%PDF- %PDF-
Direktori : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/heap/ |
Current File : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/heap/heap-inl.h |
// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_HEAP_HEAP_INL_H_ #define V8_HEAP_HEAP_INL_H_ #include <atomic> #include <cmath> // Clients of this interface shouldn't depend on lots of heap internals. // Avoid including anything but `heap.h` from `src/heap` where possible. #include "src/base/atomic-utils.h" #include "src/base/atomicops.h" #include "src/base/platform/mutex.h" #include "src/base/platform/platform.h" #include "src/common/assert-scope.h" #include "src/common/code-memory-access-inl.h" #include "src/execution/isolate-data.h" #include "src/execution/isolate.h" #include "src/heap/concurrent-allocator-inl.h" #include "src/heap/concurrent-allocator.h" #include "src/heap/heap-allocator-inl.h" #include "src/heap/heap-write-barrier.h" #include "src/heap/heap.h" #include "src/heap/large-spaces.h" #include "src/heap/marking-state-inl.h" #include "src/heap/memory-allocator.h" #include "src/heap/memory-chunk-layout.h" #include "src/heap/memory-chunk.h" #include "src/heap/new-spaces-inl.h" #include "src/heap/paged-spaces-inl.h" #include "src/heap/read-only-heap.h" #include "src/heap/read-only-spaces.h" #include "src/heap/safepoint.h" #include "src/heap/spaces-inl.h" #include "src/heap/third-party/heap-api.h" #include "src/objects/allocation-site-inl.h" #include "src/objects/cell-inl.h" #include "src/objects/descriptor-array.h" #include "src/objects/feedback-cell-inl.h" #include "src/objects/feedback-vector.h" #include "src/objects/objects-inl.h" #include "src/objects/oddball.h" #include "src/objects/property-cell.h" #include "src/objects/scope-info.h" #include "src/objects/slots-inl.h" #include "src/objects/struct-inl.h" #include "src/objects/visitors-inl.h" #include "src/profiler/heap-profiler.h" #include "src/roots/static-roots.h" #include "src/strings/string-hasher.h" #include "src/utils/ostreams.h" #include "src/zone/zone-list-inl.h" namespace v8 { namespace internal { template <typename T> Tagged<T> ForwardingAddress(Tagged<T> heap_obj) { MapWord map_word = heap_obj->map_word(kRelaxedLoad); if (map_word.IsForwardingAddress()) { return Tagged<T>::cast(map_word.ToForwardingAddress(heap_obj)); } else if (Heap::InFromPage(heap_obj)) { DCHECK(!v8_flags.minor_ms); return Tagged<T>(); } else { return heap_obj; } } // static base::EnumSet<CodeFlushMode> Heap::GetCodeFlushMode(Isolate* isolate) { if (isolate->disable_bytecode_flushing()) { return base::EnumSet<CodeFlushMode>(); } base::EnumSet<CodeFlushMode> code_flush_mode; if (v8_flags.flush_bytecode) { code_flush_mode.Add(CodeFlushMode::kFlushBytecode); } if (v8_flags.flush_baseline_code) { code_flush_mode.Add(CodeFlushMode::kFlushBaselineCode); } if (v8_flags.stress_flush_code) { // This is to check tests accidentally don't miss out on adding either flush // bytecode or flush code along with stress flush code. stress_flush_code // doesn't do anything if either one of them isn't enabled. DCHECK(v8_flags.fuzzing || v8_flags.flush_baseline_code || v8_flags.flush_bytecode); code_flush_mode.Add(CodeFlushMode::kStressFlushCode); } return code_flush_mode; } Isolate* Heap::isolate() const { return Isolate::FromHeap(this); } bool Heap::IsMainThread() const { return isolate()->thread_id() == ThreadId::Current(); } bool Heap::IsSharedMainThread() const { if (!isolate()->has_shared_space()) return false; Isolate* shared_space_isolate = isolate()->shared_space_isolate(); return shared_space_isolate->thread_id() == ThreadId::Current(); } int64_t Heap::external_memory() { return external_memory_.total(); } int64_t Heap::update_external_memory(int64_t delta) { return external_memory_.Update(delta); } RootsTable& Heap::roots_table() { return isolate()->roots_table(); } #define ROOT_ACCESSOR(Type, name, CamelName) \ Tagged<Type> Heap::name() { \ return Tagged<Type>::cast( \ Tagged<Object>(roots_table()[RootIndex::k##CamelName])); \ } MUTABLE_ROOT_LIST(ROOT_ACCESSOR) #undef ROOT_ACCESSOR Tagged<FixedArray> Heap::single_character_string_table() { return Tagged<FixedArray>::cast( Tagged<Object>(roots_table()[RootIndex::kSingleCharacterStringTable])); } #define STATIC_ROOTS_FAILED_MSG \ "Read-only heap layout changed. Run `tools/dev/gen-static-roots.py` to " \ "update static-roots.h." #if V8_STATIC_ROOTS_BOOL // Check all read only roots are allocated where we expect it. Skip `Exception` // which changes during setup-heap-internal. #define DCHECK_STATIC_ROOT(obj, name) \ if constexpr (RootsTable::IsReadOnly(RootIndex::k##name) && \ RootIndex::k##name != RootIndex::kException) { \ DCHECK_WITH_MSG(V8HeapCompressionScheme::CompressObject(obj.ptr()) == \ StaticReadOnlyRootsPointerTable[static_cast<size_t>( \ RootIndex::k##name)], \ STATIC_ROOTS_FAILED_MSG); \ } #else #define DCHECK_STATIC_ROOT(obj, name) #endif #define ROOT_ACCESSOR(type, name, CamelName) \ void Heap::set_##name(Tagged<type> value) { \ /* The deserializer makes use of the fact that these common roots are */ \ /* never in new space and never on a page that is being compacted. */ \ DCHECK_IMPLIES(deserialization_complete(), \ !RootsTable::IsImmortalImmovable(RootIndex::k##CamelName)); \ if constexpr (RootsTable::IsImmortalImmovable(RootIndex::k##CamelName)) { \ /* Cast via object to avoid compile errors when trying to cast a Smi */ \ /* to HeapObject (these Smis will anyway be excluded by */ \ /* RootsTable::IsImmortalImmovable but this isn't enough for the*/ \ /* compiler, even with `if constexpr`)*/ \ DCHECK( \ IsImmovable(Tagged<HeapObject>::cast(Tagged<Object>::cast(value)))); \ } \ DCHECK_STATIC_ROOT(value, CamelName); \ roots_table()[RootIndex::k##CamelName] = value.ptr(); \ } ROOT_LIST(ROOT_ACCESSOR) #undef ROOT_ACCESSOR #undef CHECK_STATIC_ROOT #undef STATIC_ROOTS_FAILED_MSG void Heap::SetRootMaterializedObjects(Tagged<FixedArray> objects) { roots_table()[RootIndex::kMaterializedObjects] = objects.ptr(); } void Heap::SetRootScriptList(Tagged<Object> value) { roots_table()[RootIndex::kScriptList] = value.ptr(); } void Heap::SetMessageListeners(Tagged<ArrayList> value) { roots_table()[RootIndex::kMessageListeners] = value.ptr(); } void Heap::SetFunctionsMarkedForManualOptimization(Tagged<Object> hash_table) { DCHECK(IsObjectHashTable(hash_table) || IsUndefined(hash_table, isolate())); roots_table()[RootIndex::kFunctionsMarkedForManualOptimization] = hash_table.ptr(); } PagedSpace* Heap::paged_space(int idx) const { DCHECK(idx == OLD_SPACE || idx == CODE_SPACE || idx == SHARED_SPACE || idx == TRUSTED_SPACE); return static_cast<PagedSpace*>(space_[idx].get()); } Space* Heap::space(int idx) const { return space_[idx].get(); } Address* Heap::NewSpaceAllocationTopAddress() { return new_space_ ? isolate()->isolate_data()->new_allocation_info_.top_address() : nullptr; } Address* Heap::NewSpaceAllocationLimitAddress() { return new_space_ ? isolate()->isolate_data()->new_allocation_info_.limit_address() : nullptr; } Address* Heap::OldSpaceAllocationTopAddress() { return allocator()->old_space_allocator()->allocation_top_address(); } Address* Heap::OldSpaceAllocationLimitAddress() { return allocator()->old_space_allocator()->allocation_limit_address(); } inline const base::AddressRegion& Heap::code_region() { #ifdef V8_ENABLE_THIRD_PARTY_HEAP return tp_heap_->GetCodeRange(); #else static constexpr base::AddressRegion kEmptyRegion; return code_range_ ? code_range_->reservation()->region() : kEmptyRegion; #endif } Address Heap::code_range_base() { return code_range_ ? code_range_->base() : kNullAddress; } int Heap::MaxRegularHeapObjectSize(AllocationType allocation) { if (!V8_ENABLE_THIRD_PARTY_HEAP_BOOL && (allocation == AllocationType::kCode)) { DCHECK_EQ(MemoryChunkLayout::MaxRegularCodeObjectSize(), max_regular_code_object_size_); return max_regular_code_object_size_; } return kMaxRegularHeapObjectSize; } AllocationResult Heap::AllocateRaw(int size_in_bytes, AllocationType type, AllocationOrigin origin, AllocationAlignment alignment) { return heap_allocator_.AllocateRaw(size_in_bytes, type, origin, alignment); } Address Heap::AllocateRawOrFail(int size, AllocationType allocation, AllocationOrigin origin, AllocationAlignment alignment) { return heap_allocator_ .AllocateRawWith<HeapAllocator::kRetryOrFail>(size, allocation, origin, alignment) .address(); } void Heap::RegisterExternalString(Tagged<String> string) { DCHECK(IsExternalString(string)); DCHECK(!IsThinString(string)); external_string_table_.AddString(string); } void Heap::FinalizeExternalString(Tagged<String> string) { DCHECK(IsExternalString(string)); Tagged<ExternalString> ext_string = Tagged<ExternalString>::cast(string); if (!v8_flags.enable_third_party_heap) { Page* page = Page::FromHeapObject(string); page->DecrementExternalBackingStoreBytes( ExternalBackingStoreType::kExternalString, ext_string->ExternalPayloadSize()); } ext_string->DisposeResource(isolate()); } Address Heap::NewSpaceTop() { return new_space_ ? allocator()->new_space_allocator()->top() : kNullAddress; } Address Heap::NewSpaceLimit() { return new_space_ ? allocator()->new_space_allocator()->top() : kNullAddress; } bool Heap::InYoungGeneration(Tagged<Object> object) { DCHECK(!HasWeakHeapObjectTag(object)); return IsHeapObject(object) && InYoungGeneration(HeapObject::cast(object)); } // static bool Heap::InYoungGeneration(MaybeObject object) { Tagged<HeapObject> heap_object; return object.GetHeapObject(&heap_object) && InYoungGeneration(heap_object); } // static bool Heap::InYoungGeneration(Tagged<HeapObject> heap_object) { if (V8_ENABLE_THIRD_PARTY_HEAP_BOOL) return false; bool result = BasicMemoryChunk::FromHeapObject(heap_object)->InYoungGeneration(); #ifdef DEBUG // If in the young generation, then check we're either not in the middle of // GC or the object is in to-space. if (result) { // If the object is in the young generation, then it's not in RO_SPACE so // this is safe. Heap* heap = Heap::FromWritableHeapObject(heap_object); DCHECK_IMPLIES(heap->gc_state() == NOT_IN_GC, InToPage(heap_object)); } #endif return result; } // static bool Heap::InWritableSharedSpace(MaybeObject object) { Tagged<HeapObject> heap_object; return object.GetHeapObject(&heap_object) && heap_object.InWritableSharedSpace(); } // static bool Heap::InFromPage(Tagged<Object> object) { DCHECK(!HasWeakHeapObjectTag(object)); return IsHeapObject(object) && InFromPage(HeapObject::cast(object)); } // static bool Heap::InFromPage(MaybeObject object) { Tagged<HeapObject> heap_object; return object.GetHeapObject(&heap_object) && InFromPage(heap_object); } // static bool Heap::InFromPage(Tagged<HeapObject> heap_object) { return BasicMemoryChunk::FromHeapObject(heap_object)->IsFromPage(); } // static bool Heap::InToPage(Tagged<Object> object) { DCHECK(!HasWeakHeapObjectTag(object)); return IsHeapObject(object) && InToPage(HeapObject::cast(object)); } // static bool Heap::InToPage(MaybeObject object) { Tagged<HeapObject> heap_object; return object.GetHeapObject(&heap_object) && InToPage(heap_object); } // static bool Heap::InToPage(Tagged<HeapObject> heap_object) { return BasicMemoryChunk::FromHeapObject(heap_object)->IsToPage(); } bool Heap::InOldSpace(Tagged<Object> object) { if (V8_ENABLE_THIRD_PARTY_HEAP_BOOL) { return object.IsHeapObject() && third_party_heap::Heap::InOldSpace(object.ptr()); } return old_space_->Contains(object); } // static Heap* Heap::FromWritableHeapObject(Tagged<HeapObject> obj) { if (V8_ENABLE_THIRD_PARTY_HEAP_BOOL) { return Heap::GetIsolateFromWritableObject(obj)->heap(); } BasicMemoryChunk* chunk = BasicMemoryChunk::FromHeapObject(obj); // RO_SPACE can be shared between heaps, so we can't use RO_SPACE objects to // find a heap. The exception is when the ReadOnlySpace is writeable, during // bootstrapping, so explicitly allow this case. SLOW_DCHECK(chunk->IsWritable()); Heap* heap = chunk->heap(); SLOW_DCHECK(heap != nullptr); return heap; } void Heap::CopyBlock(Address dst, Address src, int byte_size) { DCHECK(IsAligned(byte_size, kTaggedSize)); CopyTagged(dst, src, static_cast<size_t>(byte_size / kTaggedSize)); } bool Heap::IsPendingAllocationInternal(Tagged<HeapObject> object) { DCHECK(deserialization_complete()); if (V8_ENABLE_THIRD_PARTY_HEAP_BOOL) { return tp_heap_->IsPendingAllocation(object); } BasicMemoryChunk* chunk = BasicMemoryChunk::FromHeapObject(object); if (chunk->InReadOnlySpace()) return false; BaseSpace* base_space = chunk->owner(); Address addr = object.address(); switch (base_space->identity()) { case NEW_SPACE: { return new_space_->main_allocator()->IsPendingAllocation(addr); } case OLD_SPACE: case CODE_SPACE: case TRUSTED_SPACE: { PagedSpace* paged_space = static_cast<PagedSpace*>(base_space); return paged_space->main_allocator()->IsPendingAllocation(addr); } case LO_SPACE: case CODE_LO_SPACE: case TRUSTED_LO_SPACE: case NEW_LO_SPACE: { LargeObjectSpace* large_space = static_cast<LargeObjectSpace*>(base_space); base::SharedMutexGuard<base::kShared> guard( large_space->pending_allocation_mutex()); return addr == large_space->pending_object(); } case SHARED_SPACE: case SHARED_LO_SPACE: // TODO(v8:13267): Ensure that all shared space objects have a memory // barrier after initialization. return false; case RO_SPACE: UNREACHABLE(); } UNREACHABLE(); } bool Heap::IsPendingAllocation(Tagged<HeapObject> object) { bool result = IsPendingAllocationInternal(object); if (v8_flags.trace_pending_allocations && result) { StdoutStream{} << "Pending allocation: " << std::hex << "0x" << object.ptr() << "\n"; } return result; } bool Heap::IsPendingAllocation(Tagged<Object> object) { return IsHeapObject(object) && IsPendingAllocation(HeapObject::cast(object)); } void Heap::ExternalStringTable::AddString(Tagged<String> string) { base::Optional<base::MutexGuard> guard; // With --shared-string-table client isolates may insert into the main // isolate's table concurrently. if (v8_flags.shared_string_table && heap_->isolate()->is_shared_space_isolate()) { guard.emplace(&mutex_); } DCHECK(IsExternalString(string)); DCHECK(!Contains(string)); if (InYoungGeneration(string)) { young_strings_.push_back(string); } else { old_strings_.push_back(string); } } Tagged<Boolean> Heap::ToBoolean(bool condition) { ReadOnlyRoots roots(this); return roots.boolean_value(condition); } int Heap::NextScriptId() { FullObjectSlot last_script_id_slot(&roots_table()[RootIndex::kLastScriptId]); Tagged<Smi> last_id = Smi::cast(last_script_id_slot.Relaxed_Load()); Tagged<Smi> new_id, last_id_before_cas; do { if (last_id.value() == Smi::kMaxValue) { static_assert(v8::UnboundScript::kNoScriptId == 0); new_id = Smi::FromInt(1); } else { new_id = Smi::FromInt(last_id.value() + 1); } // CAS returns the old value on success, and the current value in the slot // on failure. Therefore, we want to break if the returned value matches the // old value (last_id), and keep looping (with the new last_id value) if it // doesn't. last_id_before_cas = last_id; last_id = Smi::cast(last_script_id_slot.Relaxed_CompareAndSwap(last_id, new_id)); } while (last_id != last_id_before_cas); return new_id.value(); } int Heap::NextDebuggingId() { int last_id = last_debugging_id().value(); if (last_id == DebugInfo::DebuggingIdBits::kMax) { last_id = DebugInfo::kNoDebuggingId; } last_id++; set_last_debugging_id(Smi::FromInt(last_id)); return last_id; } int Heap::GetNextTemplateSerialNumber() { int next_serial_number = next_template_serial_number().value(); set_next_template_serial_number(Smi::FromInt(next_serial_number + 1)); return next_serial_number; } int Heap::MaxNumberToStringCacheSize() const { // Compute the size of the number string cache based on the max newspace size. // The number string cache has a minimum size based on twice the initial cache // size to ensure that it is bigger after being made 'full size'. size_t number_string_cache_size = max_semi_space_size_ / 512; number_string_cache_size = std::max(static_cast<size_t>(kInitialNumberStringCacheSize * 2), std::min(static_cast<size_t>(0x4000), number_string_cache_size)); // There is a string and a number per entry so the length is twice the number // of entries. return static_cast<int>(number_string_cache_size * 2); } void Heap::IncrementExternalBackingStoreBytes(ExternalBackingStoreType type, size_t amount) { base::CheckedIncrement(&backing_store_bytes_, static_cast<uint64_t>(amount), std::memory_order_relaxed); // TODO(mlippautz): Implement interrupt for global memory allocations that can // trigger garbage collections. } void Heap::DecrementExternalBackingStoreBytes(ExternalBackingStoreType type, size_t amount) { base::CheckedDecrement(&backing_store_bytes_, static_cast<uint64_t>(amount), std::memory_order_relaxed); } bool Heap::HasDirtyJSFinalizationRegistries() { return !IsUndefined(dirty_js_finalization_registries_list(), isolate()); } AlwaysAllocateScope::AlwaysAllocateScope(Heap* heap) : heap_(heap) { heap_->always_allocate_scope_count_++; } AlwaysAllocateScope::~AlwaysAllocateScope() { heap_->always_allocate_scope_count_--; } AlwaysAllocateScopeForTesting::AlwaysAllocateScopeForTesting(Heap* heap) : scope_(heap) {} PagedNewSpace* Heap::paged_new_space() const { return PagedNewSpace::From(new_space()); } #ifdef V8_ENABLE_THIRD_PARTY_HEAP CodePageMemoryModificationScope::CodePageMemoryModificationScope( InstructionStream code) : #if V8_HEAP_USE_PTHREAD_JIT_WRITE_PROTECT || V8_HEAP_USE_PKU_JIT_WRITE_PROTECT rwx_write_scope_("A part of CodePageMemoryModificationScope"), #endif chunk_(nullptr), scope_active_(false) { } #else CodePageMemoryModificationScope::CodePageMemoryModificationScope( Tagged<InstructionStream> code) : CodePageMemoryModificationScope(BasicMemoryChunk::FromHeapObject(code)) {} #endif #if V8_HEAP_USE_PTHREAD_JIT_WRITE_PROTECT || V8_HEAP_USE_PKU_JIT_WRITE_PROTECT CodePageMemoryModificationScope::CodePageMemoryModificationScope( BasicMemoryChunk* chunk) { if (chunk->IsFlagSet(BasicMemoryChunk::IS_EXECUTABLE)) { rwx_write_scope_.emplace("A part of CodePageMemoryModificationScope"); } } #else CodePageMemoryModificationScope::CodePageMemoryModificationScope( BasicMemoryChunk* chunk) : chunk_(chunk), scope_active_(chunk_->IsFlagSet(BasicMemoryChunk::IS_EXECUTABLE) && chunk_->heap()->write_protect_code_memory()) { if (scope_active_) { DCHECK(IsAnyCodeSpace(chunk_->owner()->identity())); guard_.emplace(MemoryChunk::cast(chunk_)->SetCodeModificationPermissions()); } } #endif CodePageMemoryModificationScope::~CodePageMemoryModificationScope() { #if !V8_HEAP_USE_PTHREAD_JIT_WRITE_PROTECT && !V8_HEAP_USE_PKU_JIT_WRITE_PROTECT if (scope_active_) { MemoryChunk::cast(chunk_)->SetDefaultCodePermissions(); } #endif } IgnoreLocalGCRequests::IgnoreLocalGCRequests(Heap* heap) : heap_(heap) { heap_->ignore_local_gc_requests_depth_++; } IgnoreLocalGCRequests::~IgnoreLocalGCRequests() { DCHECK_GT(heap_->ignore_local_gc_requests_depth_, 0); heap_->ignore_local_gc_requests_depth_--; } } // namespace internal } // namespace v8 #endif // V8_HEAP_HEAP_INL_H_