITIALIZE_ARRAY_ELEMENTS); Handle<JSWeakMap> NewJSWeakMap(); Handle<JSGeneratorObject> NewJSGeneratorObject(Handle<JSFunction> function); Handle<JSModuleNamespace> NewJSModuleNamespace(); Handle<JSWrappedFunction> NewJSWrappedFunction( Handle<NativeContext> creation_context, Handle<Object> target); #if V8_ENABLE_WEBASSEMBLY Handle<WasmTypeInfo> NewWasmTypeInfo(Address type_address, Handle<Map> opt_parent, int instance_size_bytes, Handle<WasmInstanceObject> opt_instance, uint32_t type_index); Handle<WasmInternalFunction> NewWasmInternalFunction(Address opt_call_target, Handle<HeapObject> ref, Handle<Map> rtt, int function_index); Handle<WasmCapiFunctionData> NewWasmCapiFunctionData( Address call_target, Handle<Foreign> embedder_data, Handle<Code> wrapper_code, Handle<Map> rtt, Handle<PodArray<wasm::ValueType>> serialized_sig); Handle<WasmExportedFunctionData> NewWasmExportedFunctionData( Handle<Code> export_wrapper, Handle<WasmInstanceObject> instance, Handle<WasmInternalFunction> internal, int func_index, const wasm::FunctionSig* sig, uint32_t canonical_type_index, int wrapper_budget, wasm::Promise promise); Handle<WasmApiFunctionRef> NewWasmApiFunctionRef( Handle<HeapObject> callable, wasm::Suspend suspend, Handle<HeapObject> instance, Handle<PodArray<wasm::ValueType>> serialized_sig); Handle<WasmApiFunctionRef> NewWasmApiFunctionRef( Handle<WasmApiFunctionRef> ref); // {opt_call_target} is kNullAddress for JavaScript functions, and // non-null for exported Wasm functions. Handle<WasmJSFunctionData> NewWasmJSFunctionData( Address opt_call_target, Handle<JSReceiver> callable, Handle<PodArray<wasm::ValueType>> serialized_sig, Handle<Code> wrapper_code, Handle<Map> rtt, wasm::Suspend suspend, wasm::Promise promise); Handle<WasmResumeData> NewWasmResumeData( Handle<WasmSuspenderObject> suspender, wasm::OnResume on_resume); Handle<WasmStruct> NewWasmStruct(const wasm::StructType* type, wasm::WasmValue* args, Handle<Map> map); Handle<WasmArray> NewWasmArray(const wasm::ArrayType* type, uint32_t length, wasm::WasmValue initial_value, Handle<Map> map); Handle<WasmArray> NewWasmArrayFromElements( const wasm::ArrayType* type, const std::vector<wasm::WasmValue>& elements, Handle<Map> map); Handle<WasmArray> NewWasmArrayFromMemory(uint32_t length, Handle<Map> map, Address source); // Returns a handle to a WasmArray if successful, or a Smi containing a // {MessageTemplate} if computing the array's elements leads to an error. Handle<Object> NewWasmArrayFromElementSegment( Handle<WasmInstanceObject> instance, uint32_t segment_index, uint32_t start_offset, uint32_t length, Handle<Map> map); Handle<WasmContinuationObject> NewWasmContinuationObject( Address jmpbuf, Handle<Foreign> managed_stack, Handle<HeapObject> parent, AllocationType allocation = AllocationType::kYoung); Handle<SharedFunctionInfo> NewSharedFunctionInfoForWasmExportedFunction( Handle<String> name, Handle<WasmExportedFunctionData> data); Handle<SharedFunctionInfo> NewSharedFunctionInfoForWasmJSFunction( Handle<String> name, Handle<WasmJSFunctionData> data); Handle<SharedFunctionInfo> NewSharedFunctionInfoForWasmResume( Handle<WasmResumeData> data); Handle<SharedFunctionInfo> NewSharedFunctionInfoForWasmCapiFunction( Handle<WasmCapiFunctionData> data); #endif // V8_ENABLE_WEBASSEMBLY Handle<SourceTextModule> NewSourceTextModule(Handle<SharedFunctionInfo> code); Handle<SyntheticModule> NewSyntheticModule( Handle<String> module_name, Handle<FixedArray> export_names, v8::Module::SyntheticModuleEvaluationSteps evaluation_steps); Handle<JSArrayBuffer> NewJSArrayBuffer( std::shared_ptr<BackingStore> backing_store, AllocationType allocation = AllocationType::kYoung); MaybeHandle<JSArrayBuffer> NewJSArrayBufferAndBackingStore( size_t byte_length, InitializedFlag initialized, AllocationType allocation = AllocationType::kYoung); MaybeHandle<JSArrayBuffer> NewJSArrayBufferAndBackingStore( size_t byte_length, size_t max_byte_length, InitializedFlag initialized, ResizableFlag resizable = ResizableFlag::kNotResizable, AllocationType allocation = AllocationType::kYoung); Handle<JSArrayBuffer> NewJSSharedArrayBuffer( std::shared_ptr<BackingStore> backing_store); static void TypeAndSizeForElementsKind(ElementsKind kind, ExternalArrayType* array_type, size_t* element_size); // Creates a new JSTypedArray with the specified buffer. Handle<JSTypedArray> NewJSTypedArray(ExternalArrayType type, Handle<JSArrayBuffer> buffer, size_t byte_offset, size_t length, bool is_length_tracking = false); Handle<JSDataViewOrRabGsabDataView> NewJSDataViewOrRabGsabDataView( Handle<JSArrayBuffer> buffer, size_t byte_offset, size_t byte_length, bool is_length_tracking = false); Handle<JSIteratorResult> NewJSIteratorResult(Handle<Object> value, bool done); Handle<JSAsyncFromSyncIterator> NewJSAsyncFromSyncIterator( Handle<JSReceiver> sync_iterator, Handle<Object> next); Handle<JSMap> NewJSMap(); Handle<JSSet> NewJSSet(); // Allocates a bound function. MaybeHandle<JSBoundFunction> NewJSBoundFunction( Handle<JSReceiver> target_function, Handle<Object> bound_this, base::Vector<Handle<Object>> bound_args); // Allocates a Harmony proxy. Handle<JSProxy> NewJSProxy(Handle<JSReceiver> target, Handle<JSReceiver> handler); // Reinitialize an JSGlobalProxy based on a constructor. The object // must have the same size as objects allocated using the // constructor. The object is reinitialized and behaves as an // object that has been freshly allocated using the constructor. void ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> global, Handle<JSFunction> constructor); Handle<JSGlobalProxy> NewUninitializedJSGlobalProxy(int size); // For testing only. Creates a sloppy function without code. Handle<JSFunction> NewFunctionForTesting(Handle<String> name); // Create an External object for V8's external API. Handle<JSObject> NewExternal(void* value); // Allocates a new code object and initializes it to point to the given // off-heap entry point. // // Note it wouldn't be strictly necessary to create new Code objects, instead // Code::instruction_start and instruction_stream could be reset. But creating // a new Code object doesn't hurt much (it only makes mksnapshot slightly more // expensive) and has real benefits: // - it moves all special-casing to mksnapshot-time; at normal runtime, the // system only sees a) non-builtin Code objects (not in RO space, with // instruction_stream set) and b) builtin Code objects (maybe in RO space, // without instruction_stream set). // - it's a convenient bottleneck to make the RO-space allocation decision. Handle<Code> NewCodeObjectForEmbeddedBuiltin(Handle<Code> code, Address off_heap_entry); Handle<BytecodeArray> CopyBytecodeArray(Handle<BytecodeArray>); // Interface for creating error objects. Handle<JSObject> NewError(Handle<JSFunction> constructor, Handle<String> message, Handle<Object> options = Handle<Object>()); Handle<Object> NewInvalidStringLengthError(); inline Handle<Object> NewURIError(); Handle<JSObject> NewError(Handle<JSFunction> constructor, MessageTemplate template_index, Handle<Object> arg0 = Handle<Object>(), Handle<Object> arg1 = Handle<Object>(), Handle<Object> arg2 = Handle<Object>()); #define DECLARE_ERROR(NAME) \ Handle<JSObject> New##NAME(MessageTemplate template_index, \ Handle<Object> arg0 = Handle<Object>(), \ Handle<Object> arg1 = Handle<Object>(), \ Handle<Object> arg2 = Handle<Object>()); DECLARE_ERROR(Error) DECLARE_ERROR(EvalError) DECLARE_ERROR(RangeError) DECLARE_ERROR(ReferenceError) DECLARE_ERROR(SyntaxError) DECLARE_ERROR(TypeError) DECLARE_ERROR(WasmCompileError) DECLARE_ERROR(WasmLinkError) DECLARE_ERROR(WasmRuntimeError) DECLARE_ERROR(WasmExceptionError) #undef DECLARE_ERROR Handle<String> SizeToString(size_t value, bool check_cache = true); inline Handle<String> Uint32ToString(uint32_t value, bool check_cache = true) { return SizeToString(value, check_cache); } #define ROOT_ACCESSOR(Type, name, CamelName) inline Handle<Type> name(); MUTABLE_ROOT_LIST(ROOT_ACCESSOR) #undef ROOT_ACCESSOR // Allocates a new SharedFunctionInfo object. Handle<SharedFunctionInfo> NewSharedFunctionInfoForApiFunction( MaybeHandle<String> maybe_name, Handle<FunctionTemplateInfo> function_template_info, FunctionKind kind); Handle<SharedFunctionInfo> NewSharedFunctionInfoForBuiltin( MaybeHandle<String> name, Builtin builtin, FunctionKind kind = FunctionKind::kNormalFunction); static bool IsFunctionModeWithPrototype(FunctionMode function_mode) { return (function_mode & kWithPrototypeBits) != 0; } static bool IsFunctionModeWithWritablePrototype(FunctionMode function_mode) { return (function_mode & kWithWritablePrototypeBit) != 0; } static bool IsFunctionModeWithName(FunctionMode function_mode) { return (function_mode & kWithNameBit) != 0; } Handle<Map> CreateSloppyFunctionMap( FunctionMode function_mode, MaybeHandle<JSFunction> maybe_empty_function); Handle<Map> CreateStrictFunctionMap(FunctionMode function_mode, Handle<JSFunction> empty_function); Handle<Map> CreateClassFunctionMap(Handle<JSFunction> empty_function); // Allocates a new JSMessageObject object. Handle<JSMessageObject> NewJSMessageObject( MessageTemplate message, Handle<Object> argument, int start_position, int end_position, Handle<SharedFunctionInfo> shared_info, int bytecode_offset, Handle<Script> script, Handle<Object> stack_frames); Handle<DebugInfo> NewDebugInfo(Handle<SharedFunctionInfo> shared); // Return a map for given number of properties using the map cache in the // native context. Handle<Map> ObjectLiteralMapFromCache(Handle<NativeContext> native_context, int number_of_properties); Handle<LoadHandler> NewLoadHandler( int data_count, AllocationType allocation = AllocationType::kOld); Handle<StoreHandler> NewStoreHandler(int data_count); Handle<MegaDomHandler> NewMegaDomHandler(MaybeObjectHandle accessor, MaybeObjectHandle context); Handle<RegExpMatchInfo> NewRegExpMatchInfo(); // Creates a new FixedArray that holds the data associated with the // atom regexp and stores it in the regexp. void SetRegExpAtomData(Handle<JSRegExp> regexp, Handle<String> source, JSRegExp::Flags flags, Handle<Object> match_pattern); // Creates a new FixedArray that holds the data associated with the // irregexp regexp and stores it in the regexp. void SetRegExpIrregexpData(Handle<JSRegExp> regexp, Handle<String> source, JSRegExp::Flags flags, int capture_count, uint32_t backtrack_limit); // Creates a new FixedArray that holds the data associated with the // experimental regexp and stores it in the regexp. void SetRegExpExperimentalData(Handle<JSRegExp> regexp, Handle<String> source, JSRegExp::Flags flags, int capture_count); // Returns the value for a known global constant (a property of the global // object which is neither configurable nor writable) like 'undefined'. // Returns a null handle when the given name is unknown. Handle<Object> GlobalConstantFor(Handle<Name> name); // Converts the given ToPrimitive hint to it's string representation. Handle<String> ToPrimitiveHintString(ToPrimitiveHint hint); Handle<JSPromise> NewJSPromiseWithoutHook(); Handle<JSPromise> NewJSPromise(); Handle<CallHandlerInfo> NewCallHandlerInfo(bool has_no_side_effect = false); Tagged<HeapObject> NewForTest(Handle<Map> map, AllocationType allocation) { return New(map, allocation); } Handle<JSSharedStruct> NewJSSharedStruct( Handle<JSFunction> constructor, Handle<Object> maybe_elements_template); Handle<JSSharedArray> NewJSSharedArray(Handle<JSFunction> constructor, int length); Handle<JSAtomicsMutex> NewJSAtomicsMutex(); Handle<JSAtomicsCondition> NewJSAtomicsCondition(); // Helper class for creating JSFunction objects. class V8_EXPORT_PRIVATE JSFunctionBuilder final { public: JSFunctionBuilder(Isolate* isolate, Handle<SharedFunctionInfo> sfi, Handle<Context> context); V8_WARN_UNUSED_RESULT Handle<JSFunction> Build(); JSFunctionBuilder& set_map(Handle<Map> v) { maybe_map_ = v; return *this; } JSFunctionBuilder& set_allocation_type(AllocationType v) { allocation_type_ = v; return *this; } JSFunctionBuilder& set_feedback_cell(Handle<FeedbackCell> v) { maybe_feedback_cell_ = v; return *this; } private: void PrepareMap(); void PrepareFeedbackCell(); V8_WARN_UNUSED_RESULT Handle<JSFunction> BuildRaw(Handle<Code> code); Isolate* const isolate_; Handle<SharedFunctionInfo> sfi_; Handle<Context> context_; MaybeHandle<Map> maybe_map_; MaybeHandle<FeedbackCell> maybe_feedback_cell_; AllocationType allocation_type_ = AllocationType::kOld; friend class Factory; }; // Allows creation of InstructionStream objects. It provides two build // methods, one of which tries to gracefully handle allocation failure. class V8_EXPORT_PRIVATE CodeBuilder final { public: CodeBuilder(Isolate* isolate, const CodeDesc& desc, CodeKind kind); // TODO(victorgomes): Remove Isolate dependency from CodeBuilder. CodeBuilder(LocalIsolate* local_isolate, const CodeDesc& desc, CodeKind kind); // Builds a new code object (fully initialized). All header fields of the // associated InstructionStream are immutable and the InstructionStream // object is write protected. V8_WARN_UNUSED_RESULT Handle<Code> Build(); // Like Build, builds a new code object. May return an empty handle if the // allocation fails. V8_WARN_UNUSED_RESULT MaybeHandle<Code> TryBuild(); // Sets the self-reference object in which a reference to the code object is // stored. This allows generated code to reference its own InstructionStream // object by using this handle. CodeBuilder& set_self_reference(Handle<Object> self_reference) { DCHECK(!self_reference.is_null()); self_reference_ = self_reference; return *this; } CodeBuilder& set_builtin(Builtin builtin) { DCHECK_IMPLIES(builtin != Builtin::kNoBuiltinId, !CodeKindIsJSFunction(kind_)); builtin_ = builtin; return *this; } CodeBuilder& set_inlined_bytecode_size(uint32_t size) { DCHECK_IMPLIES(size != 0, CodeKindIsOptimizedJSFunction(kind_)); inlined_bytecode_size_ = size; return *this; } CodeBuilder& set_osr_offset(BytecodeOffset offset) { DCHECK_IMPLIES(!offset.IsNone(), CodeKindCanOSR(kind_)); osr_offset_ = offset; return *this; } CodeBuilder& set_source_position_table(Handle<ByteArray> table) { DCHECK_NE(kind_, CodeKind::BASELINE); DCHECK(!table.is_null()); position_table_ = table; return *this; } CodeBuilder& set_bytecode_offset_table(Handle<ByteArray> table) { DCHECK_EQ(kind_, CodeKind::BASELINE); DCHECK(!table.is_null()); position_table_ = table; return *this; } CodeBuilder& set_deoptimization_data( Handle<DeoptimizationData> deopt_data) { DCHECK_NE(kind_, CodeKind::BASELINE); DCHECK(!deopt_data.is_null()); deoptimization_data_ = deopt_data; return *this; } inline CodeBuilder& set_interpreter_data( Handle<HeapObject> interpreter_data); CodeBuilder& set_is_turbofanned() { DCHECK(!CodeKindIsUnoptimizedJSFunction(kind_)); is_turbofanned_ = true; return *this; } CodeBuilder& set_stack_slots(int stack_slots) { stack_slots_ = stack_slots; return *this; } CodeBuilder& set_profiler_data(BasicBlockProfilerData* profiler_data) { profiler_data_ = profiler_data; return *this; } private: MaybeHandle<Code> BuildInternal(bool retry_allocation_or_fail); Handle<ByteArray> NewByteArray(int length, AllocationType allocation); // Return an allocation suitable for InstructionStreams but without writing // the map. Tagged<HeapObject> AllocateUninitializedInstructionStream( bool retry_allocation_or_fail); Handle<Code> NewCode(const NewCodeOptions& options); Isolate* const isolate_; LocalIsolate* local_isolate_; const CodeDesc& code_desc_; const CodeKind kind_; MaybeHandle<Object> self_reference_; Builtin builtin_ = Builtin::kNoBuiltinId; uint32_t inlined_bytecode_size_ = 0; BytecodeOffset osr_offset_ = BytecodeOffset::None(); // Either source_position_table for non-baseline code or // bytecode_offset_table for baseline code. Handle<ByteArray> position_table_; Handle<DeoptimizationData> deoptimization_data_; Handle<HeapObject> interpreter_data_; BasicBlockProfilerData* profiler_data_ = nullptr; bool is_turbofanned_ = false; int stack_slots_ = 0; }; private: friend class FactoryBase<Factory>; // ------ // Customization points for FactoryBase Tagged<HeapObject> AllocateRaw( int size, AllocationType allocation, AllocationAlignment alignment = kTaggedAligned); Isolate* isolate() const { // Downcast to the privately inherited sub-class using c-style casts to // avoid undefined behavior (as static_cast cannot cast across private // bases). // NOLINTNEXTLINE (google-readability-casting) return (Isolate*)this; // NOLINT(readability/casting) } // This is the real Isolate that will be used for allocating and accessing // external pointer entries when the sandbox is enabled. Isolate* isolate_for_sandbox() const { #ifdef V8_ENABLE_SANDBOX return isolate(); #else return nullptr; #endif // V8_ENABLE_SANDBOX } V8_INLINE HeapAllocator* allocator() const; bool CanAllocateInReadOnlySpace(); bool EmptyStringRootIsInitialized(); AllocationType AllocationTypeForInPlaceInternalizableString(); void ProcessNewScript(Handle<Script> shared, ScriptEventType script_event_type); // ------ Tagged<HeapObject> AllocateRawWithAllocationSite( Handle<Map> map, AllocationType allocation, Handle<AllocationSite> allocation_site); Handle<JSArrayBufferView> NewJSArrayBufferView( Handle<Map> map, Handle<FixedArrayBase> elements, Handle<JSArrayBuffer> buffer, size_t byte_offset, size_t byte_length); Tagged<Symbol> NewSymbolInternal( AllocationType allocation = AllocationType::kOld); // Allocates new context with given map, sets length and initializes the // after-header part with uninitialized values and leaves the context header // uninitialized. Tagged<Context> NewContextInternal(Handle<Map> map, int size, int variadic_part_length, AllocationType allocation); template <typename T> Handle<T> AllocateSmallOrderedHashTable(Handle<Map> map, int capacity, AllocationType allocation); // Creates a heap object based on the map. The fields of the heap object are // not initialized, it's the responsibility of the caller to do that. Tagged<HeapObject> New(Handle<Map> map, AllocationType allocation); template <typename T> Handle<T> CopyArrayWithMap( Handle<T> src, Handle<Map> map, AllocationType allocation = AllocationType::kYoung); template <typename T> Handle<T> CopyArrayAndGrow(Handle<T> src, int grow_by, AllocationType allocation); MaybeHandle<String> NewStringFromTwoByte(const base::uc16* string, int length, AllocationType allocation); // Functions to get the hash of a number for the number_string_cache. int NumberToStringCacheHash(Tagged<Smi> number); int NumberToStringCacheHash(double number); // Attempt to find the number in a small cache. If we finds it, return // the string representation of the number. Otherwise return undefined. V8_INLINE Handle<Object> NumberToStringCacheGet(Tagged<Object> number, int hash); // Update the cache with a new number-string pair. V8_INLINE void NumberToStringCacheSet(Handle<Object> number, int hash, Handle<String> js_string); // Creates a new JSArray with the given backing storage. Performs no // verification of the backing storage because it may not yet be filled. Handle<JSArray> NewJSArrayWithUnverifiedElements( Handle<FixedArrayBase> elements, ElementsKind elements_kind, int length, AllocationType allocation = AllocationType::kYoung); Handle<JSArray> NewJSArrayWithUnverifiedElements( Handle<Map> map, Handle<FixedArrayBase> elements, int length, AllocationType allocation = AllocationType::kYoung); // Creates the backing storage for a JSArray. This handle must be discarded // before returning the JSArray reference to code outside Factory, which might // decide to left-trim the backing store. To avoid unnecessary HandleScopes, // this method requires capacity greater than zero. Handle<FixedArrayBase> NewJSArrayStorage( ElementsKind elements_kind, int capacity, ArrayStorageAllocationMode mode = ArrayStorageAllocationMode::DONT_INITIALIZE_ARRAY_ELEMENTS); void InitializeAllocationMemento(Tagged<AllocationMemento> memento, Tagged<AllocationSite> allocation_site); // Initializes a JSObject based on its map. void InitializeJSObjectFromMap(Tagged<JSObject> obj, Tagged<Object> properties, Tagged<Map> map); // Initializes JSObject body starting at given offset. void InitializeJSObjectBody(Tagged<JSObject> obj, Tagged<Map> map, int start_offset); Handle<WeakArrayList> NewUninitializedWeakArrayList( int capacity, AllocationType allocation = AllocationType::kYoung); #if V8_ENABLE_WEBASSEMBLY // The resulting array will be uninitialized, which means GC might fail for // reference arrays until initialization. Follow this up with a // {DisallowGarbageCollection} scope until initialization. Tagged<WasmArray> NewWasmArrayUninitialized(uint32_t length, Handle<Map> map); #endif // V8_ENABLE_WEBASSEMBLY }; } // namespace internal } // namespace v8 #endif // V8_HEAP_FACTORY_H_