%PDF- %PDF-
Direktori : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/heap/ |
Current File : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/heap/heap.cc |
// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/heap/heap.h" #include <atomic> #include <cinttypes> #include <iomanip> #include <memory> #include <unordered_map> #include <unordered_set> #include "include/v8-locker.h" #include "src/api/api-inl.h" #include "src/base/bits.h" #include "src/base/flags.h" #include "src/base/logging.h" #include "src/base/macros.h" #include "src/base/once.h" #include "src/base/optional.h" #include "src/base/platform/memory.h" #include "src/base/platform/mutex.h" #include "src/base/utils/random-number-generator.h" #include "src/builtins/accessors.h" #include "src/codegen/assembler-inl.h" #include "src/codegen/compilation-cache.h" #include "src/common/assert-scope.h" #include "src/common/globals.h" #include "src/compiler-dispatcher/optimizing-compile-dispatcher.h" #include "src/debug/debug.h" #include "src/deoptimizer/deoptimizer.h" #include "src/execution/embedder-state.h" #include "src/execution/isolate-utils-inl.h" #include "src/execution/microtask-queue.h" #include "src/execution/v8threads.h" #include "src/execution/vm-state-inl.h" #include "src/flags/flags.h" #include "src/handles/global-handles-inl.h" #include "src/handles/traced-handles.h" #include "src/heap/allocation-observer.h" #include "src/heap/array-buffer-sweeper.h" #include "src/heap/base/stack.h" #include "src/heap/base/worklist.h" #include "src/heap/basic-memory-chunk.h" #include "src/heap/code-range.h" #include "src/heap/code-stats.h" #include "src/heap/collection-barrier.h" #include "src/heap/combined-heap.h" #include "src/heap/concurrent-allocator.h" #include "src/heap/concurrent-marking.h" #include "src/heap/cppgc-js/cpp-heap.h" #include "src/heap/ephemeron-remembered-set.h" #include "src/heap/evacuation-verifier-inl.h" #include "src/heap/finalization-registry-cleanup-task.h" #include "src/heap/gc-callbacks.h" #include "src/heap/gc-idle-time-handler.h" #include "src/heap/gc-tracer-inl.h" #include "src/heap/gc-tracer.h" #include "src/heap/heap-allocator.h" #include "src/heap/heap-controller.h" #include "src/heap/heap-layout-tracer.h" #include "src/heap/heap-write-barrier-inl.h" #include "src/heap/incremental-marking-inl.h" #include "src/heap/incremental-marking.h" #include "src/heap/large-spaces.h" #include "src/heap/local-heap.h" #include "src/heap/mark-compact-inl.h" #include "src/heap/mark-compact.h" #include "src/heap/marking-barrier-inl.h" #include "src/heap/marking-barrier.h" #include "src/heap/marking-state-inl.h" #include "src/heap/marking-state.h" #include "src/heap/memory-balancer.h" #include "src/heap/memory-chunk-inl.h" #include "src/heap/memory-chunk-layout.h" #include "src/heap/memory-measurement.h" #include "src/heap/memory-reducer.h" #include "src/heap/minor-gc-job.h" #include "src/heap/minor-mark-sweep.h" #include "src/heap/new-spaces.h" #include "src/heap/object-lock.h" #include "src/heap/object-stats.h" #include "src/heap/objects-visiting-inl.h" #include "src/heap/objects-visiting.h" #include "src/heap/paged-spaces-inl.h" #include "src/heap/parked-scope.h" #include "src/heap/pretenuring-handler.h" #include "src/heap/read-only-heap.h" #include "src/heap/remembered-set.h" #include "src/heap/safepoint.h" #include "src/heap/scavenger-inl.h" #include "src/heap/stress-scavenge-observer.h" #include "src/heap/sweeper.h" #include "src/heap/zapping.h" #include "src/init/bootstrapper.h" #include "src/init/v8.h" #include "src/interpreter/interpreter.h" #include "src/logging/log.h" #include "src/logging/runtime-call-stats-scope.h" #include "src/numbers/conversions.h" #include "src/objects/data-handler.h" #include "src/objects/feedback-vector.h" #include "src/objects/free-space-inl.h" #include "src/objects/hash-table-inl.h" #include "src/objects/hash-table.h" #include "src/objects/instance-type.h" #include "src/objects/maybe-object.h" #include "src/objects/objects.h" #include "src/objects/shared-function-info.h" #include "src/objects/slots-atomic-inl.h" #include "src/objects/slots-inl.h" #include "src/objects/visitors.h" #include "src/profiler/heap-profiler.h" #include "src/regexp/regexp.h" #include "src/snapshot/embedded/embedded-data.h" #include "src/snapshot/serializer-deserializer.h" #include "src/snapshot/snapshot.h" #include "src/strings/string-stream.h" #include "src/strings/unicode-decoder.h" #include "src/strings/unicode-inl.h" #include "src/tracing/trace-event.h" #include "src/utils/utils-inl.h" #include "src/utils/utils.h" #ifdef V8_ENABLE_CONSERVATIVE_STACK_SCANNING #include "src/heap/conservative-stack-visitor.h" #endif // V8_ENABLE_CONSERVATIVE_STACK_SCANNING // Has to be the last include (doesn't have include guards): #include "src/objects/object-macros.h" namespace v8 { namespace internal { #ifdef V8_ENABLE_THIRD_PARTY_HEAP Isolate* Heap::GetIsolateFromWritableObject(Tagged<HeapObject> object) { return reinterpret_cast<Isolate*>( third_party_heap::Heap::GetIsolate(object.address())); } #endif // These are outside the Heap class so they can be forward-declared // in heap-write-barrier-inl.h. bool Heap_PageFlagsAreConsistent(Tagged<HeapObject> object) { return Heap::PageFlagsAreConsistent(object); } void Heap_CombinedGenerationalAndSharedBarrierSlow(Tagged<HeapObject> object, Address slot, Tagged<HeapObject> value) { Heap::CombinedGenerationalAndSharedBarrierSlow(object, slot, value); } void Heap_CombinedGenerationalAndSharedEphemeronBarrierSlow( Tagged<EphemeronHashTable> table, Address slot, Tagged<HeapObject> value) { Heap::CombinedGenerationalAndSharedEphemeronBarrierSlow(table, slot, value); } void Heap_GenerationalBarrierForCodeSlow(Tagged<InstructionStream> host, RelocInfo* rinfo, Tagged<HeapObject> object) { Heap::GenerationalBarrierForCodeSlow(host, rinfo, object); } void Heap::SetConstructStubCreateDeoptPCOffset(int pc_offset) { DCHECK_EQ(Smi::zero(), construct_stub_create_deopt_pc_offset()); set_construct_stub_create_deopt_pc_offset(Smi::FromInt(pc_offset)); } void Heap::SetConstructStubInvokeDeoptPCOffset(int pc_offset) { DCHECK_EQ(Smi::zero(), construct_stub_invoke_deopt_pc_offset()); set_construct_stub_invoke_deopt_pc_offset(Smi::FromInt(pc_offset)); } void Heap::SetInterpreterEntryReturnPCOffset(int pc_offset) { DCHECK_EQ(Smi::zero(), interpreter_entry_return_pc_offset()); set_interpreter_entry_return_pc_offset(Smi::FromInt(pc_offset)); } void Heap::SetSerializedObjects(Tagged<FixedArray> objects) { DCHECK(isolate()->serializer_enabled()); set_serialized_objects(objects); } void Heap::SetSerializedGlobalProxySizes(Tagged<FixedArray> sizes) { DCHECK(isolate()->serializer_enabled()); set_serialized_global_proxy_sizes(sizes); } void Heap::SetBasicBlockProfilingData(Handle<ArrayList> list) { set_basic_block_profiling_data(*list); } class ScheduleMinorGCTaskObserver final : public AllocationObserver { public: explicit ScheduleMinorGCTaskObserver(Heap* heap) : AllocationObserver(kNotUsingFixedStepSize), heap_(heap) { // Register GC callback for all atomic pause types. heap_->main_thread_local_heap()->AddGCEpilogueCallback( &GCEpilogueCallback, this, GCCallbacksInSafepoint::GCType::kLocal); AddToNewSpace(); } ~ScheduleMinorGCTaskObserver() final { RemoveFromNewSpace(); heap_->main_thread_local_heap()->RemoveGCEpilogueCallback( &GCEpilogueCallback, this); } intptr_t GetNextStepSize() final { size_t new_space_threshold = MinorGCJob::YoungGenerationTaskTriggerSize(heap_); size_t new_space_size = heap_->new_space()->Size(); if (new_space_size < new_space_threshold) { return new_space_threshold - new_space_size; } // Force a step on next allocation. return 1; } void Step(int, Address, size_t) final { heap_->ScheduleMinorGCTaskIfNeeded(); // Remove this observer. It will be re-added after a GC. DCHECK(was_added_to_space_); heap_->allocator()->new_space_allocator()->RemoveAllocationObserver(this); was_added_to_space_ = false; } protected: static void GCEpilogueCallback(void* observer) { reinterpret_cast<ScheduleMinorGCTaskObserver*>(observer) ->RemoveFromNewSpace(); reinterpret_cast<ScheduleMinorGCTaskObserver*>(observer)->AddToNewSpace(); } void AddToNewSpace() { DCHECK(!was_added_to_space_); DCHECK_IMPLIES(v8_flags.minor_ms, !heap_->allocator()->new_space_allocator()->IsLabValid()); heap_->allocator()->new_space_allocator()->AddAllocationObserver(this); was_added_to_space_ = true; } void RemoveFromNewSpace() { if (!was_added_to_space_) return; heap_->allocator()->new_space_allocator()->RemoveAllocationObserver(this); was_added_to_space_ = false; } Heap* heap_; bool was_added_to_space_ = false; }; Heap::Heap() : isolate_(isolate()), heap_allocator_(this), memory_pressure_level_(MemoryPressureLevel::kNone), safepoint_(std::make_unique<IsolateSafepoint>(this)), external_string_table_(this), allocation_type_for_in_place_internalizable_strings_( isolate()->OwnsStringTables() ? AllocationType::kOld : AllocationType::kSharedOld), marking_state_(isolate_), non_atomic_marking_state_(isolate_), pretenuring_handler_(this) { // Ensure old_generation_size_ is a multiple of kPageSize. DCHECK_EQ(0, max_old_generation_size() & (Page::kPageSize - 1)); max_regular_code_object_size_ = MemoryChunkLayout::MaxRegularCodeObjectSize(); set_native_contexts_list(Smi::zero()); // Put a dummy entry in the remembered pages so we can find the list the // minidump even if there are no real unmapped pages. RememberUnmappedPage(kNullAddress, false); } Heap::~Heap() = default; size_t Heap::MaxReserved() const { const size_t kMaxNewLargeObjectSpaceSize = max_semi_space_size_; return static_cast<size_t>( (v8_flags.minor_ms ? 1 : 2) * max_semi_space_size_ + kMaxNewLargeObjectSpaceSize + max_old_generation_size()); } size_t Heap::YoungGenerationSizeFromOldGenerationSize(size_t old_generation) { // Compute the semi space size and cap it. bool is_low_memory = old_generation <= kOldGenerationLowMemory; size_t semi_space; if (v8_flags.minor_ms && !is_low_memory) { semi_space = DefaultMaxSemiSpaceSize(); } else { size_t ratio = is_low_memory ? OldGenerationToSemiSpaceRatioLowMemory() : OldGenerationToSemiSpaceRatio(); semi_space = old_generation / ratio; semi_space = std::min({semi_space, DefaultMaxSemiSpaceSize()}); semi_space = std::max({semi_space, DefaultMinSemiSpaceSize()}); semi_space = RoundUp(semi_space, Page::kPageSize); } return YoungGenerationSizeFromSemiSpaceSize(semi_space); } size_t Heap::HeapSizeFromPhysicalMemory(uint64_t physical_memory) { // Compute the old generation size and cap it. uint64_t old_generation = physical_memory / kPhysicalMemoryToOldGenerationRatio * kHeapLimitMultiplier; old_generation = std::min(old_generation, static_cast<uint64_t>(MaxOldGenerationSize(physical_memory))); old_generation = std::max({old_generation, static_cast<uint64_t>(V8HeapTrait::kMinSize)}); old_generation = RoundUp(old_generation, Page::kPageSize); size_t young_generation = YoungGenerationSizeFromOldGenerationSize( static_cast<size_t>(old_generation)); return static_cast<size_t>(old_generation) + young_generation; } void Heap::GenerationSizesFromHeapSize(size_t heap_size, size_t* young_generation_size, size_t* old_generation_size) { // Initialize values for the case when the given heap size is too small. *young_generation_size = 0; *old_generation_size = 0; // Binary search for the largest old generation size that fits to the given // heap limit considering the correspondingly sized young generation. size_t lower = 0, upper = heap_size; while (lower + 1 < upper) { size_t old_generation = lower + (upper - lower) / 2; size_t young_generation = YoungGenerationSizeFromOldGenerationSize(old_generation); if (old_generation + young_generation <= heap_size) { // This size configuration fits into the given heap limit. *young_generation_size = young_generation; *old_generation_size = old_generation; lower = old_generation; } else { upper = old_generation; } } } size_t Heap::MinYoungGenerationSize() { return YoungGenerationSizeFromSemiSpaceSize(DefaultMinSemiSpaceSize()); } size_t Heap::MinOldGenerationSize() { size_t paged_space_count = LAST_GROWABLE_PAGED_SPACE - FIRST_GROWABLE_PAGED_SPACE + 1; return paged_space_count * Page::kPageSize; } size_t Heap::AllocatorLimitOnMaxOldGenerationSize() { #ifdef V8_COMPRESS_POINTERS // Isolate and the young generation are also allocated on the heap. return kPtrComprCageReservationSize - YoungGenerationSizeFromSemiSpaceSize(DefaultMaxSemiSpaceSize()) - RoundUp(sizeof(Isolate), size_t{1} << kPageSizeBits); #else return std::numeric_limits<size_t>::max(); #endif } size_t Heap::MaxOldGenerationSize(uint64_t physical_memory) { size_t max_size = V8HeapTrait::kMaxSize; // Increase the heap size from 2GB to 4GB for 64-bit systems with physical // memory at least 16GB. The theshold is set to 15GB to accomodate for some // memory being reserved by the hardware. constexpr bool x64_bit = Heap::kHeapLimitMultiplier >= 2; if (v8_flags.huge_max_old_generation_size && x64_bit && (physical_memory / GB) >= 15) { DCHECK_EQ(max_size / GB, 2u); max_size *= 2; } return std::min(max_size, AllocatorLimitOnMaxOldGenerationSize()); } namespace { int NumberOfSemiSpaces() { return v8_flags.minor_ms ? 1 : 2; } } // namespace size_t Heap::YoungGenerationSizeFromSemiSpaceSize(size_t semi_space_size) { return semi_space_size * (NumberOfSemiSpaces() + kNewLargeObjectSpaceToSemiSpaceRatio); } size_t Heap::SemiSpaceSizeFromYoungGenerationSize( size_t young_generation_size) { return young_generation_size / (NumberOfSemiSpaces() + kNewLargeObjectSpaceToSemiSpaceRatio); } size_t Heap::Capacity() { if (!HasBeenSetUp()) return 0; if (v8_flags.enable_third_party_heap) return tp_heap_->Capacity(); return NewSpaceCapacity() + OldGenerationCapacity(); } size_t Heap::OldGenerationCapacity() const { if (!HasBeenSetUp()) return 0; PagedSpaceIterator spaces(this); size_t total = 0; for (PagedSpace* space = spaces.Next(); space != nullptr; space = spaces.Next()) { total += space->Capacity(); } if (shared_lo_space_) { total += shared_lo_space_->SizeOfObjects(); } return total + lo_space_->SizeOfObjects() + code_lo_space_->SizeOfObjects(); } size_t Heap::CommittedOldGenerationMemory() { if (!HasBeenSetUp()) return 0; PagedSpaceIterator spaces(this); size_t total = 0; for (PagedSpace* space = spaces.Next(); space != nullptr; space = spaces.Next()) { total += space->CommittedMemory(); } if (shared_lo_space_) { total += shared_lo_space_->Size(); } return total + lo_space_->Size() + code_lo_space_->Size() + trusted_lo_space_->Size(); } size_t Heap::CommittedMemoryOfUnmapper() { if (!HasBeenSetUp()) return 0; return memory_allocator()->unmapper()->CommittedBufferedMemory(); } size_t Heap::CommittedMemory() { if (!HasBeenSetUp()) return 0; size_t new_space_committed = new_space_ ? new_space_->CommittedMemory() : 0; size_t new_lo_space_committed = new_lo_space_ ? new_lo_space_->Size() : 0; return new_space_committed + new_lo_space_committed + CommittedOldGenerationMemory(); } size_t Heap::CommittedPhysicalMemory() { if (!HasBeenSetUp()) return 0; size_t total = 0; for (SpaceIterator it(this); it.HasNext();) { total += it.Next()->CommittedPhysicalMemory(); } return total; } size_t Heap::CommittedMemoryExecutable() { if (!HasBeenSetUp()) return 0; return static_cast<size_t>(memory_allocator()->SizeExecutable()); } void Heap::UpdateMaximumCommitted() { if (!HasBeenSetUp()) return; const size_t current_committed_memory = CommittedMemory(); if (current_committed_memory > maximum_committed_) { maximum_committed_ = current_committed_memory; } } size_t Heap::Available() { if (!HasBeenSetUp()) return 0; size_t total = 0; for (SpaceIterator it(this); it.HasNext();) { total += it.Next()->Available(); } total += memory_allocator()->Available(); return total; } bool Heap::CanExpandOldGeneration(size_t size) const { if (force_oom_ || force_gc_on_next_allocation_) return false; if (OldGenerationCapacity() + size > max_old_generation_size()) return false; // Stay below `MaxReserved()` such that it is more likely that committing the // second semi space at the beginning of a GC succeeds. return memory_allocator()->Size() + size <= MaxReserved(); } bool Heap::IsOldGenerationExpansionAllowed( size_t size, const base::MutexGuard& expansion_mutex_guard) const { return OldGenerationCapacity() + size <= max_old_generation_size(); } namespace { bool IsIsolateDeserializationActive(LocalHeap* local_heap) { return local_heap && !local_heap->heap()->deserialization_complete(); } } // anonymous namespace bool Heap::CanPromoteYoungAndExpandOldGeneration(size_t size) const { size_t new_space_capacity = NewSpaceTargetCapacity(); size_t new_lo_space_capacity = new_lo_space_ ? new_lo_space_->Size() : 0; // Over-estimate the new space size using capacity to allow some slack. return CanExpandOldGeneration(size + new_space_capacity + new_lo_space_capacity); } bool Heap::HasBeenSetUp() const { // We will always have an old space when the heap is set up. return old_space_ != nullptr; } bool Heap::ShouldUseBackgroundThreads() const { return !v8_flags.single_threaded_gc_in_background || !isolate()->IsIsolateInBackground(); } GarbageCollector Heap::SelectGarbageCollector(AllocationSpace space, GarbageCollectionReason gc_reason, const char** reason) const { if (gc_reason == GarbageCollectionReason::kFinalizeConcurrentMinorMS) { DCHECK(new_space()); *reason = "Concurrent MinorMS needs finalization"; return GarbageCollector::MINOR_MARK_SWEEPER; } // Is global GC requested? if (space != NEW_SPACE && space != NEW_LO_SPACE) { isolate_->counters()->gc_compactor_caused_by_request()->Increment(); *reason = "GC in old space requested"; return GarbageCollector::MARK_COMPACTOR; } if (v8_flags.gc_global || ShouldStressCompaction() || !new_space()) { *reason = "GC in old space forced by flags"; return GarbageCollector::MARK_COMPACTOR; } if (incremental_marking()->IsMajorMarking() && incremental_marking()->IsMajorMarkingComplete() && AllocationLimitOvershotByLargeMargin()) { *reason = "Incremental marking needs finalization"; return GarbageCollector::MARK_COMPACTOR; } if (v8_flags.separate_gc_phases && incremental_marking()->IsMajorMarking()) { // TODO(v8:12503): Remove previous condition when flag gets removed. *reason = "Incremental marking forced finalization"; return GarbageCollector::MARK_COMPACTOR; } if (!CanPromoteYoungAndExpandOldGeneration(0)) { isolate_->counters() ->gc_compactor_caused_by_oldspace_exhaustion() ->Increment(); *reason = "scavenge might not succeed"; return GarbageCollector::MARK_COMPACTOR; } DCHECK(!v8_flags.single_generation); DCHECK(!v8_flags.gc_global); // Default *reason = nullptr; return YoungGenerationCollector(); } void Heap::SetGCState(HeapState state) { gc_state_.store(state, std::memory_order_relaxed); } bool Heap::IsGCWithStack() const { return embedder_stack_state_ == cppgc::EmbedderStackState::kMayContainHeapPointers; } bool Heap::CanShortcutStringsDuringGC(GarbageCollector collector) const { if (!v8_flags.shortcut_strings_with_stack && IsGCWithStack()) return false; switch (collector) { case GarbageCollector::MINOR_MARK_SWEEPER: if (!v8_flags.minor_ms_shortcut_strings) return false; DCHECK(!incremental_marking()->IsMajorMarking()); // Minor MS cannot short cut strings during concurrent marking. if (incremental_marking()->IsMinorMarking()) return false; // Minor MS uses static roots to check for strings to shortcut. if (!V8_STATIC_ROOTS_BOOL) return false; break; case GarbageCollector::SCAVENGER: // Scavenger cannot short cut strings during incremental marking. if (incremental_marking()->IsMajorMarking()) return false; if (isolate()->has_shared_space() && !isolate()->is_shared_space_isolate() && isolate() ->shared_space_isolate() ->heap() ->incremental_marking() ->IsMarking()) { DCHECK(isolate() ->shared_space_isolate() ->heap() ->incremental_marking() ->IsMajorMarking()); return false; } break; default: UNREACHABLE(); } return true; } void Heap::PrintShortHeapStatistics() { if (!v8_flags.trace_gc_verbose) return; PrintIsolate(isolate_, "Memory allocator, used: %6zu KB," " available: %6zu KB\n", memory_allocator()->Size() / KB, memory_allocator()->Available() / KB); PrintIsolate(isolate_, "Read-only space, used: %6zu KB" ", available: %6zu KB" ", committed: %6zu KB\n", read_only_space_->Size() / KB, size_t{0}, read_only_space_->CommittedMemory() / KB); PrintIsolate(isolate_, "New space, used: %6zu KB" ", available: %6zu KB%s" ", committed: %6zu KB\n", NewSpaceSize() / KB, new_space_->Available() / KB, (v8_flags.minor_ms && minor_sweeping_in_progress()) ? "*" : "", new_space_->CommittedMemory() / KB); PrintIsolate(isolate_, "New large object space, used: %6zu KB" ", available: %6zu KB" ", committed: %6zu KB\n", new_lo_space_->SizeOfObjects() / KB, new_lo_space_->Available() / KB, new_lo_space_->CommittedMemory() / KB); PrintIsolate(isolate_, "Old space, used: %6zu KB" ", available: %6zu KB%s" ", committed: %6zu KB\n", old_space_->SizeOfObjects() / KB, old_space_->Available() / KB, sweeping_in_progress() ? "*" : "", old_space_->CommittedMemory() / KB); PrintIsolate(isolate_, "Code space, used: %6zu KB" ", available: %6zu KB%s" ", committed: %6zu KB\n", code_space_->SizeOfObjects() / KB, code_space_->Available() / KB, major_sweeping_in_progress() ? "*" : "", code_space_->CommittedMemory() / KB); PrintIsolate(isolate_, "Large object space, used: %6zu KB" ", available: %6zu KB" ", committed: %6zu KB\n", lo_space_->SizeOfObjects() / KB, lo_space_->Available() / KB, lo_space_->CommittedMemory() / KB); PrintIsolate(isolate_, "Code large object space, used: %6zu KB" ", available: %6zu KB" ", committed: %6zu KB\n", code_lo_space_->SizeOfObjects() / KB, code_lo_space_->Available() / KB, code_lo_space_->CommittedMemory() / KB); PrintIsolate(isolate_, "Trusted space, used: %6zu KB" ", available: %6zu KB%s" ", committed: %6zu KB\n", trusted_space_->SizeOfObjects() / KB, trusted_space_->Available() / KB, sweeping_in_progress() ? "*" : "", trusted_space_->CommittedMemory() / KB); PrintIsolate(isolate_, "Trusted large object space, used: %6zu KB" ", available: %6zu KB" ", committed: %6zu KB\n", trusted_lo_space_->SizeOfObjects() / KB, trusted_lo_space_->Available() / KB, trusted_lo_space_->CommittedMemory() / KB); ReadOnlySpace* const ro_space = read_only_space_; PrintIsolate(isolate_, "All spaces, used: %6zu KB" ", available: %6zu KB%s" ", committed: %6zu KB\n", (this->SizeOfObjects() + ro_space->Size()) / KB, (this->Available()) / KB, sweeping_in_progress() ? "*" : "", (this->CommittedMemory() + ro_space->CommittedMemory()) / KB); PrintIsolate(isolate_, "Unmapper buffering %zu chunks of committed: %6zu KB\n", memory_allocator()->unmapper()->NumberOfCommittedChunks(), CommittedMemoryOfUnmapper() / KB); PrintIsolate(isolate_, "External memory reported: %6" PRId64 " KB\n", external_memory_.total() / KB); PrintIsolate(isolate_, "Backing store memory: %6" PRIu64 " KB\n", backing_store_bytes() / KB); PrintIsolate(isolate_, "External memory global %zu KB\n", external_memory_callback_() / KB); PrintIsolate(isolate_, "Total time spent in GC : %.1f ms\n", total_gc_time_ms_.InMillisecondsF()); if (sweeping_in_progress()) { PrintIsolate(isolate_, "(*) Sweeping is still in progress, making available sizes " "inaccurate.\n"); } } void Heap::PrintFreeListsStats() { DCHECK(v8_flags.trace_gc_freelists); if (v8_flags.trace_gc_freelists_verbose) { PrintIsolate(isolate_, "Freelists statistics per Page: " "[category: length || total free bytes]\n"); } std::vector<int> categories_lengths( old_space()->free_list()->number_of_categories(), 0); std::vector<size_t> categories_sums( old_space()->free_list()->number_of_categories(), 0); unsigned int pageCnt = 0; // This loops computes freelists lengths and sum. // If v8_flags.trace_gc_freelists_verbose is enabled, it also prints // the stats of each FreeListCategory of each Page. for (Page* page : *old_space()) { std::ostringstream out_str; if (v8_flags.trace_gc_freelists_verbose) { out_str << "Page " << std::setw(4) << pageCnt; } for (int cat = kFirstCategory; cat <= old_space()->free_list()->last_category(); cat++) { FreeListCategory* free_list = page->free_list_category(static_cast<FreeListCategoryType>(cat)); int length = free_list->FreeListLength(); size_t sum = free_list->SumFreeList(); if (v8_flags.trace_gc_freelists_verbose) { out_str << "[" << cat << ": " << std::setw(4) << length << " || " << std::setw(6) << sum << " ]" << (cat == old_space()->free_list()->last_category() ? "\n" : ", "); } categories_lengths[cat] += length; categories_sums[cat] += sum; } if (v8_flags.trace_gc_freelists_verbose) { PrintIsolate(isolate_, "%s", out_str.str().c_str()); } pageCnt++; } // Print statistics about old_space (pages, free/wasted/used memory...). PrintIsolate( isolate_, "%d pages. Free space: %.1f MB (waste: %.2f). " "Usage: %.1f/%.1f (MB) -> %.2f%%.\n", pageCnt, static_cast<double>(old_space_->Available()) / MB, static_cast<double>(old_space_->Waste()) / MB, static_cast<double>(old_space_->Size()) / MB, static_cast<double>(old_space_->Capacity()) / MB, static_cast<double>(old_space_->Size()) / old_space_->Capacity() * 100); // Print global statistics of each FreeListCategory (length & sum). PrintIsolate(isolate_, "FreeLists global statistics: " "[category: length || total free KB]\n"); std::ostringstream out_str; for (int cat = kFirstCategory; cat <= old_space()->free_list()->last_category(); cat++) { out_str << "[" << cat << ": " << categories_lengths[cat] << " || " << std::fixed << std::setprecision(2) << static_cast<double>(categories_sums[cat]) / KB << " KB]" << (cat == old_space()->free_list()->last_category() ? "\n" : ", "); } PrintIsolate(isolate_, "%s", out_str.str().c_str()); } void Heap::DumpJSONHeapStatistics(std::stringstream& stream) { HeapStatistics stats; reinterpret_cast<v8::Isolate*>(isolate())->GetHeapStatistics(&stats); // clang-format off #define DICT(s) "{" << s << "}" #define LIST(s) "[" << s << "]" #define QUOTE(s) "\"" << s << "\"" #define MEMBER(s) QUOTE(s) << ":" auto SpaceStatistics = [this](int space_index) { HeapSpaceStatistics space_stats; reinterpret_cast<v8::Isolate*>(isolate())->GetHeapSpaceStatistics( &space_stats, space_index); std::stringstream stream; stream << DICT( MEMBER("name") << QUOTE(ToString( static_cast<AllocationSpace>(space_index))) << "," MEMBER("size") << space_stats.space_size() << "," MEMBER("used_size") << space_stats.space_used_size() << "," MEMBER("available_size") << space_stats.space_available_size() << "," MEMBER("physical_size") << space_stats.physical_space_size()); return stream.str(); }; stream << DICT( MEMBER("isolate") << QUOTE(reinterpret_cast<void*>(isolate())) << "," MEMBER("id") << gc_count() << "," MEMBER("time_ms") << isolate()->time_millis_since_init() << "," MEMBER("total_heap_size") << stats.total_heap_size() << "," MEMBER("total_heap_size_executable") << stats.total_heap_size_executable() << "," MEMBER("total_physical_size") << stats.total_physical_size() << "," MEMBER("total_available_size") << stats.total_available_size() << "," MEMBER("used_heap_size") << stats.used_heap_size() << "," MEMBER("heap_size_limit") << stats.heap_size_limit() << "," MEMBER("malloced_memory") << stats.malloced_memory() << "," MEMBER("external_memory") << stats.external_memory() << "," MEMBER("peak_malloced_memory") << stats.peak_malloced_memory() << "," MEMBER("spaces") << LIST( SpaceStatistics(RO_SPACE) << "," << SpaceStatistics(NEW_SPACE) << "," << SpaceStatistics(OLD_SPACE) << "," << SpaceStatistics(CODE_SPACE) << "," << SpaceStatistics(LO_SPACE) << "," << SpaceStatistics(CODE_LO_SPACE) << "," << SpaceStatistics(NEW_LO_SPACE) << "," << SpaceStatistics(TRUSTED_SPACE) << "," << SpaceStatistics(TRUSTED_LO_SPACE))); #undef DICT #undef LIST #undef QUOTE #undef MEMBER // clang-format on } void Heap::ReportStatisticsAfterGC() { for (int i = 0; i < static_cast<int>(v8::Isolate::kUseCounterFeatureCount); ++i) { isolate()->CountUsage(static_cast<v8::Isolate::UseCounterFeature>(i), deferred_counters_[i]); deferred_counters_[i] = 0; } } class Heap::AllocationTrackerForDebugging final : public HeapObjectAllocationTracker { public: static bool IsNeeded() { return v8_flags.verify_predictable || v8_flags.fuzzer_gc_analysis || (v8_flags.trace_allocation_stack_interval > 0); } explicit AllocationTrackerForDebugging(Heap* heap) : heap_(heap) { CHECK(IsNeeded()); heap_->AddHeapObjectAllocationTracker(this); } ~AllocationTrackerForDebugging() final { heap_->RemoveHeapObjectAllocationTracker(this); if (v8_flags.verify_predictable || v8_flags.fuzzer_gc_analysis) { PrintAllocationsHash(); } } void AllocationEvent(Address addr, int size) final { if (v8_flags.verify_predictable) { allocations_count_.fetch_add(1, std::memory_order_relaxed); // Advance synthetic time by making a time request. heap_->MonotonicallyIncreasingTimeInMs(); UpdateAllocationsHash(HeapObject::FromAddress(addr)); UpdateAllocationsHash(size); if (allocations_count_ % v8_flags.dump_allocations_digest_at_alloc == 0) { PrintAllocationsHash(); } } else if (v8_flags.fuzzer_gc_analysis) { allocations_count_.fetch_add(1, std::memory_order_relaxed); } else if (v8_flags.trace_allocation_stack_interval > 0) { allocations_count_.fetch_add(1, std::memory_order_relaxed); if (allocations_count_ % v8_flags.trace_allocation_stack_interval == 0) { heap_->isolate()->PrintStack(stdout, Isolate::kPrintStackConcise); } } } void MoveEvent(Address source, Address target, int size) final { if (v8_flags.verify_predictable) { allocations_count_.fetch_add(1, std::memory_order_relaxed); // Advance synthetic time by making a time request. heap_->MonotonicallyIncreasingTimeInMs(); UpdateAllocationsHash(HeapObject::FromAddress(source)); UpdateAllocationsHash(HeapObject::FromAddress(target)); UpdateAllocationsHash(size); if (allocations_count_ % v8_flags.dump_allocations_digest_at_alloc == 0) { PrintAllocationsHash(); } } else if (v8_flags.fuzzer_gc_analysis) { allocations_count_.fetch_add(1, std::memory_order_relaxed); } } void UpdateObjectSizeEvent(Address, int) final {} private: void UpdateAllocationsHash(Tagged<HeapObject> object) { Address object_address = object.address(); MemoryChunk* memory_chunk = MemoryChunk::FromAddress(object_address); AllocationSpace allocation_space = memory_chunk->owner_identity(); static_assert(kSpaceTagSize + kPageSizeBits <= 32); uint32_t value = static_cast<uint32_t>(object_address - memory_chunk->address()) | (static_cast<uint32_t>(allocation_space) << kPageSizeBits); UpdateAllocationsHash(value); } void UpdateAllocationsHash(uint32_t value) { const uint16_t c1 = static_cast<uint16_t>(value); const uint16_t c2 = static_cast<uint16_t>(value >> 16); raw_allocations_hash_ = StringHasher::AddCharacterCore(raw_allocations_hash_, c1); raw_allocations_hash_ = StringHasher::AddCharacterCore(raw_allocations_hash_, c2); } void PrintAllocationsHash() { uint32_t hash = StringHasher::GetHashCore(raw_allocations_hash_); PrintF("\n### Allocations = %zu, hash = 0x%08x\n", allocations_count_.load(std::memory_order_relaxed), hash); } Heap* const heap_; // Count of all allocations performed through C++ bottlenecks. This needs to // be atomic as objects are moved in parallel in the GC which counts as // allocations. std::atomic<size_t> allocations_count_{0}; // Running hash over allocations performed. uint32_t raw_allocations_hash_ = 0; }; void Heap::AddHeapObjectAllocationTracker( HeapObjectAllocationTracker* tracker) { if (allocation_trackers_.empty() && v8_flags.inline_new) { DisableInlineAllocation(); } allocation_trackers_.push_back(tracker); if (allocation_trackers_.size() == 1) { isolate_->UpdateLogObjectRelocation(); } } void Heap::RemoveHeapObjectAllocationTracker( HeapObjectAllocationTracker* tracker) { allocation_trackers_.erase(std::remove(allocation_trackers_.begin(), allocation_trackers_.end(), tracker), allocation_trackers_.end()); if (allocation_trackers_.empty()) { isolate_->UpdateLogObjectRelocation(); } if (allocation_trackers_.empty() && v8_flags.inline_new) { EnableInlineAllocation(); } } void Heap::AddRetainingPathTarget(Handle<HeapObject> object, RetainingPathOption option) { if (!v8_flags.track_retaining_path) { PrintF("Retaining path tracking requires --track-retaining-path\n"); } else { Handle<WeakArrayList> array(retaining_path_targets(), isolate()); int index = array->length(); array = WeakArrayList::AddToEnd(isolate(), array, MaybeObjectHandle::Weak(object)); set_retaining_path_targets(*array); DCHECK_EQ(array->length(), index + 1); retaining_path_target_option_[index] = option; } } bool Heap::IsRetainingPathTarget(Tagged<HeapObject> object, RetainingPathOption* option) { Tagged<WeakArrayList> targets = retaining_path_targets(); int length = targets->length(); MaybeObject object_to_check = HeapObjectReference::Weak(object); for (int i = 0; i < length; i++) { MaybeObject target = targets->Get(i); DCHECK(target->IsWeakOrCleared()); if (target == object_to_check) { DCHECK(retaining_path_target_option_.count(i)); *option = retaining_path_target_option_[i]; return true; } } return false; } void Heap::PrintRetainingPath(Tagged<HeapObject> target, RetainingPathOption option) { PrintF("\n\n\n"); PrintF("#################################################\n"); PrintF("Retaining path for %p:\n", reinterpret_cast<void*>(target.ptr())); Tagged<HeapObject> object = target; std::vector<std::pair<Tagged<HeapObject>, bool>> retaining_path; base::Optional<Root> root; bool ephemeron = false; while (true) { retaining_path.push_back(std::make_pair(object, ephemeron)); if (option == RetainingPathOption::kTrackEphemeronPath && ephemeron_retainer_.count(object)) { object = ephemeron_retainer_[object]; ephemeron = true; } else if (retainer_.count(object)) { object = retainer_[object]; ephemeron = false; } else { if (retaining_root_.count(object)) { root.emplace(retaining_root_[object]); } break; } } int distance = static_cast<int>(retaining_path.size()); for (auto node : retaining_path) { Tagged<HeapObject> node_object = node.first; bool node_ephemeron = node.second; PrintF("\n"); PrintF("^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n"); PrintF("Distance from root %d%s: ", distance, node_ephemeron ? " (ephemeron)" : ""); ShortPrint(*node_object); PrintF("\n"); #ifdef OBJECT_PRINT i::Print(*node_object); PrintF("\n"); #endif --distance; } PrintF("\n"); PrintF("^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n"); PrintF("Root: %s\n", root.has_value() ? RootVisitor::RootName(root.value()) : "Unknown"); PrintF("-------------------------------------------------\n"); } void UpdateRetainersMapAfterScavenge( UnorderedHeapObjectMap<Tagged<HeapObject>>* map) { // This is only used for Scavenger. DCHECK(!v8_flags.minor_ms); UnorderedHeapObjectMap<Tagged<HeapObject>> updated_map; for (auto pair : *map) { Tagged<HeapObject> object = pair.first; Tagged<HeapObject> retainer = pair.second; if (Heap::InFromPage(object)) { MapWord map_word = object->map_word(kRelaxedLoad); if (!map_word.IsForwardingAddress()) continue; object = map_word.ToForwardingAddress(object); } if (Heap::InFromPage(retainer)) { MapWord map_word = retainer->map_word(kRelaxedLoad); if (!map_word.IsForwardingAddress()) continue; retainer = map_word.ToForwardingAddress(retainer); } updated_map[object] = retainer; } *map = std::move(updated_map); } void Heap::UpdateRetainersAfterScavenge() { if (!incremental_marking()->IsMarking()) return; DCHECK(incremental_marking()->IsMajorMarking()); // This is only used for Scavenger. DCHECK(!v8_flags.minor_ms); UpdateRetainersMapAfterScavenge(&retainer_); UpdateRetainersMapAfterScavenge(&ephemeron_retainer_); UnorderedHeapObjectMap<Root> updated_retaining_root; for (auto pair : retaining_root_) { Tagged<HeapObject> object = pair.first; if (Heap::InFromPage(object)) { MapWord map_word = object->map_word(kRelaxedLoad); if (!map_word.IsForwardingAddress()) continue; object = map_word.ToForwardingAddress(object); } updated_retaining_root[object] = pair.second; } retaining_root_ = std::move(updated_retaining_root); } void Heap::AddRetainer(Tagged<HeapObject> retainer, Tagged<HeapObject> object) { if (retainer_.count(object)) return; retainer_[object] = retainer; RetainingPathOption option = RetainingPathOption::kDefault; if (IsRetainingPathTarget(object, &option)) { // Check if the retaining path was already printed in // AddEphemeronRetainer(). if (ephemeron_retainer_.count(object) == 0 || option == RetainingPathOption::kDefault) { PrintRetainingPath(object, option); } } } void Heap::AddEphemeronRetainer(Tagged<HeapObject> retainer, Tagged<HeapObject> object) { if (ephemeron_retainer_.count(object)) return; ephemeron_retainer_[object] = retainer; RetainingPathOption option = RetainingPathOption::kDefault; if (IsRetainingPathTarget(object, &option) && option == RetainingPathOption::kTrackEphemeronPath) { // Check if the retaining path was already printed in AddRetainer(). if (retainer_.count(object) == 0) { PrintRetainingPath(object, option); } } } void Heap::AddRetainingRoot(Root root, Tagged<HeapObject> object) { if (retaining_root_.count(object)) return; retaining_root_[object] = root; RetainingPathOption option = RetainingPathOption::kDefault; if (IsRetainingPathTarget(object, &option)) { PrintRetainingPath(object, option); } } void Heap::IncrementDeferredCount(v8::Isolate::UseCounterFeature feature) { deferred_counters_[feature]++; } void Heap::GarbageCollectionPrologue( GarbageCollectionReason gc_reason, const v8::GCCallbackFlags gc_callback_flags) { TRACE_GC(tracer(), GCTracer::Scope::HEAP_PROLOGUE); is_current_gc_forced_ = gc_callback_flags & v8::kGCCallbackFlagForced || current_gc_flags_ & GCFlag::kForced || force_gc_on_next_allocation_; is_current_gc_for_heap_profiler_ = gc_reason == GarbageCollectionReason::kHeapProfiler; if (force_gc_on_next_allocation_) force_gc_on_next_allocation_ = false; #ifdef V8_ENABLE_ALLOCATION_TIMEOUT heap_allocator_.UpdateAllocationTimeout(); #endif // V8_ENABLE_ALLOCATION_TIMEOUT // There may be an allocation memento behind objects in new space. Upon // evacuation of a non-full new space (or if we are on the last page) there // may be uninitialized memory behind top. We fill the remainder of the page // with a filler. if (new_space()) { new_space()->main_allocator()->MakeLinearAllocationAreaIterable(); DCHECK_NOT_NULL(minor_gc_job()); minor_gc_job()->CancelTaskIfScheduled(); } // Reset GC statistics. promoted_objects_size_ = 0; previous_new_space_surviving_object_size_ = new_space_surviving_object_size_; new_space_surviving_object_size_ = 0; nodes_died_in_new_space_ = 0; nodes_copied_in_new_space_ = 0; nodes_promoted_ = 0; UpdateMaximumCommitted(); #ifdef DEBUG DCHECK(!AllowGarbageCollection::IsAllowed()); DCHECK_EQ(gc_state(), NOT_IN_GC); if (v8_flags.gc_verbose) Print(); #endif // DEBUG memory_allocator()->unmapper()->PrepareForGC(); } void Heap::GarbageCollectionPrologueInSafepoint() { TRACE_GC(tracer(), GCTracer::Scope::HEAP_PROLOGUE_SAFEPOINT); gc_count_++; DCHECK_EQ(ResizeNewSpaceMode::kNone, resize_new_space_mode_); if (new_space_) { UpdateNewSpaceAllocationCounter(); if (!v8_flags.minor_ms) { resize_new_space_mode_ = ShouldResizeNewSpace(); // Pretenuring heuristics require that new space grows before pretenuring // feedback is processed. if (resize_new_space_mode_ == ResizeNewSpaceMode::kGrow) { ExpandNewSpaceSize(); } SemiSpaceNewSpace::From(new_space_)->ResetParkedAllocationBuffers(); } } } void Heap::UpdateNewSpaceAllocationCounter() { new_space_allocation_counter_ = NewSpaceAllocationCounter(); } size_t Heap::NewSpaceAllocationCounter() { return new_space_allocation_counter_ + (new_space_ ? new_space()->AllocatedSinceLastGC() : 0); } size_t Heap::SizeOfObjects() { size_t total = 0; for (SpaceIterator it(this); it.HasNext();) { total += it.Next()->SizeOfObjects(); } return total; } size_t Heap::TotalGlobalHandlesSize() { return isolate_->global_handles()->TotalSize() + isolate_->traced_handles()->total_size_bytes(); } size_t Heap::UsedGlobalHandlesSize() { return isolate_->global_handles()->UsedSize() + isolate_->traced_handles()->used_size_bytes(); } void Heap::AddAllocationObserversToAllSpaces( AllocationObserver* observer, AllocationObserver* new_space_observer) { DCHECK(observer && new_space_observer); allocator()->AddAllocationObserver(observer, new_space_observer); } void Heap::RemoveAllocationObserversFromAllSpaces( AllocationObserver* observer, AllocationObserver* new_space_observer) { DCHECK(observer && new_space_observer); allocator()->RemoveAllocationObserver(observer, new_space_observer); } void Heap::PublishPendingAllocations() { if (v8_flags.enable_third_party_heap) return; if (new_space_) new_space_->main_allocator()->MarkLabStartInitialized(); PagedSpaceIterator spaces(this); for (PagedSpace* space = spaces.Next(); space != nullptr; space = spaces.Next()) { space->main_allocator()->MoveOriginalTopForward(); } lo_space_->ResetPendingObject(); if (new_lo_space_) new_lo_space_->ResetPendingObject(); code_lo_space_->ResetPendingObject(); trusted_lo_space_->ResetPendingObject(); } void Heap::DeoptMarkedAllocationSites() { // TODO(hpayer): If iterating over the allocation sites list becomes a // performance issue, use a cache data structure in heap instead. ForeachAllocationSite( allocation_sites_list(), [this](Tagged<AllocationSite> site) { if (site->deopt_dependent_code()) { DependentCode::MarkCodeForDeoptimization( isolate_, site, DependentCode::kAllocationSiteTenuringChangedGroup); site->set_deopt_dependent_code(false); } }); Deoptimizer::DeoptimizeMarkedCode(isolate_); } static GCType GetGCTypeFromGarbageCollector(GarbageCollector collector) { switch (collector) { case GarbageCollector::MARK_COMPACTOR: return kGCTypeMarkSweepCompact; case GarbageCollector::SCAVENGER: return kGCTypeScavenge; case GarbageCollector::MINOR_MARK_SWEEPER: return kGCTypeMinorMarkSweep; default: UNREACHABLE(); } } void Heap::GarbageCollectionEpilogueInSafepoint(GarbageCollector collector) { if (collector == GarbageCollector::MARK_COMPACTOR) { memory_pressure_level_.store(MemoryPressureLevel::kNone, std::memory_order_relaxed); if (v8_flags.stress_marking > 0) { stress_marking_percentage_ = NextStressMarkingLimit(); } } TRACE_GC(tracer(), GCTracer::Scope::HEAP_EPILOGUE_SAFEPOINT); { // Allows handle derefs for all threads/isolates from this thread. AllowHandleDereferenceAllThreads allow_all_handle_derefs; safepoint()->IterateLocalHeaps([](LocalHeap* local_heap) { local_heap->InvokeGCEpilogueCallbacksInSafepoint( GCCallbacksInSafepoint::GCType::kLocal); }); if (collector == GarbageCollector::MARK_COMPACTOR && isolate()->is_shared_space_isolate()) { isolate()->global_safepoint()->IterateClientIsolates([](Isolate* client) { client->heap()->safepoint()->IterateLocalHeaps( [](LocalHeap* local_heap) { local_heap->InvokeGCEpilogueCallbacksInSafepoint( GCCallbacksInSafepoint::GCType::kShared); }); }); } } #define UPDATE_COUNTERS_FOR_SPACE(space) \ isolate_->counters()->space##_bytes_available()->Set( \ static_cast<int>(space()->Available())); \ isolate_->counters()->space##_bytes_committed()->Set( \ static_cast<int>(space()->CommittedMemory())); \ isolate_->counters()->space##_bytes_used()->Set( \ static_cast<int>(space()->SizeOfObjects())); #define UPDATE_FRAGMENTATION_FOR_SPACE(space) \ if (space()->CommittedMemory() > 0) { \ isolate_->counters()->external_fragmentation_##space()->AddSample( \ static_cast<int>(100 - (space()->SizeOfObjects() * 100.0) / \ space()->CommittedMemory())); \ } #define UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(space) \ UPDATE_COUNTERS_FOR_SPACE(space) \ UPDATE_FRAGMENTATION_FOR_SPACE(space) if (new_space()) { UPDATE_COUNTERS_FOR_SPACE(new_space) } UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(old_space) UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(code_space) UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(lo_space) #undef UPDATE_COUNTERS_FOR_SPACE #undef UPDATE_FRAGMENTATION_FOR_SPACE #undef UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE #ifdef DEBUG if (v8_flags.print_global_handles) isolate_->global_handles()->Print(); if (v8_flags.print_handles) PrintHandles(); if (v8_flags.check_handle_count) CheckHandleCount(); #endif if (new_space() && !v8_flags.minor_ms) { SemiSpaceNewSpace* semi_space_new_space = SemiSpaceNewSpace::From(new_space()); if (heap::ShouldZapGarbage() || v8_flags.clear_free_memory) { semi_space_new_space->ZapUnusedMemory(); } { TRACE_GC(tracer(), GCTracer::Scope::HEAP_EPILOGUE_REDUCE_NEW_SPACE); if (resize_new_space_mode_ == ResizeNewSpaceMode::kShrink) { ReduceNewSpaceSize(); } } resize_new_space_mode_ = ResizeNewSpaceMode::kNone; semi_space_new_space->MakeAllPagesInFromSpaceIterable(); } // Ensure that unmapper task isn't running during full GC. We need access to // those pages for accessing page flags when processing old-to-new slots. DCHECK_IMPLIES(collector == GarbageCollector::MARK_COMPACTOR, !memory_allocator()->unmapper()->IsRunning()); // Start concurrent unmapper tasks to free pages queued during GC. memory_allocator()->unmapper()->FreeQueuedChunks(); // Remove CollectionRequested flag from main thread state, as the collection // was just performed. safepoint()->AssertActive(); LocalHeap::ThreadState old_state = main_thread_local_heap()->state_.ClearCollectionRequested(); CHECK(old_state.IsRunning()); // Resume all threads waiting for the GC. collection_barrier_->ResumeThreadsAwaitingCollection(); } void Heap::GarbageCollectionEpilogue(GarbageCollector collector) { TRACE_GC(tracer(), GCTracer::Scope::HEAP_EPILOGUE); AllowGarbageCollection for_the_rest_of_the_epilogue; UpdateMaximumCommitted(); if (v8_flags.track_retaining_path && collector == GarbageCollector::MARK_COMPACTOR) { retainer_.clear(); ephemeron_retainer_.clear(); retaining_root_.clear(); } isolate_->counters()->alive_after_last_gc()->Set( static_cast<int>(SizeOfObjects())); if (CommittedMemory() > 0) { isolate_->counters()->external_fragmentation_total()->AddSample( static_cast<int>(100 - (SizeOfObjects() * 100.0) / CommittedMemory())); isolate_->counters()->heap_sample_total_committed()->AddSample( static_cast<int>(CommittedMemory() / KB)); isolate_->counters()->heap_sample_total_used()->AddSample( static_cast<int>(SizeOfObjects() / KB)); isolate_->counters()->heap_sample_code_space_committed()->AddSample( static_cast<int>(code_space()->CommittedMemory() / KB)); isolate_->counters()->heap_sample_maximum_committed()->AddSample( static_cast<int>(MaximumCommittedMemory() / KB)); } #ifdef DEBUG ReportStatisticsAfterGC(); if (v8_flags.code_stats) ReportCodeStatistics("After GC"); #endif // DEBUG last_gc_time_ = MonotonicallyIncreasingTimeInMs(); } GCCallbacksScope::GCCallbacksScope(Heap* heap) : heap_(heap) { heap_->gc_callbacks_depth_++; } GCCallbacksScope::~GCCallbacksScope() { heap_->gc_callbacks_depth_--; } bool GCCallbacksScope::CheckReenter() const { return heap_->gc_callbacks_depth_ == 1; } void Heap::HandleGCRequest() { if (IsStressingScavenge() && stress_scavenge_observer_->HasRequestedGC()) { CollectGarbage(NEW_SPACE, GarbageCollectionReason::kTesting); stress_scavenge_observer_->RequestedGCDone(); } else if (HighMemoryPressure()) { CheckMemoryPressure(); } else if (CollectionRequested()) { CheckCollectionRequested(); } else if (incremental_marking()->MajorCollectionRequested()) { CollectAllGarbage(current_gc_flags_, GarbageCollectionReason::kFinalizeMarkingViaStackGuard, current_gc_callback_flags_); } else if (minor_mark_sweep_collector()->gc_finalization_requsted()) { CollectGarbage(NEW_SPACE, GarbageCollectionReason::kFinalizeConcurrentMinorMS); } } void Heap::ScheduleMinorGCTaskIfNeeded() { DCHECK_NOT_NULL(minor_gc_job_); minor_gc_job_->ScheduleTask(); } namespace { size_t MinorMSConcurrentMarkingTrigger(Heap* heap) { return heap->new_space()->TotalCapacity() * v8_flags.minor_ms_concurrent_marking_trigger / 100; } } // namespace void Heap::StartMinorMSIncrementalMarkingIfNeeded() { DCHECK(!incremental_marking()->IsMarking()); if (v8_flags.concurrent_minor_ms_marking && !IsTearingDown() && !ShouldOptimizeForLoadTime() && incremental_marking()->CanBeStarted() && V8_LIKELY(!v8_flags.gc_global) && (paged_new_space()->paged_space()->UsableCapacity() >= v8_flags.minor_ms_min_new_space_capacity_for_concurrent_marking_mb * MB) && new_space()->Size() >= MinorMSConcurrentMarkingTrigger(this)) { StartIncrementalMarking(GCFlag::kNoFlags, GarbageCollectionReason::kTask, kNoGCCallbackFlags, GarbageCollector::MINOR_MARK_SWEEPER); // Schedule a task for finalizing the GC if needed. ScheduleMinorGCTaskIfNeeded(); } } void Heap::CollectAllGarbage(GCFlags gc_flags, GarbageCollectionReason gc_reason, const v8::GCCallbackFlags gc_callback_flags) { current_gc_flags_ = gc_flags; CollectGarbage(OLD_SPACE, gc_reason, gc_callback_flags); current_gc_flags_ = GCFlag::kNoFlags; } namespace { intptr_t CompareWords(int size, Tagged<HeapObject> a, Tagged<HeapObject> b) { int slots = size / kTaggedSize; DCHECK_EQ(a->Size(), size); DCHECK_EQ(b->Size(), size); Tagged_t* slot_a = reinterpret_cast<Tagged_t*>(a.address()); Tagged_t* slot_b = reinterpret_cast<Tagged_t*>(b.address()); for (int i = 0; i < slots; i++) { if (*slot_a != *slot_b) { return *slot_a - *slot_b; } slot_a++; slot_b++; } return 0; } void ReportDuplicates(int size, std::vector<Tagged<HeapObject>>* objects) { if (objects->size() == 0) return; sort(objects->begin(), objects->end(), [size](Tagged<HeapObject> a, Tagged<HeapObject> b) { intptr_t c = CompareWords(size, a, b); if (c != 0) return c < 0; return a < b; }); std::vector<std::pair<int, Tagged<HeapObject>>> duplicates; Tagged<HeapObject> current = (*objects)[0]; int count = 1; for (size_t i = 1; i < objects->size(); i++) { if (CompareWords(size, current, (*objects)[i]) == 0) { count++; } else { if (count > 1) { duplicates.push_back(std::make_pair(count - 1, current)); } count = 1; current = (*objects)[i]; } } if (count > 1) { duplicates.push_back(std::make_pair(count - 1, current)); } int threshold = v8_flags.trace_duplicate_threshold_kb * KB; sort(duplicates.begin(), duplicates.end()); for (auto it = duplicates.rbegin(); it != duplicates.rend(); ++it) { int duplicate_bytes = it->first * size; if (duplicate_bytes < threshold) break; PrintF("%d duplicates of size %d each (%dKB)\n", it->first, size, duplicate_bytes / KB); PrintF("Sample object: "); Print(it->second); PrintF("============================\n"); } } } // anonymous namespace void Heap::CollectAllAvailableGarbage(GarbageCollectionReason gc_reason) { // Min and max number of attempts for GC. The method will continue with more // GCs until the root set is stable. static constexpr int kMaxNumberOfAttempts = 7; static constexpr int kMinNumberOfAttempts = 2; // Returns the number of roots. We assume stack layout is stable but global // roots could change between GCs due to finalizers and weak callbacks. const auto num_roots = [this]() { size_t js_roots = 0; js_roots += isolate()->global_handles()->handles_count(); js_roots += isolate()->eternal_handles()->handles_count(); size_t cpp_roots = 0; if (auto* cpp_heap = CppHeap::From(cpp_heap_)) { cpp_roots += cpp_heap->GetStrongPersistentRegion().NodesInUse(); cpp_roots += cpp_heap->GetStrongCrossThreadPersistentRegion().NodesInUse(); } return js_roots + cpp_roots; }; if (gc_reason == GarbageCollectionReason::kLastResort) { InvokeNearHeapLimitCallback(); } RCS_SCOPE(isolate(), RuntimeCallCounterId::kGC_Custom_AllAvailableGarbage); // The optimizing compiler may be unnecessarily holding on to memory. isolate()->AbortConcurrentOptimization(BlockingBehavior::kDontBlock); isolate()->ClearSerializerData(); isolate()->compilation_cache()->Clear(); current_gc_flags_ = GCFlag::kReduceMemoryFootprint | (gc_reason == GarbageCollectionReason::kLowMemoryNotification ? GCFlag::kForced : GCFlag::kNoFlags); for (int attempt = 0; attempt < kMaxNumberOfAttempts; attempt++) { const size_t roots_before = num_roots(); CollectGarbage(OLD_SPACE, gc_reason, kNoGCCallbackFlags); if ((roots_before == num_roots()) && ((attempt + 1) >= kMinNumberOfAttempts)) { break; } } current_gc_flags_ = GCFlag::kNoFlags; EagerlyFreeExternalMemory(); if (v8_flags.trace_duplicate_threshold_kb) { std::map<int, std::vector<Tagged<HeapObject>>> objects_by_size; PagedSpaceIterator spaces(this); for (PagedSpace* space = spaces.Next(); space != nullptr; space = spaces.Next()) { PagedSpaceObjectIterator it(this, space); for (Tagged<HeapObject> obj = it.Next(); !obj.is_null(); obj = it.Next()) { objects_by_size[obj->Size()].push_back(obj); } } { LargeObjectSpaceObjectIterator it(lo_space()); for (Tagged<HeapObject> obj = it.Next(); !obj.is_null(); obj = it.Next()) { objects_by_size[obj->Size()].push_back(obj); } } for (auto it = objects_by_size.rbegin(); it != objects_by_size.rend(); ++it) { ReportDuplicates(it->first, &it->second); } } if (gc_reason == GarbageCollectionReason::kLastResort && v8_flags.heap_snapshot_on_oom) { isolate()->heap_profiler()->WriteSnapshotToDiskAfterGC(); } } void Heap::PreciseCollectAllGarbage(GCFlags gc_flags, GarbageCollectionReason gc_reason, const GCCallbackFlags gc_callback_flags) { if (!incremental_marking()->IsStopped()) { FinalizeIncrementalMarkingAtomically(gc_reason); } CollectAllGarbage(gc_flags, gc_reason, gc_callback_flags); } void Heap::ReportExternalMemoryPressure() { const GCCallbackFlags kGCCallbackFlagsForExternalMemory = static_cast<GCCallbackFlags>( kGCCallbackFlagSynchronousPhantomCallbackProcessing | kGCCallbackFlagCollectAllExternalMemory); int64_t current = external_memory_.total(); int64_t baseline = external_memory_.low_since_mark_compact(); int64_t limit = external_memory_.limit(); TRACE_EVENT2( "devtools.timeline,v8", "V8.ExternalMemoryPressure", "external_memory_mb", static_cast<int>((current - baseline) / MB), "external_memory_limit_mb", static_cast<int>((limit - baseline) / MB)); if (current > baseline + external_memory_hard_limit()) { CollectAllGarbage( GCFlag::kReduceMemoryFootprint, GarbageCollectionReason::kExternalMemoryPressure, static_cast<GCCallbackFlags>(kGCCallbackFlagCollectAllAvailableGarbage | kGCCallbackFlagsForExternalMemory)); return; } if (incremental_marking()->IsStopped()) { if (incremental_marking()->CanBeStarted()) { StartIncrementalMarking(GCFlagsForIncrementalMarking(), GarbageCollectionReason::kExternalMemoryPressure, kGCCallbackFlagsForExternalMemory); } else { CollectAllGarbage(i::GCFlag::kNoFlags, GarbageCollectionReason::kExternalMemoryPressure, kGCCallbackFlagsForExternalMemory); } } else { // Incremental marking is turned on and has already been started. current_gc_callback_flags_ = static_cast<GCCallbackFlags>( current_gc_callback_flags_ | kGCCallbackFlagsForExternalMemory); incremental_marking()->AdvanceAndFinalizeIfNecessary(); } } int64_t Heap::external_memory_limit() { return external_memory_.limit(); } Heap::DevToolsTraceEventScope::DevToolsTraceEventScope(Heap* heap, const char* event_name, const char* event_type) : heap_(heap), event_name_(event_name) { TRACE_EVENT_BEGIN2("devtools.timeline,v8", event_name_, "usedHeapSizeBefore", heap_->SizeOfObjects(), "type", event_type); } Heap::DevToolsTraceEventScope::~DevToolsTraceEventScope() { TRACE_EVENT_END1("devtools.timeline,v8", event_name_, "usedHeapSizeAfter", heap_->SizeOfObjects()); } namespace { template <typename Callback> void InvokeExternalCallbacks(Isolate* isolate, Callback callback) { DCHECK(!AllowJavascriptExecution::IsAllowed(isolate)); AllowGarbageCollection allow_gc; // Temporary override any embedder stack state as callbacks may create // their own state on the stack and recursively trigger GC. EmbedderStackStateScope embedder_scope( isolate->heap(), EmbedderStackStateScope::kExplicitInvocation, StackState::kMayContainHeapPointers); VMState<EXTERNAL> callback_state(isolate); callback(); } size_t GlobalMemorySizeFromV8Size(size_t v8_size) { const size_t kGlobalMemoryToV8Ratio = 2; return std::min(static_cast<uint64_t>(std::numeric_limits<size_t>::max()), static_cast<uint64_t>(v8_size) * kGlobalMemoryToV8Ratio); } } // anonymous namespace void Heap::SetOldGenerationAndGlobalMaximumSize( size_t max_old_generation_size) { max_old_generation_size_.store(max_old_generation_size, std::memory_order_relaxed); max_global_memory_size_ = GlobalMemorySizeFromV8Size(max_old_generation_size); } void Heap::SetOldGenerationAndGlobalAllocationLimit( size_t new_old_generation_allocation_limit, size_t new_global_allocation_limit) { CHECK_GE(new_global_allocation_limit, new_old_generation_allocation_limit); old_generation_allocation_limit_.store(new_old_generation_allocation_limit, std::memory_order_relaxed); global_allocation_limit_ = new_global_allocation_limit; old_generation_allocation_limit_configured_ = true; } void Heap::ResetOldGenerationAndGlobalAllocationLimit() { SetOldGenerationAndGlobalAllocationLimit( initial_old_generation_size_, GlobalMemorySizeFromV8Size(initial_old_generation_size_)); old_generation_allocation_limit_configured_ = false; } void Heap::CollectGarbage(AllocationSpace space, GarbageCollectionReason gc_reason, const v8::GCCallbackFlags gc_callback_flags) { if (V8_UNLIKELY(!deserialization_complete_)) { // During isolate initialization heap always grows. GC is only requested // if a new page allocation fails. In such a case we should crash with // an out-of-memory instead of performing GC because the prologue/epilogue // callbacks may see objects that are not yet deserialized. CHECK(always_allocate()); FatalProcessOutOfMemory("GC during deserialization"); } // CollectGarbage consists of three parts: // 1. The prologue part which may execute callbacks. These callbacks may // allocate and trigger another garbage collection. // 2. The main garbage collection phase. // 3. The epilogue part which may execute callbacks. These callbacks may // allocate and trigger another garbage collection // Part 1: Invoke all callbacks which should happen before the actual garbage // collection is triggered. Note that these callbacks may trigger another // garbage collection since they may allocate. // JS execution is not allowed in any of the callbacks. DisallowJavascriptExecution no_js(isolate()); DCHECK(AllowGarbageCollection::IsAllowed()); const char* collector_reason = nullptr; const GarbageCollector collector = SelectGarbageCollector(space, gc_reason, &collector_reason); current_or_last_garbage_collector_ = collector; if (collector == GarbageCollector::MARK_COMPACTOR && incremental_marking()->IsMinorMarking()) { CollectGarbage(NEW_SPACE, GarbageCollectionReason::kFinalizeConcurrentMinorMS); } const GCType gc_type = GetGCTypeFromGarbageCollector(collector); // Prologue callbacks. These callbacks may trigger GC themselves and thus // cannot be related exactly to garbage collection cycles. // // GCTracer scopes are managed by callees. InvokeExternalCallbacks(isolate(), [this, gc_callback_flags, gc_type]() { // Ensure that all pending phantom callbacks are invoked. isolate()->global_handles()->InvokeSecondPassPhantomCallbacks(); // Prologue callbacks registered with Heap. CallGCPrologueCallbacks(gc_type, gc_callback_flags, GCTracer::Scope::HEAP_EXTERNAL_PROLOGUE); }); // The main garbage collection phase. // // We need a stack marker at the top of all entry points to allow // deterministic passes over the stack. E.g., a verifier that should only // find a subset of references of the marker. // // TODO(chromium:1056170): Consider adding a component that keeps track // of relevant GC stack regions where interesting pointers can be found. stack().SetMarkerIfNeededAndCallback([this, collector, gc_reason, collector_reason, gc_callback_flags]() { DisallowGarbageCollection no_gc_during_gc; size_t committed_memory_before = collector == GarbageCollector::MARK_COMPACTOR ? CommittedOldGenerationMemory() : 0; tracer()->StartObservablePause(base::TimeTicks::Now()); VMState<GC> state(isolate()); DevToolsTraceEventScope devtools_trace_event_scope( this, IsYoungGenerationCollector(collector) ? "MinorGC" : "MajorGC", ToString(gc_reason)); GarbageCollectionPrologue(gc_reason, gc_callback_flags); { GCTracer::RecordGCPhasesInfo record_gc_phases_info(this, collector, gc_reason); base::Optional<TimedHistogramScope> histogram_timer_scope; base::Optional<OptionalTimedHistogramScope> histogram_timer_priority_scope; TRACE_EVENT0("v8", record_gc_phases_info.trace_event_name()); if (record_gc_phases_info.type_timer()) { histogram_timer_scope.emplace(record_gc_phases_info.type_timer(), isolate_); } if (record_gc_phases_info.type_priority_timer()) { histogram_timer_priority_scope.emplace( record_gc_phases_info.type_priority_timer(), isolate_, OptionalTimedHistogramScopeMode::TAKE_TIME); } if (V8_ENABLE_THIRD_PARTY_HEAP_BOOL) { tp_heap_->CollectGarbage(); } else { PerformGarbageCollection(collector, gc_reason, collector_reason); } // Clear flags describing the current GC now that the current GC is // complete. Do this before GarbageCollectionEpilogue() since that could // trigger another unforced GC. is_current_gc_forced_ = false; is_current_gc_for_heap_profiler_ = false; if (collector == GarbageCollector::MARK_COMPACTOR || collector == GarbageCollector::SCAVENGER) { tracer()->RecordGCPhasesHistograms(record_gc_phases_info.mode()); } } GarbageCollectionEpilogue(collector); if (collector == GarbageCollector::MARK_COMPACTOR && v8_flags.track_detached_contexts) { isolate()->CheckDetachedContextsAfterGC(); } if (collector == GarbageCollector::MARK_COMPACTOR) { if (memory_reducer_ != nullptr) { memory_reducer_->NotifyMarkCompact(committed_memory_before); } if (initial_max_old_generation_size_ < max_old_generation_size() && OldGenerationSizeOfObjects() < initial_max_old_generation_size_threshold_) { SetOldGenerationAndGlobalMaximumSize(initial_max_old_generation_size_); } } tracer()->StopAtomicPause(); tracer()->StopObservablePause(collector, base::TimeTicks::Now()); // Young generation cycles finish atomically. It is important that // StopObservablePause, and StopCycle are called in this // order; the latter may replace the current event with that of an // interrupted full cycle. if (IsYoungGenerationCollector(collector)) { tracer()->StopYoungCycleIfNeeded(); } else { tracer()->StopFullCycleIfNeeded(); } }); // Epilogue callbacks. These callbacks may trigger GC themselves and thus // cannot be related exactly to garbage collection cycles. // // GCTracer scopes are managed by callees. InvokeExternalCallbacks(isolate(), [this, gc_callback_flags, gc_type]() { // Epilogue callbacks registered with Heap. CallGCEpilogueCallbacks(gc_type, gc_callback_flags, GCTracer::Scope::HEAP_EXTERNAL_EPILOGUE); isolate()->global_handles()->PostGarbageCollectionProcessing( gc_callback_flags); }); if (collector == GarbageCollector::MARK_COMPACTOR && (gc_callback_flags & (kGCCallbackFlagForced | kGCCallbackFlagCollectAllAvailableGarbage)) != 0) { isolate()->CountUsage(v8::Isolate::kForcedGC); } // Start incremental marking for the next cycle. We do this only for scavenger // to avoid a loop where mark-compact causes another mark-compact. if (collector == GarbageCollector::SCAVENGER) { DCHECK(!v8_flags.minor_ms); StartIncrementalMarkingIfAllocationLimitIsReached( GCFlagsForIncrementalMarking(), kGCCallbackScheduleIdleGarbageCollection); } if (!CanExpandOldGeneration(0)) { InvokeNearHeapLimitCallback(); if (!CanExpandOldGeneration(0)) { if (v8_flags.heap_snapshot_on_oom) { isolate()->heap_profiler()->WriteSnapshotToDiskAfterGC(); } FatalProcessOutOfMemory("Reached heap limit"); } } } int Heap::NotifyContextDisposed(bool has_dependent_context) { if (!has_dependent_context) { tracer()->ResetSurvivalEvents(); ResetOldGenerationAndGlobalAllocationLimit(); if (memory_reducer_) { memory_reducer_->NotifyPossibleGarbage(); } } isolate()->AbortConcurrentOptimization(BlockingBehavior::kDontBlock); if (!isolate()->context().is_null()) { RemoveDirtyFinalizationRegistriesOnContext(isolate()->raw_native_context()); isolate()->raw_native_context()->set_retained_maps( ReadOnlyRoots(this).empty_weak_array_list()); } return ++contexts_disposed_; } void Heap::StartIncrementalMarking(GCFlags gc_flags, GarbageCollectionReason gc_reason, GCCallbackFlags gc_callback_flags, GarbageCollector collector) { DCHECK(incremental_marking()->IsStopped()); // Delay incremental marking start while concurrent sweeping still has work. // This helps avoid large CompleteSweep blocks on the main thread when major // incremental marking should be scheduled following a minor GC. if (sweeper()->AreMinorSweeperTasksRunning()) return; if (IsYoungGenerationCollector(collector)) { CompleteSweepingYoung(); } else { // Sweeping needs to be completed such that markbits are all cleared before // starting marking again. CompleteSweepingFull(); } base::Optional<SafepointScope> safepoint_scope; { AllowGarbageCollection allow_shared_gc; SafepointKind safepoint_kind = isolate()->is_shared_space_isolate() ? SafepointKind::kGlobal : SafepointKind::kIsolate; safepoint_scope.emplace(isolate(), safepoint_kind); } #ifdef DEBUG VerifyCountersAfterSweeping(); #endif std::vector<Isolate*> paused_clients; if (isolate()->is_shared_space_isolate()) { isolate()->global_safepoint()->IterateClientIsolates( [collector, &paused_clients](Isolate* client) { if (v8_flags.concurrent_marking && client->heap()->concurrent_marking()->Pause()) { paused_clients.push_back(client); } if (collector == GarbageCollector::MARK_COMPACTOR) { Sweeper* const client_sweeper = client->heap()->sweeper(); client_sweeper->ContributeAndWaitForPromotedPagesIteration(); } }); } // Now that sweeping is completed, we can start the next full GC cycle. tracer()->StartCycle(collector, gc_reason, nullptr, GCTracer::MarkingType::kIncremental); current_gc_flags_ = gc_flags; current_gc_callback_flags_ = gc_callback_flags; incremental_marking()->Start(collector, gc_reason); if (isolate()->is_shared_space_isolate()) { for (Isolate* client : paused_clients) { client->heap()->concurrent_marking()->Resume(); } } else { DCHECK(paused_clients.empty()); } } namespace { void CompleteArrayBufferSweeping(Heap* heap) { auto* array_buffer_sweeper = heap->array_buffer_sweeper(); if (array_buffer_sweeper->sweeping_in_progress()) { auto* tracer = heap->tracer(); GCTracer::Scope::ScopeId scope_id; switch (tracer->GetCurrentCollector()) { case GarbageCollector::MINOR_MARK_SWEEPER: scope_id = GCTracer::Scope::MINOR_MS_COMPLETE_SWEEP_ARRAY_BUFFERS; break; case GarbageCollector::SCAVENGER: scope_id = GCTracer::Scope::SCAVENGER_COMPLETE_SWEEP_ARRAY_BUFFERS; break; case GarbageCollector::MARK_COMPACTOR: scope_id = GCTracer::Scope::MC_COMPLETE_SWEEP_ARRAY_BUFFERS; } TRACE_GC_EPOCH_WITH_FLOW( tracer, scope_id, ThreadKind::kMain, array_buffer_sweeper->GetTraceIdForFlowEvent(scope_id), TRACE_EVENT_FLAG_FLOW_IN); array_buffer_sweeper->EnsureFinished(); } } } // namespace void Heap::CompleteSweepingFull() { EnsureSweepingCompleted(SweepingForcedFinalizationMode::kUnifiedHeap); DCHECK(!sweeping_in_progress()); DCHECK_IMPLIES(cpp_heap(), !CppHeap::From(cpp_heap())->sweeper().IsSweepingInProgress()); DCHECK(!tracer()->IsSweepingInProgress()); } void Heap::StartIncrementalMarkingOnInterrupt() { StartIncrementalMarkingIfAllocationLimitIsReached( GCFlagsForIncrementalMarking(), kGCCallbackScheduleIdleGarbageCollection); } void Heap::StartIncrementalMarkingIfAllocationLimitIsReached( GCFlags gc_flags, const GCCallbackFlags gc_callback_flags) { if (v8_flags.separate_gc_phases && gc_callbacks_depth_ > 0) { // Do not start incremental marking while invoking GC callbacks. // Heap::CollectGarbage already decided which GC is going to be invoked. In // case it chose a young-gen GC, starting an incremental full GC during // callbacks would break the separate GC phases guarantee. return; } if (incremental_marking()->IsStopped()) { switch (IncrementalMarkingLimitReached()) { case IncrementalMarkingLimit::kHardLimit: StartIncrementalMarking( gc_flags, OldGenerationSpaceAvailable() <= NewSpaceTargetCapacity() ? GarbageCollectionReason::kAllocationLimit : GarbageCollectionReason::kGlobalAllocationLimit, gc_callback_flags); break; case IncrementalMarkingLimit::kSoftLimit: if (auto* job = incremental_marking()->incremental_marking_job()) { job->ScheduleTask(); } break; case IncrementalMarkingLimit::kFallbackForEmbedderLimit: // This is a fallback case where no appropriate limits have been // configured yet. if (memory_reducer() != nullptr) { memory_reducer()->NotifyPossibleGarbage(); } break; case IncrementalMarkingLimit::kNoLimit: break; } } } void Heap::StartIncrementalMarkingIfAllocationLimitIsReachedBackground() { // TODO(v8:13012): Consider finalizing minor incremental marking when we need // to start a full GC. if (incremental_marking()->IsMarking() || !incremental_marking()->CanBeStarted()) { return; } const size_t old_generation_space_available = OldGenerationSpaceAvailable(); if (old_generation_space_available < NewSpaceTargetCapacity()) { if (auto* job = incremental_marking()->incremental_marking_job()) { job->ScheduleTask(); } if (old_generation_space_available == 0) { // Fulfil the role of IncrementalMarkingLimitReached() == kHardLimit and // try to start incremental marking ASAP. // TODO(dinfuehr): Unify this logic with the main thread // IncrementalMarkingLimitReached() call. isolate()->stack_guard()->RequestStartIncrementalMarking(); } } } void Heap::MoveRange(Tagged<HeapObject> dst_object, const ObjectSlot dst_slot, const ObjectSlot src_slot, int len, WriteBarrierMode mode) { DCHECK_NE(len, 0); DCHECK_NE(dst_object->map(), ReadOnlyRoots(this).fixed_cow_array_map()); const ObjectSlot dst_end(dst_slot + len); // Ensure no range overflow. DCHECK(dst_slot < dst_end); DCHECK(src_slot < src_slot + len); if ((v8_flags.concurrent_marking && incremental_marking()->IsMarking()) || (v8_flags.minor_ms && sweeper()->IsIteratingPromotedPages())) { if (dst_slot < src_slot) { // Copy tagged values forward using relaxed load/stores that do not // involve value decompression. const AtomicSlot atomic_dst_end(dst_end); AtomicSlot dst(dst_slot); AtomicSlot src(src_slot); while (dst < atomic_dst_end) { *dst = *src; ++dst; ++src; } } else { // Copy tagged values backwards using relaxed load/stores that do not // involve value decompression. const AtomicSlot atomic_dst_begin(dst_slot); AtomicSlot dst(dst_slot + len - 1); AtomicSlot src(src_slot + len - 1); while (dst >= atomic_dst_begin) { *dst = *src; --dst; --src; } } } else { MemMove(dst_slot.ToVoidPtr(), src_slot.ToVoidPtr(), len * kTaggedSize); } if (mode == SKIP_WRITE_BARRIER) return; WriteBarrierForRange(dst_object, dst_slot, dst_end); } // Instantiate Heap::CopyRange() for ObjectSlot and MaybeObjectSlot. template void Heap::CopyRange<ObjectSlot>(Tagged<HeapObject> dst_object, ObjectSlot dst_slot, ObjectSlot src_slot, int len, WriteBarrierMode mode); template void Heap::CopyRange<MaybeObjectSlot>(Tagged<HeapObject> dst_object, MaybeObjectSlot dst_slot, MaybeObjectSlot src_slot, int len, WriteBarrierMode mode); template <typename TSlot> void Heap::CopyRange(Tagged<HeapObject> dst_object, const TSlot dst_slot, const TSlot src_slot, int len, WriteBarrierMode mode) { DCHECK_NE(len, 0); DCHECK_NE(dst_object->map(), ReadOnlyRoots(this).fixed_cow_array_map()); const TSlot dst_end(dst_slot + len); // Ensure ranges do not overlap. DCHECK(dst_end <= src_slot || (src_slot + len) <= dst_slot); if ((v8_flags.concurrent_marking && incremental_marking()->IsMarking()) || (v8_flags.minor_ms && sweeper()->IsIteratingPromotedPages())) { // Copy tagged values using relaxed load/stores that do not involve value // decompression. const AtomicSlot atomic_dst_end(dst_end); AtomicSlot dst(dst_slot); AtomicSlot src(src_slot); while (dst < atomic_dst_end) { *dst = *src; ++dst; ++src; } } else { MemCopy(dst_slot.ToVoidPtr(), src_slot.ToVoidPtr(), len * kTaggedSize); } if (mode == SKIP_WRITE_BARRIER) return; WriteBarrierForRange(dst_object, dst_slot, dst_end); } bool Heap::CollectionRequested() { return collection_barrier_->WasGCRequested(); } void Heap::CollectGarbageForBackground(LocalHeap* local_heap) { CHECK(local_heap->is_main_thread()); CollectAllGarbage(current_gc_flags_, GarbageCollectionReason::kBackgroundAllocationFailure, current_gc_callback_flags_); } void Heap::CheckCollectionRequested() { if (!CollectionRequested()) return; CollectAllGarbage(current_gc_flags_, GarbageCollectionReason::kBackgroundAllocationFailure, current_gc_callback_flags_); } #if V8_ENABLE_WEBASSEMBLY void Heap::EnsureWasmCanonicalRttsSize(int length) { HandleScope scope(isolate()); Handle<WeakArrayList> current_rtts = handle(wasm_canonical_rtts(), isolate_); if (length <= current_rtts->length()) return; Handle<WeakArrayList> new_rtts = WeakArrayList::EnsureSpace( isolate(), current_rtts, length, AllocationType::kOld); new_rtts->set_length(length); set_wasm_canonical_rtts(*new_rtts); // Wrappers are indexed by canonical rtt length, and an additional boolean // storing whether the corresponding function is imported or not. int required_wrapper_length = 2 * length; Handle<WeakArrayList> current_wrappers = handle(js_to_wasm_wrappers(), isolate_); if (required_wrapper_length <= current_wrappers->length()) return; Handle<WeakArrayList> new_wrappers = WeakArrayList::EnsureSpace(isolate(), current_wrappers, required_wrapper_length, AllocationType::kOld); new_wrappers->set_length(required_wrapper_length); set_js_to_wasm_wrappers(*new_wrappers); } #endif void Heap::UpdateSurvivalStatistics(int start_new_space_size) { if (start_new_space_size == 0) return; promotion_ratio_ = (static_cast<double>(promoted_objects_size_) / static_cast<double>(start_new_space_size) * 100); if (previous_new_space_surviving_object_size_ > 0) { promotion_rate_ = (static_cast<double>(promoted_objects_size_) / static_cast<double>(previous_new_space_surviving_object_size_) * 100); } else { promotion_rate_ = 0; } new_space_surviving_rate_ = (static_cast<double>(new_space_surviving_object_size_) / static_cast<double>(start_new_space_size) * 100); double survival_rate = promotion_ratio_ + new_space_surviving_rate_; tracer()->AddSurvivalRatio(survival_rate); } namespace { GCTracer::Scope::ScopeId CollectorScopeId(GarbageCollector collector) { switch (collector) { case GarbageCollector::MARK_COMPACTOR: return GCTracer::Scope::ScopeId::MARK_COMPACTOR; case GarbageCollector::MINOR_MARK_SWEEPER: return GCTracer::Scope::ScopeId::MINOR_MARK_SWEEPER; case GarbageCollector::SCAVENGER: return GCTracer::Scope::ScopeId::SCAVENGER; } UNREACHABLE(); } void ClearStubCaches(Isolate* isolate) { isolate->load_stub_cache()->Clear(); isolate->store_stub_cache()->Clear(); if (isolate->is_shared_space_isolate()) { isolate->global_safepoint()->IterateClientIsolates([](Isolate* client) { client->load_stub_cache()->Clear(); client->store_stub_cache()->Clear(); }); } } } // namespace void Heap::PerformGarbageCollection(GarbageCollector collector, GarbageCollectionReason gc_reason, const char* collector_reason) { if (IsYoungGenerationCollector(collector)) { CompleteSweepingYoung(); if (v8_flags.verify_heap) { // If heap verification is enabled, we want to ensure that sweeping is // completed here, as it will be triggered from Heap::Verify anyway. // In this way, sweeping finalization is accounted to the corresponding // full GC cycle. CompleteSweepingFull(); } } else { DCHECK_EQ(GarbageCollector::MARK_COMPACTOR, collector); CompleteSweepingFull(); memory_allocator()->unmapper()->EnsureUnmappingCompleted(); } const base::TimeTicks atomic_pause_start_time = base::TimeTicks::Now(); base::Optional<SafepointScope> safepoint_scope; { AllowGarbageCollection allow_shared_gc; SafepointKind safepoint_kind = isolate()->is_shared_space_isolate() ? SafepointKind::kGlobal : SafepointKind::kIsolate; safepoint_scope.emplace(isolate(), safepoint_kind); } if (!incremental_marking_->IsMarking() || (collector == GarbageCollector::SCAVENGER)) { tracer()->StartCycle(collector, gc_reason, collector_reason, GCTracer::MarkingType::kAtomic); } tracer()->StartAtomicPause(); if ((!Heap::IsYoungGenerationCollector(collector) || v8_flags.minor_ms) && incremental_marking_->IsMarking()) { DCHECK_IMPLIES(Heap::IsYoungGenerationCollector(collector), incremental_marking_->IsMinorMarking()); tracer()->UpdateCurrentEvent(gc_reason, collector_reason); } DCHECK(tracer()->IsConsistentWithCollector(collector)); TRACE_GC_EPOCH(tracer(), CollectorScopeId(collector), ThreadKind::kMain); collection_barrier_->StopTimeToCollectionTimer(); std::vector<Isolate*> paused_clients = PauseConcurrentThreadsInClients(collector); tracer()->StartInSafepoint(atomic_pause_start_time); GarbageCollectionPrologueInSafepoint(); PerformHeapVerification(); if (new_space()) new_space()->Prologue(); size_t start_young_generation_size = NewSpaceSize() + (new_lo_space() ? new_lo_space()->SizeOfObjects() : 0); // Make sure allocation observers are disabled until the new new space // capacity is set in the epilogue. PauseAllocationObserversScope pause_observers(this); size_t new_space_capacity_before_gc = NewSpaceTargetCapacity(); if (collector == GarbageCollector::MARK_COMPACTOR) { MarkCompact(); } else if (collector == GarbageCollector::MINOR_MARK_SWEEPER) { MinorMarkSweep(); } else { DCHECK_EQ(GarbageCollector::SCAVENGER, collector); Scavenge(); } pretenuring_handler_.ProcessPretenuringFeedback(new_space_capacity_before_gc); UpdateSurvivalStatistics(static_cast<int>(start_young_generation_size)); ShrinkOldGenerationAllocationLimitIfNotConfigured(); if (collector == GarbageCollector::SCAVENGER) { // Objects that died in the new space might have been accounted // as bytes marked ahead of schedule by the incremental marker. incremental_marking()->UpdateMarkedBytesAfterScavenge( start_young_generation_size - SurvivedYoungObjectSize()); } isolate_->counters()->objs_since_last_young()->Set(0); isolate_->eternal_handles()->PostGarbageCollectionProcessing(); // Update relocatables. Relocatable::PostGarbageCollectionProcessing(isolate_); if (isolate_->is_shared_space_isolate()) { // Allows handle derefs for all threads/isolates from this thread. AllowHandleDereferenceAllThreads allow_all_handle_derefs; isolate()->global_safepoint()->IterateClientIsolates([](Isolate* client) { Relocatable::PostGarbageCollectionProcessing(client); }); } // First round weak callbacks are not supposed to allocate and trigger // nested GCs. isolate_->global_handles()->InvokeFirstPassWeakCallbacks(); if (cpp_heap() && (collector == GarbageCollector::MARK_COMPACTOR || collector == GarbageCollector::MINOR_MARK_SWEEPER)) { // TraceEpilogue may trigger operations that invalidate global handles. It // has to be called *after* all other operations that potentially touch // and reset global handles. It is also still part of the main garbage // collection pause and thus needs to be called *before* any operation // that can potentially trigger recursive garbage collections. TRACE_GC(tracer(), GCTracer::Scope::HEAP_EMBEDDER_TRACING_EPILOGUE); CppHeap::From(cpp_heap())->TraceEpilogue(); } if (collector == GarbageCollector::MARK_COMPACTOR) { ClearStubCaches(isolate()); } PerformHeapVerification(); GarbageCollectionEpilogueInSafepoint(collector); const base::TimeTicks atomic_pause_end_time = base::TimeTicks::Now(); tracer()->StopInSafepoint(atomic_pause_end_time); ResumeConcurrentThreadsInClients(std::move(paused_clients)); RecomputeLimits(collector, atomic_pause_end_time); // After every full GC the old generation allocation limit should be // configured. DCHECK_IMPLIES(collector == GarbageCollector::MARK_COMPACTOR, old_generation_allocation_limit_configured_); } void Heap::PerformHeapVerification() { HeapVerifier::VerifyHeapIfEnabled(this); if (isolate()->is_shared_space_isolate()) { isolate()->global_safepoint()->IterateClientIsolates([](Isolate* client) { HeapVerifier::VerifyHeapIfEnabled(client->heap()); }); } } std::vector<Isolate*> Heap::PauseConcurrentThreadsInClients( GarbageCollector collector) { std::vector<Isolate*> paused_clients; if (isolate()->is_shared_space_isolate()) { isolate()->global_safepoint()->IterateClientIsolates( [collector, &paused_clients](Isolate* client) { CHECK(client->heap()->deserialization_complete()); if (v8_flags.concurrent_marking && client->heap()->concurrent_marking()->Pause()) { paused_clients.push_back(client); } if (collector == GarbageCollector::MARK_COMPACTOR) { Sweeper* const client_sweeper = client->heap()->sweeper(); client_sweeper->ContributeAndWaitForPromotedPagesIteration(); } }); } return paused_clients; } void Heap::ResumeConcurrentThreadsInClients( std::vector<Isolate*> paused_clients) { if (isolate()->is_shared_space_isolate()) { for (Isolate* client : paused_clients) { client->heap()->concurrent_marking()->Resume(); } } else { DCHECK(paused_clients.empty()); } } bool Heap::CollectGarbageShared(LocalHeap* local_heap, GarbageCollectionReason gc_reason) { CHECK(deserialization_complete()); DCHECK(isolate()->has_shared_space()); Isolate* shared_space_isolate = isolate()->shared_space_isolate(); return shared_space_isolate->heap()->CollectGarbageFromAnyThread(local_heap, gc_reason); } bool Heap::CollectGarbageFromAnyThread(LocalHeap* local_heap, GarbageCollectionReason gc_reason) { DCHECK(local_heap->IsRunning()); if (isolate() == local_heap->heap()->isolate() && local_heap->is_main_thread()) { CollectAllGarbage(current_gc_flags_, gc_reason, current_gc_callback_flags_); return true; } else { if (!collection_barrier_->TryRequestGC()) return false; const LocalHeap::ThreadState old_state = main_thread_local_heap()->state_.SetCollectionRequested(); if (old_state.IsRunning()) { const bool performed_gc = collection_barrier_->AwaitCollectionBackground(local_heap); return performed_gc; } else { DCHECK(old_state.IsParked()); return false; } } } void Heap::CompleteSweepingYoung() { CompleteArrayBufferSweeping(this); // If sweeping is in progress and there are no sweeper tasks running, finish // the sweeping here, to avoid having to pause and resume during the young // generation GC. FinishSweepingIfOutOfWork(); if (v8_flags.minor_ms) { EnsureYoungSweepingCompleted(); } #if defined(CPPGC_YOUNG_GENERATION) // Always complete sweeping if young generation is enabled. if (cpp_heap()) { if (auto* iheap = CppHeap::From(cpp_heap()); iheap->generational_gc_supported()) iheap->FinishSweepingIfRunning(); } #endif // defined(CPPGC_YOUNG_GENERATION) } void Heap::EnsureSweepingCompletedForObject(Tagged<HeapObject> object) { if (!sweeping_in_progress()) return; BasicMemoryChunk* basic_chunk = BasicMemoryChunk::FromHeapObject(object); if (basic_chunk->InReadOnlySpace()) return; MemoryChunk* chunk = MemoryChunk::cast(basic_chunk); if (chunk->SweepingDone()) return; // SweepingDone() is always true for large pages. DCHECK(!chunk->IsLargePage()); Page* page = Page::cast(chunk); sweeper()->EnsurePageIsSwept(page); } void Heap::RecomputeLimits(GarbageCollector collector, base::TimeTicks time) { if (!((collector == GarbageCollector::MARK_COMPACTOR) || (HasLowYoungGenerationAllocationRate() && old_generation_allocation_limit_configured_))) { return; } double v8_gc_speed = tracer()->CombinedMarkCompactSpeedInBytesPerMillisecond(); double v8_mutator_speed = tracer()->CurrentOldGenerationAllocationThroughputInBytesPerMillisecond(); double v8_growing_factor = MemoryController<V8HeapTrait>::GrowingFactor( this, max_old_generation_size(), v8_gc_speed, v8_mutator_speed); double global_growing_factor = 0; double embedder_gc_speed = tracer()->EmbedderSpeedInBytesPerMillisecond(); double embedder_speed = tracer()->CurrentEmbedderAllocationThroughputInBytesPerMillisecond(); double embedder_growing_factor = (embedder_gc_speed > 0 && embedder_speed > 0) ? MemoryController<GlobalMemoryTrait>::GrowingFactor( this, max_global_memory_size_, embedder_gc_speed, embedder_speed) : 0; global_growing_factor = std::max(v8_growing_factor, embedder_growing_factor); size_t old_gen_size = OldGenerationSizeOfObjects(); size_t new_space_capacity = NewSpaceTargetCapacity(); HeapGrowingMode mode = CurrentHeapGrowingMode(); if (collector == GarbageCollector::MARK_COMPACTOR) { external_memory_.ResetAfterGC(); size_t new_old_generation_allocation_limit = MemoryController<V8HeapTrait>::CalculateAllocationLimit( this, old_gen_size, min_old_generation_size_, max_old_generation_size(), new_space_capacity, v8_growing_factor, mode); DCHECK_GT(global_growing_factor, 0); size_t new_global_allocation_limit = MemoryController<GlobalMemoryTrait>::CalculateAllocationLimit( this, GlobalSizeOfObjects(), min_global_memory_size_, max_global_memory_size_, new_space_capacity, global_growing_factor, mode); if (v8_flags.memory_balancer) { // Now recompute the new allocation limit. mb_->RecomputeLimits( new_global_allocation_limit - new_old_generation_allocation_limit, time); } else { SetOldGenerationAndGlobalAllocationLimit( new_old_generation_allocation_limit, new_global_allocation_limit); } CheckIneffectiveMarkCompact( old_gen_size, tracer()->AverageMarkCompactMutatorUtilization()); } else if (HasLowYoungGenerationAllocationRate() && old_generation_allocation_limit_configured_) { size_t new_old_generation_allocation_limit = MemoryController<V8HeapTrait>::CalculateAllocationLimit( this, old_gen_size, min_old_generation_size_, max_old_generation_size(), new_space_capacity, v8_growing_factor, mode); new_old_generation_allocation_limit = std::min( new_old_generation_allocation_limit, old_generation_allocation_limit()); DCHECK_GT(global_growing_factor, 0); size_t new_global_allocation_limit = MemoryController<GlobalMemoryTrait>::CalculateAllocationLimit( this, GlobalSizeOfObjects(), min_global_memory_size_, max_global_memory_size_, new_space_capacity, global_growing_factor, mode); new_global_allocation_limit = std::min(new_global_allocation_limit, global_allocation_limit_); SetOldGenerationAndGlobalAllocationLimit( new_old_generation_allocation_limit, new_global_allocation_limit); } CHECK_EQ(max_global_memory_size_, GlobalMemorySizeFromV8Size(max_old_generation_size_)); CHECK_GE(global_allocation_limit_, old_generation_allocation_limit_); } void Heap::CallGCPrologueCallbacks(GCType gc_type, GCCallbackFlags flags, GCTracer::Scope::ScopeId scope_id) { if (gc_prologue_callbacks_.IsEmpty()) return; GCCallbacksScope scope(this); if (scope.CheckReenter()) { RCS_SCOPE(isolate(), RuntimeCallCounterId::kGCPrologueCallback); TRACE_GC(tracer(), scope_id); HandleScope handle_scope(isolate()); gc_prologue_callbacks_.Invoke(gc_type, flags); } } void Heap::CallGCEpilogueCallbacks(GCType gc_type, GCCallbackFlags flags, GCTracer::Scope::ScopeId scope_id) { if (gc_epilogue_callbacks_.IsEmpty()) return; GCCallbacksScope scope(this); if (scope.CheckReenter()) { RCS_SCOPE(isolate(), RuntimeCallCounterId::kGCEpilogueCallback); TRACE_GC(tracer(), scope_id); HandleScope handle_scope(isolate()); gc_epilogue_callbacks_.Invoke(gc_type, flags); } } void Heap::MarkCompact() { SetGCState(MARK_COMPACT); PROFILE(isolate_, CodeMovingGCEvent()); CodePageHeaderModificationScope code_modification( "MarkCompact needs to access the marking bitmap in the page header"); UpdateOldGenerationAllocationCounter(); uint64_t size_of_objects_before_gc = SizeOfObjects(); mark_compact_collector()->Prepare(); ms_count_++; contexts_disposed_ = 0; MarkCompactPrologue(); mark_compact_collector()->CollectGarbage(); MarkCompactEpilogue(); if (v8_flags.allocation_site_pretenuring) { EvaluateOldSpaceLocalPretenuring(size_of_objects_before_gc); } // This should be updated before PostGarbageCollectionProcessing, which // can cause another GC. Take into account the objects promoted during // GC. old_generation_allocation_counter_at_last_gc_ += static_cast<size_t>(promoted_objects_size_); old_generation_size_at_last_gc_ = OldGenerationSizeOfObjects(); global_memory_at_last_gc_ = GlobalSizeOfObjects(); } void Heap::MinorMarkSweep() { DCHECK(v8_flags.minor_ms); CHECK_EQ(NOT_IN_GC, gc_state()); DCHECK(new_space()); DCHECK(!incremental_marking()->IsMajorMarking()); TRACE_GC(tracer(), GCTracer::Scope::MINOR_MS); AlwaysAllocateScope always_allocate(this); SetGCState(MINOR_MARK_SWEEP); minor_mark_sweep_collector_->CollectGarbage(); SetGCState(NOT_IN_GC); } void Heap::MarkCompactEpilogue() { TRACE_GC(tracer(), GCTracer::Scope::MC_EPILOGUE); SetGCState(NOT_IN_GC); isolate_->counters()->objs_since_last_full()->Set(0); } void Heap::MarkCompactPrologue() { TRACE_GC(tracer(), GCTracer::Scope::MC_PROLOGUE); isolate_->descriptor_lookup_cache()->Clear(); RegExpResultsCache::Clear(string_split_cache()); RegExpResultsCache::Clear(regexp_multiple_cache()); FlushNumberStringCache(); } void Heap::Scavenge() { DCHECK_NOT_NULL(new_space()); DCHECK_IMPLIES(v8_flags.separate_gc_phases, !incremental_marking()->IsMarking()); if (v8_flags.trace_incremental_marking && !incremental_marking()->IsStopped()) { isolate()->PrintWithTimestamp( "[IncrementalMarking] Scavenge during marking.\n"); } TRACE_GC(tracer(), GCTracer::Scope::SCAVENGER_SCAVENGE); base::MutexGuard guard(relocation_mutex()); // Young generation garbage collection is orthogonal from full GC marking. It // is possible that objects that are currently being processed for marking are // reclaimed in the young generation GC that interleaves concurrent marking. // Pause concurrent markers to allow processing them using // `UpdateMarkingWorklistAfterYoungGenGC()`. ConcurrentMarking::PauseScope pause_js_marking(concurrent_marking()); CppHeap::PauseConcurrentMarkingScope pause_cpp_marking( CppHeap::From(cpp_heap_)); // There are soft limits in the allocation code, designed to trigger a mark // sweep collection by failing allocations. There is no sense in trying to // trigger one during scavenge: scavenges allocation should always succeed. AlwaysAllocateScope scope(this); // Bump-pointer allocations done during scavenge are not real allocations. // Pause the inline allocation steps. IncrementalMarking::PauseBlackAllocationScope pause_black_allocation( incremental_marking()); SetGCState(SCAVENGE); SemiSpaceNewSpace::From(new_space())->EvacuatePrologue(); // We also flip the young generation large object space. All large objects // will be in the from space. new_lo_space()->Flip(); new_lo_space()->ResetPendingObject(); // Implements Cheney's copying algorithm scavenger_collector_->CollectGarbage(); SetGCState(NOT_IN_GC); } bool Heap::ExternalStringTable::Contains(Tagged<String> string) { for (size_t i = 0; i < young_strings_.size(); ++i) { if (young_strings_[i] == string) return true; } for (size_t i = 0; i < old_strings_.size(); ++i) { if (old_strings_[i] == string) return true; } return false; } void Heap::UpdateExternalString(Tagged<String> string, size_t old_payload, size_t new_payload) { DCHECK(IsExternalString(string)); if (v8_flags.enable_third_party_heap) return; Page* page = Page::FromHeapObject(string); if (old_payload > new_payload) { page->DecrementExternalBackingStoreBytes( ExternalBackingStoreType::kExternalString, old_payload - new_payload); } else { page->IncrementExternalBackingStoreBytes( ExternalBackingStoreType::kExternalString, new_payload - old_payload); } } Tagged<String> Heap::UpdateYoungReferenceInExternalStringTableEntry( Heap* heap, FullObjectSlot p) { // This is only used for Scavenger. DCHECK(!v8_flags.minor_ms); PtrComprCageBase cage_base(heap->isolate()); Tagged<HeapObject> obj = HeapObject::cast(*p); MapWord first_word = obj->map_word(cage_base, kRelaxedLoad); Tagged<String> new_string; if (InFromPage(obj)) { if (!first_word.IsForwardingAddress()) { // Unreachable external string can be finalized. Tagged<String> string = Tagged<String>::cast(obj); if (!IsExternalString(string, cage_base)) { // Original external string has been internalized. DCHECK(IsThinString(string, cage_base)); return Tagged<String>(); } heap->FinalizeExternalString(string); return Tagged<String>(); } new_string = Tagged<String>::cast(first_word.ToForwardingAddress(obj)); } else { new_string = Tagged<String>::cast(obj); } // String is still reachable. if (IsThinString(new_string, cage_base)) { // Filtering Thin strings out of the external string table. return Tagged<String>(); } else if (IsExternalString(new_string, cage_base)) { MemoryChunk::MoveExternalBackingStoreBytes( ExternalBackingStoreType::kExternalString, Page::FromAddress((*p).ptr()), Page::FromHeapObject(new_string), ExternalString::cast(new_string)->ExternalPayloadSize()); return new_string; } // Internalization can replace external strings with non-external strings. return IsExternalString(new_string, cage_base) ? new_string : Tagged<String>(); } void Heap::ExternalStringTable::VerifyYoung() { #ifdef DEBUG std::set<Tagged<String>> visited_map; std::map<MemoryChunk*, size_t> size_map; ExternalBackingStoreType type = ExternalBackingStoreType::kExternalString; for (size_t i = 0; i < young_strings_.size(); ++i) { Tagged<String> obj = Tagged<String>::cast(Tagged<Object>(young_strings_[i])); MemoryChunk* mc = MemoryChunk::FromHeapObject(obj); DCHECK(mc->InYoungGeneration()); DCHECK(heap_->InYoungGeneration(obj)); DCHECK(!IsTheHole(obj, heap_->isolate())); DCHECK(IsExternalString(obj)); // Note: we can have repeated elements in the table. DCHECK_EQ(0, visited_map.count(obj)); visited_map.insert(obj); size_map[mc] += Tagged<ExternalString>::cast(obj)->ExternalPayloadSize(); } for (std::map<MemoryChunk*, size_t>::iterator it = size_map.begin(); it != size_map.end(); it++) DCHECK_EQ(it->first->ExternalBackingStoreBytes(type), it->second); #endif } void Heap::ExternalStringTable::Verify() { #ifdef DEBUG std::set<Tagged<String>> visited_map; std::map<MemoryChunk*, size_t> size_map; ExternalBackingStoreType type = ExternalBackingStoreType::kExternalString; VerifyYoung(); for (size_t i = 0; i < old_strings_.size(); ++i) { Tagged<String> obj = Tagged<String>::cast(Tagged<Object>(old_strings_[i])); MemoryChunk* mc = MemoryChunk::FromHeapObject(obj); DCHECK(!mc->InYoungGeneration()); DCHECK(!heap_->InYoungGeneration(obj)); DCHECK(!IsTheHole(obj, heap_->isolate())); DCHECK(IsExternalString(obj)); // Note: we can have repeated elements in the table. DCHECK_EQ(0, visited_map.count(obj)); visited_map.insert(obj); size_map[mc] += Tagged<ExternalString>::cast(obj)->ExternalPayloadSize(); } for (std::map<MemoryChunk*, size_t>::iterator it = size_map.begin(); it != size_map.end(); it++) DCHECK_EQ(it->first->ExternalBackingStoreBytes(type), it->second); #endif } void Heap::ExternalStringTable::UpdateYoungReferences( Heap::ExternalStringTableUpdaterCallback updater_func) { if (young_strings_.empty()) return; FullObjectSlot start(young_strings_.data()); FullObjectSlot end(young_strings_.data() + young_strings_.size()); FullObjectSlot last = start; for (FullObjectSlot p = start; p < end; ++p) { Tagged<String> target = updater_func(heap_, p); if (target.is_null()) continue; DCHECK(IsExternalString(target)); if (InYoungGeneration(target)) { // String is still in new space. Update the table entry. last.store(target); ++last; } else { // String got promoted. Move it to the old string list. old_strings_.push_back(target); } } DCHECK(last <= end); young_strings_.resize(last - start); if (v8_flags.verify_heap) { VerifyYoung(); } } void Heap::ExternalStringTable::PromoteYoung() { old_strings_.reserve(old_strings_.size() + young_strings_.size()); std::move(std::begin(young_strings_), std::end(young_strings_), std::back_inserter(old_strings_)); young_strings_.clear(); } void Heap::ExternalStringTable::IterateYoung(RootVisitor* v) { if (!young_strings_.empty()) { v->VisitRootPointers( Root::kExternalStringsTable, nullptr, FullObjectSlot(young_strings_.data()), FullObjectSlot(young_strings_.data() + young_strings_.size())); } } void Heap::ExternalStringTable::IterateAll(RootVisitor* v) { IterateYoung(v); if (!old_strings_.empty()) { v->VisitRootPointers( Root::kExternalStringsTable, nullptr, FullObjectSlot(old_strings_.data()), FullObjectSlot(old_strings_.data() + old_strings_.size())); } } void Heap::UpdateYoungReferencesInExternalStringTable( ExternalStringTableUpdaterCallback updater_func) { external_string_table_.UpdateYoungReferences(updater_func); } void Heap::ExternalStringTable::UpdateReferences( Heap::ExternalStringTableUpdaterCallback updater_func) { if (old_strings_.size() > 0) { FullObjectSlot start(old_strings_.data()); FullObjectSlot end(old_strings_.data() + old_strings_.size()); for (FullObjectSlot p = start; p < end; ++p) p.store(updater_func(heap_, p)); } UpdateYoungReferences(updater_func); } void Heap::UpdateReferencesInExternalStringTable( ExternalStringTableUpdaterCallback updater_func) { external_string_table_.UpdateReferences(updater_func); } void Heap::ProcessAllWeakReferences(WeakObjectRetainer* retainer) { ProcessNativeContexts(retainer); ProcessAllocationSites(retainer); ProcessDirtyJSFinalizationRegistries(retainer); } void Heap::ProcessNativeContexts(WeakObjectRetainer* retainer) { Tagged<Object> head = VisitWeakList<Context>(this, native_contexts_list(), retainer); // Update the head of the list of contexts. set_native_contexts_list(head); } void Heap::ProcessAllocationSites(WeakObjectRetainer* retainer) { Tagged<Object> allocation_site_obj = VisitWeakList<AllocationSite>(this, allocation_sites_list(), retainer); set_allocation_sites_list(allocation_site_obj); } void Heap::ProcessDirtyJSFinalizationRegistries(WeakObjectRetainer* retainer) { Tagged<Object> head = VisitWeakList<JSFinalizationRegistry>( this, dirty_js_finalization_registries_list(), retainer); set_dirty_js_finalization_registries_list(head); // If the list is empty, set the tail to undefined. Otherwise the tail is set // by WeakListVisitor<JSFinalizationRegistry>::VisitLiveObject. if (IsUndefined(head, isolate())) { set_dirty_js_finalization_registries_list_tail(head); } } void Heap::ProcessWeakListRoots(WeakObjectRetainer* retainer) { set_native_contexts_list(retainer->RetainAs(native_contexts_list())); set_allocation_sites_list(retainer->RetainAs(allocation_sites_list())); set_dirty_js_finalization_registries_list( retainer->RetainAs(dirty_js_finalization_registries_list())); set_dirty_js_finalization_registries_list_tail( retainer->RetainAs(dirty_js_finalization_registries_list_tail())); } void Heap::ForeachAllocationSite( Tagged<Object> list, const std::function<void(Tagged<AllocationSite>)>& visitor) { DisallowGarbageCollection no_gc; Tagged<Object> current = list; while (IsAllocationSite(current)) { Tagged<AllocationSite> site = Tagged<AllocationSite>::cast(current); visitor(site); Tagged<Object> current_nested = site->nested_site(); while (IsAllocationSite(current_nested)) { Tagged<AllocationSite> nested_site = Tagged<AllocationSite>::cast(current_nested); visitor(nested_site); current_nested = nested_site->nested_site(); } current = site->weak_next(); } } void Heap::ResetAllAllocationSitesDependentCode(AllocationType allocation) { DisallowGarbageCollection no_gc_scope; bool marked = false; ForeachAllocationSite( allocation_sites_list(), [&marked, allocation, this](Tagged<AllocationSite> site) { if (site->GetAllocationType() == allocation) { site->ResetPretenureDecision(); site->set_deopt_dependent_code(true); marked = true; pretenuring_handler_.RemoveAllocationSitePretenuringFeedback(site); return; } }); if (marked) isolate_->stack_guard()->RequestDeoptMarkedAllocationSites(); } void Heap::EvaluateOldSpaceLocalPretenuring( uint64_t size_of_objects_before_gc) { uint64_t size_of_objects_after_gc = SizeOfObjects(); double old_generation_survival_rate = (static_cast<double>(size_of_objects_after_gc) * 100) / static_cast<double>(size_of_objects_before_gc); if (old_generation_survival_rate < kOldSurvivalRateLowThreshold) { // Too many objects died in the old generation, pretenuring of wrong // allocation sites may be the cause for that. We have to deopt all // dependent code registered in the allocation sites to re-evaluate // our pretenuring decisions. ResetAllAllocationSitesDependentCode(AllocationType::kOld); if (v8_flags.trace_pretenuring) { PrintF( "Deopt all allocation sites dependent code due to low survival " "rate in the old generation %f\n", old_generation_survival_rate); } } } void Heap::VisitExternalResources(v8::ExternalResourceVisitor* visitor) { DisallowGarbageCollection no_gc; // All external strings are listed in the external string table. class ExternalStringTableVisitorAdapter : public RootVisitor { public: explicit ExternalStringTableVisitorAdapter( Isolate* isolate, v8::ExternalResourceVisitor* visitor) : isolate_(isolate), visitor_(visitor) {} void VisitRootPointers(Root root, const char* description, FullObjectSlot start, FullObjectSlot end) override { for (FullObjectSlot p = start; p < end; ++p) { DCHECK(IsExternalString(*p)); visitor_->VisitExternalString( Utils::ToLocal(Handle<String>(String::cast(*p), isolate_))); } } private: Isolate* isolate_; v8::ExternalResourceVisitor* visitor_; } external_string_table_visitor(isolate(), visitor); external_string_table_.IterateAll(&external_string_table_visitor); } static_assert(IsAligned(FixedDoubleArray::kHeaderSize, kDoubleAlignment)); #ifdef V8_COMPRESS_POINTERS // TODO(ishell, v8:8875): When pointer compression is enabled the kHeaderSize // is only kTaggedSize aligned but we can keep using unaligned access since // both x64 and arm64 architectures (where pointer compression supported) // allow unaligned access to doubles. static_assert(IsAligned(ByteArray::kHeaderSize, kTaggedSize)); #else static_assert(IsAligned(ByteArray::kHeaderSize, kDoubleAlignment)); #endif static_assert(!USE_ALLOCATION_ALIGNMENT_BOOL || (HeapNumber::kValueOffset & kDoubleAlignmentMask) == kTaggedSize); int Heap::GetMaximumFillToAlign(AllocationAlignment alignment) { if (V8_COMPRESS_POINTERS_8GB_BOOL) return 0; switch (alignment) { case kTaggedAligned: return 0; case kDoubleAligned: case kDoubleUnaligned: return kDoubleSize - kTaggedSize; default: UNREACHABLE(); } } // static int Heap::GetFillToAlign(Address address, AllocationAlignment alignment) { if (V8_COMPRESS_POINTERS_8GB_BOOL) return 0; if (alignment == kDoubleAligned && (address & kDoubleAlignmentMask) != 0) return kTaggedSize; if (alignment == kDoubleUnaligned && (address & kDoubleAlignmentMask) == 0) { return kDoubleSize - kTaggedSize; // No fill if double is always aligned. } return 0; } size_t Heap::GetCodeRangeReservedAreaSize() { return CodeRange::GetWritableReservedAreaSize(); } Tagged<HeapObject> Heap::PrecedeWithFiller(Tagged<HeapObject> object, int filler_size) { CreateFillerObjectAt(object.address(), filler_size); return HeapObject::FromAddress(object.address() + filler_size); } Tagged<HeapObject> Heap::PrecedeWithFillerBackground(Tagged<HeapObject> object, int filler_size) { CreateFillerObjectAtBackground(object.address(), filler_size); return HeapObject::FromAddress(object.address() + filler_size); } Tagged<HeapObject> Heap::AlignWithFillerBackground( Tagged<HeapObject> object, int object_size, int allocation_size, AllocationAlignment alignment) { const int filler_size = allocation_size - object_size; DCHECK_LT(0, filler_size); const int pre_filler = GetFillToAlign(object.address(), alignment); if (pre_filler) { object = PrecedeWithFillerBackground(object, pre_filler); } DCHECK_LE(0, filler_size - pre_filler); const int post_filler = filler_size - pre_filler; if (post_filler) { CreateFillerObjectAtBackground(object.address() + object_size, post_filler); } return object; } void* Heap::AllocateExternalBackingStore( const std::function<void*(size_t)>& allocate, size_t byte_length) { if (!always_allocate() && new_space()) { size_t new_space_backing_store_bytes = new_space()->ExternalBackingStoreOverallBytes(); if (new_space_backing_store_bytes >= 2 * DefaultMaxSemiSpaceSize() && new_space_backing_store_bytes >= byte_length) { // Performing a young generation GC amortizes over the allocated backing // store bytes and may free enough external bytes for this allocation. CollectGarbage(NEW_SPACE, GarbageCollectionReason::kExternalMemoryPressure); } } void* result = allocate(byte_length); if (result) return result; if (!always_allocate()) { for (int i = 0; i < 2; i++) { CollectGarbage(OLD_SPACE, GarbageCollectionReason::kExternalMemoryPressure); result = allocate(byte_length); if (result) return result; } CollectAllAvailableGarbage( GarbageCollectionReason::kExternalMemoryPressure); } return allocate(byte_length); } // When old generation allocation limit is not configured (before the first full // GC), this method shrinks the initial very large old generation size. This // method can only shrink allocation limits but not increase it again. void Heap::ShrinkOldGenerationAllocationLimitIfNotConfigured() { if (!old_generation_allocation_limit_configured_ && tracer()->SurvivalEventsRecorded()) { const size_t minimum_growing_step = MemoryController<V8HeapTrait>::MinimumAllocationLimitGrowingStep( CurrentHeapGrowingMode()); size_t new_old_generation_allocation_limit = std::max(OldGenerationSizeOfObjects() + minimum_growing_step, static_cast<size_t>( static_cast<double>(old_generation_allocation_limit()) * (tracer()->AverageSurvivalRatio() / 100))); new_old_generation_allocation_limit = std::min( new_old_generation_allocation_limit, old_generation_allocation_limit()); size_t new_global_allocation_limit = std::max( GlobalSizeOfObjects() + minimum_growing_step, static_cast<size_t>(static_cast<double>(global_allocation_limit_) * (tracer()->AverageSurvivalRatio() / 100))); new_global_allocation_limit = std::min(new_global_allocation_limit, global_allocation_limit_); SetOldGenerationAndGlobalAllocationLimit( new_old_generation_allocation_limit, new_global_allocation_limit); // We need to update limits but still remain in the "not configured" state. // The first full GC will configure the heap. old_generation_allocation_limit_configured_ = false; } } void Heap::FlushNumberStringCache() { // Flush the number to string cache. int len = number_string_cache()->length(); for (int i = 0; i < len; i++) { number_string_cache()->set_undefined(i); } } namespace { void CreateFillerObjectAtImpl(Heap* heap, Address addr, int size, ClearFreedMemoryMode clear_memory_mode) { if (size == 0) return; DCHECK_IMPLIES(V8_COMPRESS_POINTERS_8GB_BOOL, IsAligned(addr, kObjectAlignment8GbHeap)); DCHECK_IMPLIES(V8_COMPRESS_POINTERS_8GB_BOOL, IsAligned(size, kObjectAlignment8GbHeap)); CodePageMemoryModificationScope memory_modification_scope( BasicMemoryChunk::FromAddress(addr)); // TODO(v8:13070): Filler sizes are irrelevant for 8GB+ heaps. Adding them // should be avoided in this mode. Tagged<HeapObject> filler = HeapObject::FromAddress(addr); ReadOnlyRoots roots(heap); if (size == kTaggedSize) { filler->set_map_after_allocation(roots.unchecked_one_pointer_filler_map(), SKIP_WRITE_BARRIER); // Ensure the filler map is properly initialized. DCHECK(IsMap(filler->map(heap->isolate()))); } else if (size == 2 * kTaggedSize) { filler->set_map_after_allocation(roots.unchecked_two_pointer_filler_map(), SKIP_WRITE_BARRIER); if (clear_memory_mode == ClearFreedMemoryMode::kClearFreedMemory) { AtomicSlot slot(ObjectSlot(addr) + 1); *slot = static_cast<Tagged_t>(kClearedFreeMemoryValue); } // Ensure the filler map is properly initialized. DCHECK(IsMap(filler->map(heap->isolate()))); } else { DCHECK_GT(size, 2 * kTaggedSize); filler->set_map_after_allocation(roots.unchecked_free_space_map(), SKIP_WRITE_BARRIER); FreeSpace::cast(filler)->set_size(size, kRelaxedStore); if (clear_memory_mode == ClearFreedMemoryMode::kClearFreedMemory) { MemsetTagged(ObjectSlot(addr) + 2, Tagged<Object>(kClearedFreeMemoryValue), (size / kTaggedSize) - 2); } // During bootstrapping we need to create a free space object before its // map is initialized. In this case we cannot access the map yet, as it // might be null, or not set up properly yet. DCHECK_IMPLIES(roots.is_initialized(RootIndex::kFreeSpaceMap), IsMap(filler->map(heap->isolate()))); } } #ifdef DEBUG void VerifyNoNeedToClearSlots(Address start, Address end) { BasicMemoryChunk* basic_chunk = BasicMemoryChunk::FromAddress(start); if (basic_chunk->InReadOnlySpace()) return; MemoryChunk* chunk = static_cast<MemoryChunk*>(basic_chunk); if (chunk->InYoungGeneration()) return; BaseSpace* space = chunk->owner(); space->heap()->VerifySlotRangeHasNoRecordedSlots(start, end); } #else void VerifyNoNeedToClearSlots(Address start, Address end) {} #endif // DEBUG } // namespace void Heap::CreateFillerObjectAtBackground(Address addr, int size) { // TODO(leszeks): Verify that no slots need to be recorded. // Do not verify whether slots are cleared here: the concurrent thread is not // allowed to access the main thread's remembered set. CreateFillerObjectAtRaw(addr, size, ClearFreedMemoryMode::kDontClearFreedMemory, ClearRecordedSlots::kNo, VerifyNoSlotsRecorded::kNo); } void Heap::CreateFillerObjectAtSweeper(Address addr, int size) { // Do not verify whether slots are cleared here: the concurrent sweeper is not // allowed to access the main thread's remembered set. CreateFillerObjectAtRaw(addr, size, ClearFreedMemoryMode::kDontClearFreedMemory, ClearRecordedSlots::kNo, VerifyNoSlotsRecorded::kNo); } void Heap::CreateFillerObjectAt(Address addr, int size, ClearFreedMemoryMode clear_memory_mode) { CreateFillerObjectAtRaw(addr, size, clear_memory_mode, ClearRecordedSlots::kNo, VerifyNoSlotsRecorded::kYes); } void Heap::CreateFillerObjectAtRaw( Address addr, int size, ClearFreedMemoryMode clear_memory_mode, ClearRecordedSlots clear_slots_mode, VerifyNoSlotsRecorded verify_no_slots_recorded) { // TODO(mlippautz): It would be nice to DCHECK that we never call this // with {addr} pointing into large object space; however we currently do, // see, e.g., Factory::NewFillerObject and in many tests. if (size == 0) return; CreateFillerObjectAtImpl(this, addr, size, clear_memory_mode); if (!V8_ENABLE_THIRD_PARTY_HEAP_BOOL) { if (clear_slots_mode == ClearRecordedSlots::kYes) { ClearRecordedSlotRange(addr, addr + size); } else if (verify_no_slots_recorded == VerifyNoSlotsRecorded::kYes) { VerifyNoNeedToClearSlots(addr, addr + size); } } } bool Heap::CanMoveObjectStart(Tagged<HeapObject> object) { if (!v8_flags.move_object_start) return false; // Sampling heap profiler may have a reference to the object. if (isolate()->heap_profiler()->is_sampling_allocations()) return false; if (IsLargeObject(object)) return false; // Compilation jobs may have references to the object. if (isolate()->concurrent_recompilation_enabled() && isolate()->optimizing_compile_dispatcher()->HasJobs()) { return false; } // Concurrent marking does not support moving object starts without snapshot // protocol. // // TODO(v8:13726): This can be improved via concurrently reading the contents // in the marker at the cost of some complexity. if (incremental_marking()->IsMarking()) return false; // Concurrent sweeper does not support moving object starts. It assumes that // markbits (black regions) and object starts are matching up. if (!Page::FromHeapObject(object)->SweepingDone()) return false; return true; } bool Heap::IsImmovable(Tagged<HeapObject> object) { if (V8_ENABLE_THIRD_PARTY_HEAP_BOOL) return third_party_heap::Heap::IsImmovable(object); BasicMemoryChunk* chunk = BasicMemoryChunk::FromHeapObject(object); return chunk->NeverEvacuate() || IsLargeObject(object); } bool Heap::IsLargeObject(Tagged<HeapObject> object) { if (V8_ENABLE_THIRD_PARTY_HEAP_BOOL) return third_party_heap::Heap::InLargeObjectSpace(object.address()) || third_party_heap::Heap::InSpace(object.address(), CODE_LO_SPACE); return BasicMemoryChunk::FromHeapObject(object)->IsLargePage(); } #ifdef ENABLE_SLOW_DCHECKS namespace { class LeftTrimmerVerifierRootVisitor : public RootVisitor { public: explicit LeftTrimmerVerifierRootVisitor(Tagged<FixedArrayBase> to_check) : to_check_(to_check) {} LeftTrimmerVerifierRootVisitor(const LeftTrimmerVerifierRootVisitor&) = delete; LeftTrimmerVerifierRootVisitor& operator=( const LeftTrimmerVerifierRootVisitor&) = delete; void VisitRootPointers(Root root, const char* description, FullObjectSlot start, FullObjectSlot end) override { for (FullObjectSlot p = start; p < end; ++p) { // V8_EXTERNAL_CODE_SPACE specific: we might be comparing // InstructionStream object with non-InstructionStream object here and it // might produce false positives because operator== for tagged values // compares only lower 32 bits when pointer compression is enabled. DCHECK_NE((*p).ptr(), to_check_.ptr()); } } void VisitRootPointers(Root root, const char* description, OffHeapObjectSlot start, OffHeapObjectSlot end) override { DCHECK_EQ(root, Root::kStringTable); // We can skip iterating the string table, it doesn't point to any fixed // arrays. } private: Tagged<FixedArrayBase> to_check_; }; } // namespace #endif // ENABLE_SLOW_DCHECKS namespace { bool MayContainRecordedSlots(Tagged<HeapObject> object) { if (V8_ENABLE_THIRD_PARTY_HEAP_BOOL) return false; // New space object do not have recorded slots. if (BasicMemoryChunk::FromHeapObject(object)->InYoungGeneration()) return false; // Allowlist objects that definitely do not have pointers. if (IsByteArray(object) || IsFixedDoubleArray(object)) return false; // Conservatively return true for other objects. return true; } } // namespace void Heap::OnMoveEvent(Tagged<HeapObject> source, Tagged<HeapObject> target, int size_in_bytes) { HeapProfiler* heap_profiler = isolate_->heap_profiler(); if (heap_profiler->is_tracking_object_moves()) { heap_profiler->ObjectMoveEvent(source.address(), target.address(), size_in_bytes, /*is_embedder_object=*/false); } for (auto& tracker : allocation_trackers_) { tracker->MoveEvent(source.address(), target.address(), size_in_bytes); } if (IsSharedFunctionInfo(target, isolate_)) { LOG_CODE_EVENT(isolate_, SharedFunctionInfoMoveEvent(source.address(), target.address())); } else if (IsNativeContext(target, isolate_)) { if (isolate_->current_embedder_state() != nullptr) { isolate_->current_embedder_state()->OnMoveEvent(source.address(), target.address()); } PROFILE(isolate_, NativeContextMoveEvent(source.address(), target.address())); } else if (IsMap(target, isolate_)) { LOG(isolate_, MapMoveEvent(Map::cast(source), Map::cast(target))); } } Tagged<FixedArrayBase> Heap::LeftTrimFixedArray(Tagged<FixedArrayBase> object, int elements_to_trim) { if (elements_to_trim == 0) { // This simplifies reasoning in the rest of the function. return object; } CHECK(!object.is_null()); DCHECK(CanMoveObjectStart(object)); // Add custom visitor to concurrent marker if new left-trimmable type // is added. DCHECK(IsFixedArray(object) || IsFixedDoubleArray(object)); const int element_size = IsFixedArray(object) ? kTaggedSize : kDoubleSize; const int bytes_to_trim = elements_to_trim * element_size; Tagged<Map> map = object->map(); // For now this trick is only applied to fixed arrays which may be in new // space or old space. In a large object space the object's start must // coincide with chunk and thus the trick is just not applicable. DCHECK(!IsLargeObject(object)); DCHECK(object->map() != ReadOnlyRoots(this).fixed_cow_array_map()); static_assert(FixedArrayBase::kMapOffset == 0); static_assert(FixedArrayBase::kLengthOffset == kTaggedSize); static_assert(FixedArrayBase::kHeaderSize == 2 * kTaggedSize); const int len = object->length(); DCHECK(elements_to_trim <= len); // Calculate location of new array start. Address old_start = object.address(); Address new_start = old_start + bytes_to_trim; // Technically in new space this write might be omitted (except for // debug mode which iterates through the heap), but to play safer // we still do it. CreateFillerObjectAtRaw( old_start, bytes_to_trim, ClearFreedMemoryMode::kClearFreedMemory, MayContainRecordedSlots(object) ? ClearRecordedSlots::kYes : ClearRecordedSlots::kNo, VerifyNoSlotsRecorded::kYes); // Initialize header of the trimmed array. Since left trimming is only // performed on pages which are not concurrently swept creating a filler // object does not require synchronization. RELAXED_WRITE_FIELD(object, bytes_to_trim, Tagged<Object>(MapWord::FromMap(map).ptr())); RELAXED_WRITE_FIELD(object, bytes_to_trim + kTaggedSize, Smi::FromInt(len - elements_to_trim)); Tagged<FixedArrayBase> new_object = Tagged<FixedArrayBase>::cast(HeapObject::FromAddress(new_start)); if (isolate()->log_object_relocation()) { // Notify the heap profiler of change in object layout. OnMoveEvent(object, new_object, new_object->Size()); } #ifdef ENABLE_SLOW_DCHECKS if (v8_flags.enable_slow_asserts) { // Make sure the stack or other roots (e.g., Handles) don't contain pointers // to the original FixedArray (which is now the filler object). base::Optional<IsolateSafepointScope> safepoint_scope; { AllowGarbageCollection allow_gc; safepoint_scope.emplace(this); } LeftTrimmerVerifierRootVisitor root_visitor(object); ReadOnlyRoots(this).Iterate(&root_visitor); IterateRoots(&root_visitor, base::EnumSet<SkipRoot>{SkipRoot::kConservativeStack}); } #endif // ENABLE_SLOW_DCHECKS return new_object; } void Heap::RightTrimFixedArray(Tagged<FixedArrayBase> object, int elements_to_trim) { const int len = object->length(); DCHECK_LE(elements_to_trim, len); DCHECK_GE(elements_to_trim, 0); int bytes_to_trim; if (IsByteArray(object)) { int new_size = ByteArray::SizeFor(len - elements_to_trim); bytes_to_trim = ByteArray::SizeFor(len) - new_size; DCHECK_GE(bytes_to_trim, 0); } else if (IsFixedArray(object)) { CHECK_NE(elements_to_trim, len); bytes_to_trim = elements_to_trim * kTaggedSize; } else { DCHECK(IsFixedDoubleArray(object)); CHECK_NE(elements_to_trim, len); bytes_to_trim = elements_to_trim * kDoubleSize; } CreateFillerForArray<FixedArrayBase>(object, elements_to_trim, bytes_to_trim); } void Heap::RightTrimWeakFixedArray(Tagged<WeakFixedArray> object, int elements_to_trim) { // This function is safe to use only at the end of the mark compact // collection: When marking, we record the weak slots, and shrinking // invalidates them. DCHECK_EQ(gc_state(), MARK_COMPACT); CreateFillerForArray<WeakFixedArray>(object, elements_to_trim, elements_to_trim * kTaggedSize); } template <typename T> void Heap::CreateFillerForArray(Tagged<T> object, int elements_to_trim, int bytes_to_trim) { DCHECK(IsFixedArrayBase(object) || IsByteArray(object) || IsWeakFixedArray(object)); // For now this trick is only applied to objects in new and paged space. DCHECK(object->map() != ReadOnlyRoots(this).fixed_cow_array_map()); if (bytes_to_trim == 0) { DCHECK_EQ(elements_to_trim, 0); // No need to create filler and update live bytes counters. return; } // Calculate location of new array end. int old_size = object->Size(); Address old_end = object.address() + old_size; Address new_end = old_end - bytes_to_trim; bool clear_slots = MayContainRecordedSlots(object); // Technically in new space this write might be omitted (except for // debug mode which iterates through the heap), but to play safer // we still do it. // We do not create a filler for objects in a large object space. if (!IsLargeObject(object)) { NotifyObjectSizeChange( object, old_size, old_size - bytes_to_trim, clear_slots ? ClearRecordedSlots::kYes : ClearRecordedSlots::kNo); Tagged<HeapObject> filler = HeapObject::FromAddress(new_end); // Clear the mark bits of the black area that belongs now to the filler. // This is an optimization. The sweeper will release black fillers anyway. if (incremental_marking()->black_allocation() && marking_state()->IsMarked(filler)) { Page* page = Page::FromAddress(new_end); page->marking_bitmap()->ClearRange<AccessMode::ATOMIC>( MarkingBitmap::AddressToIndex(new_end), MarkingBitmap::LimitAddressToIndex(new_end + bytes_to_trim)); } } else if (clear_slots) { // Large objects are not swept, so it is not necessary to clear the // recorded slot. MemsetTagged(ObjectSlot(new_end), Tagged<Object>(kClearedFreeMemoryValue), (old_end - new_end) / kTaggedSize); } // Initialize header of the trimmed array. We are storing the new length // using release store after creating a filler for the left-over space to // avoid races with the sweeper thread. object->set_length(object->length() - elements_to_trim, kReleaseStore); // Notify the heap object allocation tracker of change in object layout. The // array may not be moved during GC, and size has to be adjusted nevertheless. for (auto& tracker : allocation_trackers_) { tracker->UpdateObjectSizeEvent(object.address(), object->Size()); } } void Heap::MakeHeapIterable() { EnsureSweepingCompleted(SweepingForcedFinalizationMode::kV8Only); safepoint()->IterateLocalHeaps([](LocalHeap* local_heap) { local_heap->MakeLinearAllocationAreaIterable(); }); if (isolate()->is_shared_space_isolate()) { isolate()->global_safepoint()->IterateSharedSpaceAndClientIsolates( [](Isolate* client) { client->heap()->MakeSharedLinearAllocationAreasIterable(); }); } allocator()->MakeLinearAllocationAreaIterable(); if (shared_space_allocator_) { shared_space_allocator_->MakeLinearAllocationAreaIterable(); } } void Heap::FreeLinearAllocationAreas() { FreeMainThreadLinearAllocationAreas(); safepoint()->IterateLocalHeaps( [](LocalHeap* local_heap) { local_heap->FreeLinearAllocationArea(); }); if (isolate()->is_shared_space_isolate()) { isolate()->global_safepoint()->IterateSharedSpaceAndClientIsolates( [](Isolate* client) { client->heap()->FreeSharedLinearAllocationAreas(); }); } } void Heap::FreeMainThreadLinearAllocationAreas() { PagedSpaceIterator spaces(this); for (PagedSpace* space = spaces.Next(); space != nullptr; space = spaces.Next()) { base::MutexGuard guard(space->mutex()); space->FreeLinearAllocationArea(); } if (shared_space_allocator_) { shared_space_allocator_->FreeLinearAllocationArea(); } if (new_space()) { allocator()->new_space_allocator()->FreeLinearAllocationArea(); } } void Heap::FreeSharedLinearAllocationAreas() { if (!isolate()->has_shared_space()) return; safepoint()->IterateLocalHeaps([](LocalHeap* local_heap) { local_heap->FreeSharedLinearAllocationArea(); }); FreeMainThreadSharedLinearAllocationAreas(); } void Heap::FreeMainThreadSharedLinearAllocationAreas() { if (!isolate()->has_shared_space()) return; shared_space_allocator_->FreeLinearAllocationArea(); main_thread_local_heap()->FreeSharedLinearAllocationArea(); } void Heap::MakeSharedLinearAllocationAreasIterable() { if (!isolate()->has_shared_space()) return; safepoint()->IterateLocalHeaps([](LocalHeap* local_heap) { local_heap->MakeSharedLinearAllocationAreaIterable(); }); if (shared_space_allocator_) { shared_space_allocator_->MakeLinearAllocationAreaIterable(); } main_thread_local_heap()->MakeSharedLinearAllocationAreaIterable(); } void Heap::MarkSharedLinearAllocationAreasBlack() { if (shared_space_allocator_) { shared_space_allocator_->MarkLinearAllocationAreaBlack(); } safepoint()->IterateLocalHeaps([](LocalHeap* local_heap) { local_heap->MarkSharedLinearAllocationAreaBlack(); }); main_thread_local_heap()->MarkSharedLinearAllocationAreaBlack(); } void Heap::UnmarkSharedLinearAllocationAreas() { if (shared_space_allocator_) { shared_space_allocator_->UnmarkLinearAllocationArea(); } safepoint()->IterateLocalHeaps([](LocalHeap* local_heap) { local_heap->UnmarkSharedLinearAllocationArea(); }); main_thread_local_heap()->UnmarkSharedLinearAllocationArea(); } namespace { double ComputeMutatorUtilizationImpl(double mutator_speed, double gc_speed) { constexpr double kMinMutatorUtilization = 0.0; constexpr double kConservativeGcSpeedInBytesPerMillisecond = 200000; if (mutator_speed == 0) return kMinMutatorUtilization; if (gc_speed == 0) gc_speed = kConservativeGcSpeedInBytesPerMillisecond; // Derivation: // mutator_utilization = mutator_time / (mutator_time + gc_time) // mutator_time = 1 / mutator_speed // gc_time = 1 / gc_speed // mutator_utilization = (1 / mutator_speed) / // (1 / mutator_speed + 1 / gc_speed) // mutator_utilization = gc_speed / (mutator_speed + gc_speed) return gc_speed / (mutator_speed + gc_speed); } } // namespace double Heap::ComputeMutatorUtilization(const char* tag, double mutator_speed, double gc_speed) { double result = ComputeMutatorUtilizationImpl(mutator_speed, gc_speed); if (v8_flags.trace_mutator_utilization) { isolate()->PrintWithTimestamp( "%s mutator utilization = %.3f (" "mutator_speed=%.f, gc_speed=%.f)\n", tag, result, mutator_speed, gc_speed); } return result; } bool Heap::HasLowYoungGenerationAllocationRate() { double mu = ComputeMutatorUtilization( "Young generation", tracer()->NewSpaceAllocationThroughputInBytesPerMillisecond(), tracer()->ScavengeSpeedInBytesPerMillisecond(kForSurvivedObjects)); constexpr double kHighMutatorUtilization = 0.993; return mu > kHighMutatorUtilization; } bool Heap::HasLowOldGenerationAllocationRate() { double mu = ComputeMutatorUtilization( "Old generation", tracer()->OldGenerationAllocationThroughputInBytesPerMillisecond(), tracer()->CombinedMarkCompactSpeedInBytesPerMillisecond()); const double kHighMutatorUtilization = 0.993; return mu > kHighMutatorUtilization; } bool Heap::HasLowEmbedderAllocationRate() { double mu = ComputeMutatorUtilization( "Embedder", tracer()->CurrentEmbedderAllocationThroughputInBytesPerMillisecond(), tracer()->EmbedderSpeedInBytesPerMillisecond()); const double kHighMutatorUtilization = 0.993; return mu > kHighMutatorUtilization; } bool Heap::HasLowAllocationRate() { return HasLowYoungGenerationAllocationRate() && HasLowOldGenerationAllocationRate() && HasLowEmbedderAllocationRate(); } bool Heap::IsIneffectiveMarkCompact(size_t old_generation_size, double mutator_utilization) { const double kHighHeapPercentage = 0.8; const double kLowMutatorUtilization = 0.4; return old_generation_size >= kHighHeapPercentage * max_old_generation_size() && mutator_utilization < kLowMutatorUtilization; } void Heap::CheckIneffectiveMarkCompact(size_t old_generation_size, double mutator_utilization) { const int kMaxConsecutiveIneffectiveMarkCompacts = 4; if (!v8_flags.detect_ineffective_gcs_near_heap_limit) return; if (!IsIneffectiveMarkCompact(old_generation_size, mutator_utilization)) { consecutive_ineffective_mark_compacts_ = 0; return; } ++consecutive_ineffective_mark_compacts_; if (consecutive_ineffective_mark_compacts_ == kMaxConsecutiveIneffectiveMarkCompacts) { if (InvokeNearHeapLimitCallback()) { // The callback increased the heap limit. consecutive_ineffective_mark_compacts_ = 0; return; } FatalProcessOutOfMemory("Ineffective mark-compacts near heap limit"); } } bool Heap::HasHighFragmentation() { const size_t used = OldGenerationSizeOfObjects(); const size_t committed = CommittedOldGenerationMemory(); // Background thread allocation could result in committed memory being less // than used memory in some situations. if (committed < used) return false; constexpr size_t kSlack = 16 * MB; // Fragmentation is high if committed > 2 * used + kSlack. // Rewrite the expression to avoid overflow. return committed - used > used + kSlack; } bool Heap::ShouldOptimizeForMemoryUsage() { const size_t kOldGenerationSlack = max_old_generation_size() / 8; return v8_flags.optimize_for_size || isolate()->IsIsolateInBackground() || HighMemoryPressure() || !CanExpandOldGeneration(kOldGenerationSlack); } class ActivateMemoryReducerTask : public CancelableTask { public: explicit ActivateMemoryReducerTask(Heap* heap) : CancelableTask(heap->isolate()), heap_(heap) {} ~ActivateMemoryReducerTask() override = default; ActivateMemoryReducerTask(const ActivateMemoryReducerTask&) = delete; ActivateMemoryReducerTask& operator=(const ActivateMemoryReducerTask&) = delete; private: // v8::internal::CancelableTask overrides. void RunInternal() override { heap_->ActivateMemoryReducerIfNeededOnMainThread(); } Heap* heap_; }; void Heap::ActivateMemoryReducerIfNeeded() { if (memory_reducer_ == nullptr) return; // This method may be called from any thread. Post a task to run it on the // isolate's main thread to avoid synchronization. task_runner_->PostTask(std::make_unique<ActivateMemoryReducerTask>(this)); } void Heap::ActivateMemoryReducerIfNeededOnMainThread() { // Activate memory reducer when switching to background if // - there was no mark compact since the start. // - the committed memory can be potentially reduced. // 2 pages for the old, code, and map space + 1 page for new space. const int kMinCommittedMemory = 7 * Page::kPageSize; if (ms_count_ == 0 && CommittedMemory() > kMinCommittedMemory && isolate()->IsIsolateInBackground()) { memory_reducer_->NotifyPossibleGarbage(); } } Heap::ResizeNewSpaceMode Heap::ShouldResizeNewSpace() { if (ShouldReduceMemory()) { return (v8_flags.predictable) ? ResizeNewSpaceMode::kNone : ResizeNewSpaceMode::kShrink; } static const size_t kLowAllocationThroughput = 1000; const double allocation_throughput = tracer_->CurrentAllocationThroughputInBytesPerMillisecond(); const bool should_shrink = !v8_flags.predictable && (allocation_throughput != 0) && (allocation_throughput < kLowAllocationThroughput); const bool should_grow = (new_space_->TotalCapacity() < new_space_->MaximumCapacity()) && (survived_since_last_expansion_ > new_space_->TotalCapacity()); if (should_grow) survived_since_last_expansion_ = 0; if (should_grow == should_shrink) return ResizeNewSpaceMode::kNone; return should_grow ? ResizeNewSpaceMode::kGrow : ResizeNewSpaceMode::kShrink; } void Heap::ExpandNewSpaceSize() { // Grow the size of new space if there is room to grow, and enough data // has survived scavenge since the last expansion. new_space_->Grow(); new_lo_space()->SetCapacity(new_space()->TotalCapacity()); } void Heap::ReduceNewSpaceSize() { // MinorMS shrinks new space as part of sweeping. if (!v8_flags.minor_ms) { SemiSpaceNewSpace::From(new_space())->Shrink(); } else { paged_new_space()->FinishShrinking(); } new_lo_space_->SetCapacity(new_space()->TotalCapacity()); } size_t Heap::NewSpaceSize() { return new_space() ? new_space()->Size() : 0; } size_t Heap::NewSpaceCapacity() const { return new_space() ? new_space()->Capacity() : 0; } size_t Heap::NewSpaceTargetCapacity() const { return new_space() ? new_space()->TotalCapacity() : 0; } void Heap::FinalizeIncrementalMarkingAtomically( GarbageCollectionReason gc_reason) { DCHECK(!incremental_marking()->IsStopped()); CollectAllGarbage(current_gc_flags_, gc_reason, current_gc_callback_flags_); } void Heap::InvokeIncrementalMarkingPrologueCallbacks() { AllowGarbageCollection allow_allocation; VMState<EXTERNAL> state(isolate_); CallGCPrologueCallbacks(kGCTypeIncrementalMarking, kNoGCCallbackFlags, GCTracer::Scope::MC_INCREMENTAL_EXTERNAL_PROLOGUE); } void Heap::InvokeIncrementalMarkingEpilogueCallbacks() { AllowGarbageCollection allow_allocation; VMState<EXTERNAL> state(isolate_); CallGCEpilogueCallbacks(kGCTypeIncrementalMarking, kNoGCCallbackFlags, GCTracer::Scope::MC_INCREMENTAL_EXTERNAL_EPILOGUE); } namespace { thread_local Address pending_layout_change_object_address = kNullAddress; } // namespace void Heap::NotifyObjectLayoutChange( Tagged<HeapObject> object, const DisallowGarbageCollection&, InvalidateRecordedSlots invalidate_recorded_slots, int new_size) { if (invalidate_recorded_slots == InvalidateRecordedSlots::kYes) { const bool may_contain_recorded_slots = MayContainRecordedSlots(object); MemoryChunk* const chunk = MemoryChunk::FromHeapObject(object); // Do not remove the recorded slot in the map word as this one can never be // invalidated. const Address clear_range_start = object.address() + kTaggedSize; // Only slots in the range of the new object size (which is potentially // smaller than the original one) can be invalidated. Clearing of recorded // slots up to the original object size even conflicts with concurrent // sweeping. const Address clear_range_end = object.address() + new_size; if (incremental_marking()->IsMarking()) { ExclusiveObjectLock::Lock(object); DCHECK_EQ(pending_layout_change_object_address, kNullAddress); pending_layout_change_object_address = object.address(); if (may_contain_recorded_slots && incremental_marking()->IsCompacting()) { RememberedSet<OLD_TO_OLD>::RemoveRange( chunk, clear_range_start, clear_range_end, SlotSet::EmptyBucketMode::KEEP_EMPTY_BUCKETS); } } if (may_contain_recorded_slots) { RememberedSet<OLD_TO_NEW>::RemoveRange( chunk, clear_range_start, clear_range_end, SlotSet::EmptyBucketMode::KEEP_EMPTY_BUCKETS); RememberedSet<OLD_TO_NEW_BACKGROUND>::RemoveRange( chunk, clear_range_start, clear_range_end, SlotSet::EmptyBucketMode::KEEP_EMPTY_BUCKETS); RememberedSet<OLD_TO_SHARED>::RemoveRange( chunk, clear_range_start, clear_range_end, SlotSet::EmptyBucketMode::KEEP_EMPTY_BUCKETS); } } #ifdef VERIFY_HEAP if (v8_flags.verify_heap) { HeapVerifier::SetPendingLayoutChangeObject(this, object); } #endif } // static void Heap::NotifyObjectLayoutChangeDone(Tagged<HeapObject> object) { if (pending_layout_change_object_address != kNullAddress) { DCHECK_EQ(pending_layout_change_object_address, object.address()); ExclusiveObjectLock::Unlock(object); pending_layout_change_object_address = kNullAddress; } } void Heap::NotifyObjectSizeChange(Tagged<HeapObject> object, int old_size, int new_size, ClearRecordedSlots clear_recorded_slots) { old_size = ALIGN_TO_ALLOCATION_ALIGNMENT(old_size); new_size = ALIGN_TO_ALLOCATION_ALIGNMENT(new_size); DCHECK_LE(new_size, old_size); DCHECK(!IsLargeObject(object)); if (new_size == old_size) return; const bool is_main_thread = LocalHeap::Current() == nullptr; DCHECK_IMPLIES(!is_main_thread, clear_recorded_slots == ClearRecordedSlots::kNo); const auto verify_no_slots_recorded = is_main_thread ? VerifyNoSlotsRecorded::kYes : VerifyNoSlotsRecorded::kNo; const auto clear_memory_mode = ClearFreedMemoryMode::kDontClearFreedMemory; const Address filler = object.address() + new_size; const int filler_size = old_size - new_size; CreateFillerObjectAtRaw(filler, filler_size, clear_memory_mode, clear_recorded_slots, verify_no_slots_recorded); } GCIdleTimeHeapState Heap::ComputeHeapState() { GCIdleTimeHeapState heap_state; heap_state.size_of_objects = static_cast<size_t>(SizeOfObjects()); heap_state.incremental_marking_stopped = incremental_marking()->IsStopped(); return heap_state; } bool Heap::PerformIdleTimeAction(GCIdleTimeAction action, GCIdleTimeHeapState heap_state, double deadline_in_ms) { bool result = false; switch (action) { case GCIdleTimeAction::kDone: result = true; break; case GCIdleTimeAction::kIncrementalStep: { incremental_marking()->AdvanceAndFinalizeIfComplete(); result = incremental_marking()->IsStopped(); break; } } return result; } void Heap::IdleNotificationEpilogue(GCIdleTimeAction action, GCIdleTimeHeapState heap_state, double start_ms, double deadline_in_ms) { const double idle_time_in_ms = deadline_in_ms - start_ms; const double deadline_difference = deadline_in_ms - MonotonicallyIncreasingTimeInMs(); if (v8_flags.trace_idle_notification) { isolate_->PrintWithTimestamp( "Idle notification: requested idle time %.2f ms, used idle time %.2f " "ms, deadline usage %.2f ms [", idle_time_in_ms, idle_time_in_ms - deadline_difference, deadline_difference); switch (action) { case GCIdleTimeAction::kDone: PrintF("done"); break; case GCIdleTimeAction::kIncrementalStep: PrintF("incremental step"); break; } PrintF("]"); if (v8_flags.trace_idle_notification_verbose) { PrintF("["); heap_state.Print(); PrintF("]"); } PrintF("\n"); } } double Heap::MonotonicallyIncreasingTimeInMs() const { return V8::GetCurrentPlatform()->MonotonicallyIncreasingTime() * static_cast<double>(base::Time::kMillisecondsPerSecond); } #if DEBUG void Heap::VerifyNewSpaceTop() { if (!new_space()) return; allocator()->new_space_allocator()->Verify(); } #endif // DEBUG bool Heap::IdleNotification(int idle_time_in_ms) { return IdleNotification( V8::GetCurrentPlatform()->MonotonicallyIncreasingTime() + (static_cast<double>(idle_time_in_ms) / static_cast<double>(base::Time::kMillisecondsPerSecond))); } bool Heap::IdleNotification(double deadline_in_seconds) { CHECK(HasBeenSetUp()); double deadline_in_ms = deadline_in_seconds * static_cast<double>(base::Time::kMillisecondsPerSecond); NestedTimedHistogramScope idle_notification_scope( isolate_->counters()->gc_idle_notification()); TRACE_EVENT0("v8", "V8.GCIdleNotification"); double start_ms = MonotonicallyIncreasingTimeInMs(); double idle_time_in_ms = deadline_in_ms - start_ms; tracer()->SampleAllocation( base::TimeTicks::Now(), NewSpaceAllocationCounter(), OldGenerationAllocationCounter(), EmbedderAllocationCounter()); GCIdleTimeHeapState heap_state = ComputeHeapState(); GCIdleTimeAction action = gc_idle_time_handler_->Compute(idle_time_in_ms, heap_state); bool result = PerformIdleTimeAction(action, heap_state, deadline_in_ms); IdleNotificationEpilogue(action, heap_state, start_ms, deadline_in_ms); return result; } class MemoryPressureInterruptTask : public CancelableTask { public: explicit MemoryPressureInterruptTask(Heap* heap) : CancelableTask(heap->isolate()), heap_(heap) {} ~MemoryPressureInterruptTask() override = default; MemoryPressureInterruptTask(const MemoryPressureInterruptTask&) = delete; MemoryPressureInterruptTask& operator=(const MemoryPressureInterruptTask&) = delete; private: // v8::internal::CancelableTask overrides. void RunInternal() override { heap_->CheckMemoryPressure(); } Heap* heap_; }; void Heap::CheckMemoryPressure() { if (HighMemoryPressure()) { // The optimizing compiler may be unnecessarily holding on to memory. isolate()->AbortConcurrentOptimization(BlockingBehavior::kDontBlock); } // Reset the memory pressure level to avoid recursive GCs triggered by // CheckMemoryPressure from AdjustAmountOfExternalMemory called by // the finalizers. MemoryPressureLevel memory_pressure_level = memory_pressure_level_.exchange( MemoryPressureLevel::kNone, std::memory_order_relaxed); if (memory_pressure_level == MemoryPressureLevel::kCritical) { TRACE_EVENT0("devtools.timeline,v8", "V8.CheckMemoryPressure"); CollectGarbageOnMemoryPressure(); } else if (memory_pressure_level == MemoryPressureLevel::kModerate) { if (v8_flags.incremental_marking && incremental_marking()->IsStopped()) { TRACE_EVENT0("devtools.timeline,v8", "V8.CheckMemoryPressure"); StartIncrementalMarking(GCFlag::kReduceMemoryFootprint, GarbageCollectionReason::kMemoryPressure); } } } void Heap::CollectGarbageOnMemoryPressure() { const int kGarbageThresholdInBytes = 8 * MB; const double kGarbageThresholdAsFractionOfTotalMemory = 0.1; // This constant is the maximum response time in RAIL performance model. const double kMaxMemoryPressurePauseMs = 100; double start = MonotonicallyIncreasingTimeInMs(); CollectAllGarbage(GCFlag::kReduceMemoryFootprint, GarbageCollectionReason::kMemoryPressure, kGCCallbackFlagCollectAllAvailableGarbage); EagerlyFreeExternalMemory(); double end = MonotonicallyIncreasingTimeInMs(); // Estimate how much memory we can free. int64_t potential_garbage = (CommittedMemory() - SizeOfObjects()) + external_memory_.total(); // If we can potentially free large amount of memory, then start GC right // away instead of waiting for memory reducer. if (potential_garbage >= kGarbageThresholdInBytes && potential_garbage >= CommittedMemory() * kGarbageThresholdAsFractionOfTotalMemory) { // If we spent less than half of the time budget, then perform full GC // Otherwise, start incremental marking. if (end - start < kMaxMemoryPressurePauseMs / 2) { CollectAllGarbage(GCFlag::kReduceMemoryFootprint, GarbageCollectionReason::kMemoryPressure, kGCCallbackFlagCollectAllAvailableGarbage); } else { if (v8_flags.incremental_marking && incremental_marking()->IsStopped()) { StartIncrementalMarking(GCFlag::kReduceMemoryFootprint, GarbageCollectionReason::kMemoryPressure); } } } } void Heap::MemoryPressureNotification(MemoryPressureLevel level, bool is_isolate_locked) { TRACE_EVENT1("devtools.timeline,v8", "V8.MemoryPressureNotification", "level", static_cast<int>(level)); MemoryPressureLevel previous = memory_pressure_level_.exchange(level, std::memory_order_relaxed); if ((previous != MemoryPressureLevel::kCritical && level == MemoryPressureLevel::kCritical) || (previous == MemoryPressureLevel::kNone && level == MemoryPressureLevel::kModerate)) { if (is_isolate_locked) { CheckMemoryPressure(); } else { ExecutionAccess access(isolate()); isolate()->stack_guard()->RequestGC(); task_runner_->PostTask( std::make_unique<MemoryPressureInterruptTask>(this)); } } } void Heap::EagerlyFreeExternalMemory() { CompleteArrayBufferSweeping(this); memory_allocator()->unmapper()->EnsureUnmappingCompleted(); } void Heap::AddNearHeapLimitCallback(v8::NearHeapLimitCallback callback, void* data) { const size_t kMaxCallbacks = 100; CHECK_LT(near_heap_limit_callbacks_.size(), kMaxCallbacks); for (auto callback_data : near_heap_limit_callbacks_) { CHECK_NE(callback_data.first, callback); } near_heap_limit_callbacks_.push_back(std::make_pair(callback, data)); } void Heap::RemoveNearHeapLimitCallback(v8::NearHeapLimitCallback callback, size_t heap_limit) { for (size_t i = 0; i < near_heap_limit_callbacks_.size(); i++) { if (near_heap_limit_callbacks_[i].first == callback) { near_heap_limit_callbacks_.erase(near_heap_limit_callbacks_.begin() + i); if (heap_limit) { RestoreHeapLimit(heap_limit); } return; } } UNREACHABLE(); } void Heap::AppendArrayBufferExtension(Tagged<JSArrayBuffer> object, ArrayBufferExtension* extension) { // ArrayBufferSweeper is managing all counters and updating Heap counters. array_buffer_sweeper_->Append(object, extension); } void Heap::DetachArrayBufferExtension(Tagged<JSArrayBuffer> object, ArrayBufferExtension* extension) { // ArrayBufferSweeper is managing all counters and updating Heap counters. return array_buffer_sweeper_->Detach(object, extension); } void Heap::AutomaticallyRestoreInitialHeapLimit(double threshold_percent) { initial_max_old_generation_size_threshold_ = initial_max_old_generation_size_ * threshold_percent; } bool Heap::InvokeNearHeapLimitCallback() { if (near_heap_limit_callbacks_.size() > 0) { AllowGarbageCollection allow_gc; TRACE_GC(tracer(), GCTracer::Scope::HEAP_EXTERNAL_NEAR_HEAP_LIMIT); VMState<EXTERNAL> callback_state(isolate()); HandleScope scope(isolate()); v8::NearHeapLimitCallback callback = near_heap_limit_callbacks_.back().first; void* data = near_heap_limit_callbacks_.back().second; size_t heap_limit = callback(data, max_old_generation_size(), initial_max_old_generation_size_); if (heap_limit > max_old_generation_size()) { SetOldGenerationAndGlobalMaximumSize( std::min(heap_limit, AllocatorLimitOnMaxOldGenerationSize())); return true; } } return false; } bool Heap::MeasureMemory(std::unique_ptr<v8::MeasureMemoryDelegate> delegate, v8::MeasureMemoryExecution execution) { HandleScope handle_scope(isolate()); std::vector<Handle<NativeContext>> contexts = FindAllNativeContexts(); std::vector<Handle<NativeContext>> to_measure; for (auto& current : contexts) { if (delegate->ShouldMeasure(v8::Utils::ToLocal(current))) { to_measure.push_back(current); } } return memory_measurement_->EnqueueRequest(std::move(delegate), execution, to_measure); } std::unique_ptr<v8::MeasureMemoryDelegate> Heap::MeasureMemoryDelegate( Handle<NativeContext> context, Handle<JSPromise> promise, v8::MeasureMemoryMode mode) { return i::MemoryMeasurement::DefaultDelegate(isolate_, context, promise, mode); } void Heap::CollectCodeStatistics() { TRACE_EVENT0("v8", "Heap::CollectCodeStatistics"); IsolateSafepointScope safepoint_scope(this); MakeHeapIterable(); CodeStatistics::ResetCodeAndMetadataStatistics(isolate()); // We do not look for code in new space, or map space. If code // somehow ends up in those spaces, we would miss it here. CodeStatistics::CollectCodeStatistics(code_space_, isolate()); CodeStatistics::CollectCodeStatistics(old_space_, isolate()); CodeStatistics::CollectCodeStatistics(code_lo_space_, isolate()); CodeStatistics::CollectCodeStatistics(trusted_space_, isolate()); CodeStatistics::CollectCodeStatistics(trusted_lo_space_, isolate()); } #ifdef DEBUG void Heap::Print() { if (!HasBeenSetUp()) return; isolate()->PrintStack(stdout); for (SpaceIterator it(this); it.HasNext();) { it.Next()->Print(); } } void Heap::ReportCodeStatistics(const char* title) { PrintF("###### Code Stats (%s) ######\n", title); CollectCodeStatistics(); CodeStatistics::ReportCodeStatistics(isolate()); } #endif // DEBUG bool Heap::Contains(Tagged<HeapObject> value) const { if (V8_ENABLE_THIRD_PARTY_HEAP_BOOL) { return true; } if (ReadOnlyHeap::Contains(value)) { return false; } if (memory_allocator()->IsOutsideAllocatedSpace(value.address())) { return false; } if (!HasBeenSetUp()) return false; return (new_space_ && new_space_->Contains(value)) || old_space_->Contains(value) || code_space_->Contains(value) || (shared_space_ && shared_space_->Contains(value)) || lo_space_->Contains(value) || code_lo_space_->Contains(value) || (new_lo_space_ && new_lo_space_->Contains(value)) || trusted_space_->Contains(value) || trusted_lo_space_->Contains(value) || (shared_lo_space_ && shared_lo_space_->Contains(value)); } bool Heap::ContainsCode(Tagged<HeapObject> value) const { if (V8_ENABLE_THIRD_PARTY_HEAP_BOOL) { return true; } // TODO(v8:11880): support external code space. if (memory_allocator()->IsOutsideAllocatedSpace(value.address(), EXECUTABLE)) { return false; } return HasBeenSetUp() && (code_space_->Contains(value) || code_lo_space_->Contains(value)); } bool Heap::SharedHeapContains(Tagged<HeapObject> value) const { if (shared_allocation_space_) { if (shared_allocation_space_->Contains(value)) return true; if (shared_lo_allocation_space_->Contains(value)) return true; } return false; } bool Heap::MustBeInSharedOldSpace(Tagged<HeapObject> value) { if (isolate()->OwnsStringTables()) return false; if (ReadOnlyHeap::Contains(value)) return false; if (Heap::InYoungGeneration(value)) return false; if (IsExternalString(value)) return false; if (IsInternalizedString(value)) return true; return false; } bool Heap::InSpace(Tagged<HeapObject> value, AllocationSpace space) const { if (V8_ENABLE_THIRD_PARTY_HEAP_BOOL) return third_party_heap::Heap::InSpace(value.address(), space); if (memory_allocator()->IsOutsideAllocatedSpace( value.address(), IsAnyCodeSpace(space) ? EXECUTABLE : NOT_EXECUTABLE)) { return false; } if (!HasBeenSetUp()) return false; switch (space) { case NEW_SPACE: return new_space_->Contains(value); case OLD_SPACE: return old_space_->Contains(value); case CODE_SPACE: return code_space_->Contains(value); case SHARED_SPACE: return shared_space_->Contains(value); case TRUSTED_SPACE: return trusted_space_->Contains(value); case LO_SPACE: return lo_space_->Contains(value); case CODE_LO_SPACE: return code_lo_space_->Contains(value); case NEW_LO_SPACE: return new_lo_space_->Contains(value); case SHARED_LO_SPACE: return shared_lo_space_->Contains(value); case TRUSTED_LO_SPACE: return trusted_lo_space_->Contains(value); case RO_SPACE: return ReadOnlyHeap::Contains(value); } UNREACHABLE(); } bool Heap::InSpaceSlow(Address addr, AllocationSpace space) const { if (memory_allocator()->IsOutsideAllocatedSpace( addr, IsAnyCodeSpace(space) ? EXECUTABLE : NOT_EXECUTABLE)) { return false; } if (!HasBeenSetUp()) return false; switch (space) { case NEW_SPACE: return new_space_->ContainsSlow(addr); case OLD_SPACE: return old_space_->ContainsSlow(addr); case CODE_SPACE: return code_space_->ContainsSlow(addr); case SHARED_SPACE: return shared_space_->ContainsSlow(addr); case TRUSTED_SPACE: return trusted_space_->ContainsSlow(addr); case LO_SPACE: return lo_space_->ContainsSlow(addr); case CODE_LO_SPACE: return code_lo_space_->ContainsSlow(addr); case NEW_LO_SPACE: return new_lo_space_->ContainsSlow(addr); case SHARED_LO_SPACE: return shared_lo_space_->ContainsSlow(addr); case TRUSTED_LO_SPACE: return trusted_lo_space_->ContainsSlow(addr); case RO_SPACE: return read_only_space_->ContainsSlow(addr); } UNREACHABLE(); } bool Heap::IsValidAllocationSpace(AllocationSpace space) { switch (space) { case NEW_SPACE: case OLD_SPACE: case CODE_SPACE: case SHARED_SPACE: case LO_SPACE: case NEW_LO_SPACE: case CODE_LO_SPACE: case SHARED_LO_SPACE: case TRUSTED_SPACE: case TRUSTED_LO_SPACE: case RO_SPACE: return true; default: return false; } } #ifdef DEBUG void Heap::VerifyCountersAfterSweeping() { MakeHeapIterable(); PagedSpaceIterator spaces(this); for (PagedSpace* space = spaces.Next(); space != nullptr; space = spaces.Next()) { space->VerifyCountersAfterSweeping(this); } } void Heap::VerifyCountersBeforeConcurrentSweeping(GarbageCollector collector) { if (v8_flags.minor_ms && new_space()) { PagedSpaceBase* space = paged_new_space()->paged_space(); space->RefillFreeList(); space->VerifyCountersBeforeConcurrentSweeping(); } if (collector != GarbageCollector::MARK_COMPACTOR) return; PagedSpaceIterator spaces(this); for (PagedSpace* space = spaces.Next(); space != nullptr; space = spaces.Next()) { // We need to refine the counters on pages that are already swept and have // not been moved over to the actual space. Otherwise, the AccountingStats // are just an over approximation. space->RefillFreeList(); space->VerifyCountersBeforeConcurrentSweeping(); } } void Heap::VerifyCommittedPhysicalMemory() { PagedSpaceIterator spaces(this); for (PagedSpace* space = spaces.Next(); space != nullptr; space = spaces.Next()) { space->VerifyCommittedPhysicalMemory(); } if (v8_flags.minor_ms && new_space()) { paged_new_space()->paged_space()->VerifyCommittedPhysicalMemory(); } } #endif // DEBUG void Heap::IterateWeakRoots(RootVisitor* v, base::EnumSet<SkipRoot> options) { DCHECK(!options.contains(SkipRoot::kWeak)); if (!options.contains(SkipRoot::kOldGeneration) && !options.contains(SkipRoot::kUnserializable) && isolate()->OwnsStringTables()) { // Do not visit for the following reasons. // - Serialization, since the string table is custom serialized. // - If we are skipping old generation, since all internalized strings // are in old space. // - If the string table is shared and this is not the shared heap, // since all internalized strings are in the shared heap. isolate()->string_table()->IterateElements(v); } v->Synchronize(VisitorSynchronization::kStringTable); if (!options.contains(SkipRoot::kExternalStringTable) && !options.contains(SkipRoot::kUnserializable)) { // Scavenge collections have special processing for this. // Do not visit for serialization, since the external string table will // be populated from scratch upon deserialization. external_string_table_.IterateAll(v); } v->Synchronize(VisitorSynchronization::kExternalStringsTable); } void Heap::IterateSmiRoots(RootVisitor* v) { // Acquire execution access since we are going to read stack limit values. ExecutionAccess access(isolate()); v->VisitRootPointers(Root::kSmiRootList, nullptr, roots_table().smi_roots_begin(), roots_table().smi_roots_end()); v->Synchronize(VisitorSynchronization::kSmiRootList); } // We cannot avoid stale handles to left-trimmed objects, but can only make // sure all handles still needed are updated. Filter out a stale pointer // and clear the slot to allow post processing of handles (needed because // the sweeper might actually free the underlying page). class ClearStaleLeftTrimmedHandlesVisitor : public RootVisitor { public: explicit ClearStaleLeftTrimmedHandlesVisitor(Heap* heap) : heap_(heap) #if V8_COMPRESS_POINTERS , cage_base_(heap->isolate()) #endif // V8_COMPRESS_POINTERS { USE(heap_); } void VisitRootPointer(Root root, const char* description, FullObjectSlot p) override { FixHandle(p); } void VisitRootPointers(Root root, const char* description, FullObjectSlot start, FullObjectSlot end) override { for (FullObjectSlot p = start; p < end; ++p) { FixHandle(p); } } // The pointer compression cage base value used for decompression of all // tagged values except references to InstructionStream objects. PtrComprCageBase cage_base() const { #if V8_COMPRESS_POINTERS return cage_base_; #else return PtrComprCageBase{}; #endif // V8_COMPRESS_POINTERS } private: inline void FixHandle(FullObjectSlot p) { if (!IsHeapObject(*p)) return; Tagged<HeapObject> current = HeapObject::cast(*p); if (!current->map_word(cage_base(), kRelaxedLoad).IsForwardingAddress() && IsFreeSpaceOrFiller(current, cage_base())) { #ifdef DEBUG // We need to find a FixedArrayBase map after walking the fillers. while ( !current->map_word(cage_base(), kRelaxedLoad).IsForwardingAddress() && IsFreeSpaceOrFiller(current, cage_base())) { Address next = current.ptr(); if (current->map(cage_base()) == ReadOnlyRoots(heap_).one_pointer_filler_map()) { next += kTaggedSize; } else if (current->map(cage_base()) == ReadOnlyRoots(heap_).two_pointer_filler_map()) { next += 2 * kTaggedSize; } else { next += current->Size(); } current = HeapObject::cast(Tagged<Object>(next)); } DCHECK( current->map_word(cage_base(), kRelaxedLoad).IsForwardingAddress() || IsFixedArrayBase(current, cage_base())); #endif // DEBUG p.store(Smi::zero()); } } Heap* heap_; #if V8_COMPRESS_POINTERS const PtrComprCageBase cage_base_; #endif // V8_COMPRESS_POINTERS }; void Heap::IterateRoots(RootVisitor* v, base::EnumSet<SkipRoot> options, IterateRootsMode roots_mode) { v->VisitRootPointers(Root::kStrongRootList, nullptr, roots_table().strong_roots_begin(), roots_table().strong_roots_end()); v->Synchronize(VisitorSynchronization::kStrongRootList); isolate_->bootstrapper()->Iterate(v); v->Synchronize(VisitorSynchronization::kBootstrapper); Relocatable::Iterate(isolate_, v); v->Synchronize(VisitorSynchronization::kRelocatable); isolate_->debug()->Iterate(v); v->Synchronize(VisitorSynchronization::kDebug); isolate_->compilation_cache()->Iterate(v); v->Synchronize(VisitorSynchronization::kCompilationCache); const bool skip_iterate_builtins = options.contains(SkipRoot::kOldGeneration) || (Builtins::kCodeObjectsAreInROSpace && options.contains(SkipRoot::kReadOnlyBuiltins) && // Prior to ReadOnlyPromotion, builtins may be on the mutable heap. !isolate_->serializer_enabled()); if (!skip_iterate_builtins) { IterateBuiltins(v); v->Synchronize(VisitorSynchronization::kBuiltins); } // Iterate over pointers being held by inactive threads. isolate_->thread_manager()->Iterate(v); v->Synchronize(VisitorSynchronization::kThreadManager); // Visitors in this block only run when not serializing. These include: // // - Thread-local and stack. // - Handles. // - Microtasks. // - The startup object cache. // // When creating real startup snapshot, these areas are expected to be empty. // It is also possible to create a snapshot of a *running* isolate for testing // purposes. In this case, these areas are likely not empty and will simply be // skipped. // // The general guideline for adding visitors to this section vs. adding them // above is that non-transient heap state is always visited, transient heap // state is visited only when not serializing. if (!options.contains(SkipRoot::kUnserializable)) { if (!options.contains(SkipRoot::kTracedHandles)) { // Young GCs always skip traced handles and visit them manually. DCHECK(!options.contains(SkipRoot::kOldGeneration)); isolate_->traced_handles()->Iterate(v); } if (!options.contains(SkipRoot::kGlobalHandles)) { // Young GCs always skip global handles and visit them manually. DCHECK(!options.contains(SkipRoot::kOldGeneration)); if (options.contains(SkipRoot::kWeak)) { isolate_->global_handles()->IterateStrongRoots(v); } else { isolate_->global_handles()->IterateAllRoots(v); } } v->Synchronize(VisitorSynchronization::kGlobalHandles); if (!options.contains(SkipRoot::kStack)) { IterateStackRoots(v); if (!options.contains(SkipRoot::kConservativeStack)) { IterateConservativeStackRoots(v, roots_mode); } v->Synchronize(VisitorSynchronization::kStackRoots); } // Iterate over main thread handles in handle scopes. if (!options.contains(SkipRoot::kMainThreadHandles)) { // Clear main thread handles with stale references to left-trimmed // objects. The GC would crash on such stale references. ClearStaleLeftTrimmedHandlesVisitor left_trim_visitor(this); isolate_->handle_scope_implementer()->Iterate(&left_trim_visitor); isolate_->handle_scope_implementer()->Iterate(v); } // Iterate local handles for all local heaps. safepoint_->Iterate(v); // Iterates all persistent handles. isolate_->persistent_handles_list()->Iterate(v, isolate_); v->Synchronize(VisitorSynchronization::kHandleScope); if (options.contains(SkipRoot::kOldGeneration)) { isolate_->eternal_handles()->IterateYoungRoots(v); } else { isolate_->eternal_handles()->IterateAllRoots(v); } v->Synchronize(VisitorSynchronization::kEternalHandles); // Iterate over pending Microtasks stored in MicrotaskQueues. MicrotaskQueue* default_microtask_queue = isolate_->default_microtask_queue(); if (default_microtask_queue) { MicrotaskQueue* microtask_queue = default_microtask_queue; do { microtask_queue->IterateMicrotasks(v); microtask_queue = microtask_queue->next(); } while (microtask_queue != default_microtask_queue); } v->Synchronize(VisitorSynchronization::kMicroTasks); // Iterate over other strong roots (currently only identity maps and // deoptimization entries). for (StrongRootsEntry* current = strong_roots_head_; current; current = current->next) { v->VisitRootPointers(Root::kStrongRoots, current->label, current->start, current->end); } v->Synchronize(VisitorSynchronization::kStrongRoots); // Iterate over the startup and shared heap object caches unless // serializing or deserializing. SerializerDeserializer::IterateStartupObjectCache(isolate_, v); v->Synchronize(VisitorSynchronization::kStartupObjectCache); // Iterate over shared heap object cache when the isolate owns this data // structure. Isolates which own the shared heap object cache are: // * Shared isolate // * Shared space/main isolate // * All isolates which do not use the shared heap feature. // // However, worker/client isolates do not own the shared heap object cache // and should not iterate it. if (isolate_->is_shared_space_isolate() || !isolate_->has_shared_space()) { SerializerDeserializer::IterateSharedHeapObjectCache(isolate_, v); v->Synchronize(VisitorSynchronization::kSharedHeapObjectCache); } } if (!options.contains(SkipRoot::kWeak)) { IterateWeakRoots(v, options); } } void Heap::IterateRootsIncludingClients(RootVisitor* v, base::EnumSet<SkipRoot> options) { IterateRoots(v, options, IterateRootsMode::kMainIsolate); if (isolate()->is_shared_space_isolate()) { ClientRootVisitor<> client_root_visitor(v); isolate()->global_safepoint()->IterateClientIsolates( [v = &client_root_visitor, options](Isolate* client) { client->heap()->IterateRoots(v, options, IterateRootsMode::kClientIsolate); }); } } void Heap::IterateWeakGlobalHandles(RootVisitor* v) { isolate_->global_handles()->IterateWeakRoots(v); isolate_->traced_handles()->Iterate(v); } void Heap::IterateBuiltins(RootVisitor* v) { Builtins* builtins = isolate()->builtins(); for (Builtin builtin = Builtins::kFirst; builtin <= Builtins::kLast; ++builtin) { const char* name = Builtins::name(builtin); v->VisitRootPointer(Root::kBuiltins, name, builtins->builtin_slot(builtin)); } for (Builtin builtin = Builtins::kFirst; builtin <= Builtins::kLastTier0; ++builtin) { v->VisitRootPointer(Root::kBuiltins, Builtins::name(builtin), builtins->builtin_tier0_slot(builtin)); } // The entry table doesn't need to be updated since all builtins are embedded. static_assert(Builtins::AllBuiltinsAreIsolateIndependent()); } void Heap::IterateStackRoots(RootVisitor* v) { isolate_->Iterate(v); } void Heap::IterateConservativeStackRoots(RootVisitor* v, IterateRootsMode roots_mode) { #ifdef V8_ENABLE_CONSERVATIVE_STACK_SCANNING if (!IsGCWithStack()) return; TRACE_GC(tracer(), GCTracer::Scope::CONSERVATIVE_STACK_SCANNING); // In case of a shared GC, we're interested in the main isolate for CSS. Isolate* main_isolate = roots_mode == IterateRootsMode::kClientIsolate ? isolate()->shared_space_isolate() : isolate(); ConservativeStackVisitor stack_visitor(main_isolate, v); stack().IteratePointersUntilMarker(&stack_visitor); #endif // V8_ENABLE_CONSERVATIVE_STACK_SCANNING } // static size_t Heap::DefaultMinSemiSpaceSize() { #if ENABLE_HUGEPAGE static constexpr size_t kMinSemiSpaceSize = kHugePageSize * kPointerMultiplier; #else static constexpr size_t kMinSemiSpaceSize = 512 * KB * kPointerMultiplier; #endif static_assert(kMinSemiSpaceSize % (1 << kPageSizeBits) == 0); return kMinSemiSpaceSize; } // static size_t Heap::DefaultMaxSemiSpaceSize() { #if ENABLE_HUGEPAGE static constexpr size_t kMaxSemiSpaceCapacityBaseUnit = kHugePageSize * 2 * kPointerMultiplier; #else static constexpr size_t kMaxSemiSpaceCapacityBaseUnit = MB * kPointerMultiplier; #endif static_assert(kMaxSemiSpaceCapacityBaseUnit % (1 << kPageSizeBits) == 0); size_t max_semi_space_size = (v8_flags.minor_ms ? v8_flags.minor_ms_max_new_space_capacity_mb : v8_flags.scavenger_max_new_space_capacity_mb) * kMaxSemiSpaceCapacityBaseUnit; DCHECK_EQ(0, max_semi_space_size % (1 << kPageSizeBits)); return max_semi_space_size; } // static size_t Heap::OldGenerationToSemiSpaceRatio() { DCHECK(!v8_flags.minor_ms); static constexpr size_t kOldGenerationToSemiSpaceRatio = 128 * kHeapLimitMultiplier / kPointerMultiplier; return kOldGenerationToSemiSpaceRatio; } // static size_t Heap::OldGenerationToSemiSpaceRatioLowMemory() { static constexpr size_t kOldGenerationToSemiSpaceRatioLowMemory = 256 * kHeapLimitMultiplier / kPointerMultiplier; return kOldGenerationToSemiSpaceRatioLowMemory / (v8_flags.minor_ms ? 2 : 1); } void Heap::ConfigureHeap(const v8::ResourceConstraints& constraints) { // Initialize max_semi_space_size_. { max_semi_space_size_ = DefaultMaxSemiSpaceSize(); if (constraints.max_young_generation_size_in_bytes() > 0) { max_semi_space_size_ = SemiSpaceSizeFromYoungGenerationSize( constraints.max_young_generation_size_in_bytes()); } if (v8_flags.max_semi_space_size > 0) { max_semi_space_size_ = static_cast<size_t>(v8_flags.max_semi_space_size) * MB; } else if (v8_flags.max_heap_size > 0) { size_t max_heap_size = static_cast<size_t>(v8_flags.max_heap_size) * MB; size_t young_generation_size, old_generation_size; if (v8_flags.max_old_space_size > 0) { old_generation_size = static_cast<size_t>(v8_flags.max_old_space_size) * MB; young_generation_size = max_heap_size > old_generation_size ? max_heap_size - old_generation_size : 0; } else { GenerationSizesFromHeapSize(max_heap_size, &young_generation_size, &old_generation_size); } max_semi_space_size_ = SemiSpaceSizeFromYoungGenerationSize(young_generation_size); } if (v8_flags.stress_compaction) { // This will cause more frequent GCs when stressing. max_semi_space_size_ = MB; } if (!v8_flags.minor_ms) { // TODO(dinfuehr): Rounding to a power of 2 is technically no longer // needed but yields best performance on Pixel2. max_semi_space_size_ = static_cast<size_t>(base::bits::RoundUpToPowerOfTwo64( static_cast<uint64_t>(max_semi_space_size_))); } max_semi_space_size_ = std::max(max_semi_space_size_, DefaultMinSemiSpaceSize()); max_semi_space_size_ = RoundDown<Page::kPageSize>(max_semi_space_size_); } // Initialize max_old_generation_size_ and max_global_memory_. { size_t max_old_generation_size = 700ul * (kSystemPointerSize / 4) * MB; if (constraints.max_old_generation_size_in_bytes() > 0) { max_old_generation_size = constraints.max_old_generation_size_in_bytes(); } if (v8_flags.max_old_space_size > 0) { max_old_generation_size = static_cast<size_t>(v8_flags.max_old_space_size) * MB; } else if (v8_flags.max_heap_size > 0) { size_t max_heap_size = static_cast<size_t>(v8_flags.max_heap_size) * MB; size_t young_generation_size = YoungGenerationSizeFromSemiSpaceSize(max_semi_space_size_); max_old_generation_size = max_heap_size > young_generation_size ? max_heap_size - young_generation_size : 0; } max_old_generation_size = std::max(max_old_generation_size, MinOldGenerationSize()); max_old_generation_size = std::min(max_old_generation_size, AllocatorLimitOnMaxOldGenerationSize()); max_old_generation_size = RoundDown<Page::kPageSize>(max_old_generation_size); SetOldGenerationAndGlobalMaximumSize(max_old_generation_size); } CHECK_IMPLIES( v8_flags.max_heap_size > 0, v8_flags.max_semi_space_size == 0 || v8_flags.max_old_space_size == 0); // Initialize initial_semispace_size_. { initial_semispace_size_ = DefaultMinSemiSpaceSize(); if (max_semi_space_size_ == DefaultMaxSemiSpaceSize()) { // Start with at least 1*MB semi-space on machines with a lot of memory. initial_semispace_size_ = std::max(initial_semispace_size_, static_cast<size_t>(1 * MB)); } if (constraints.initial_young_generation_size_in_bytes() > 0) { initial_semispace_size_ = SemiSpaceSizeFromYoungGenerationSize( constraints.initial_young_generation_size_in_bytes()); } if (v8_flags.initial_heap_size > 0) { size_t young_generation, old_generation; Heap::GenerationSizesFromHeapSize( static_cast<size_t>(v8_flags.initial_heap_size) * MB, &young_generation, &old_generation); initial_semispace_size_ = SemiSpaceSizeFromYoungGenerationSize(young_generation); } if (v8_flags.min_semi_space_size > 0) { initial_semispace_size_ = static_cast<size_t>(v8_flags.min_semi_space_size) * MB; } initial_semispace_size_ = std::min(initial_semispace_size_, max_semi_space_size_); initial_semispace_size_ = RoundDown<Page::kPageSize>(initial_semispace_size_); } if (v8_flags.lazy_new_space_shrinking) { initial_semispace_size_ = max_semi_space_size_; } // Initialize initial_old_space_size_. { initial_old_generation_size_ = kMaxInitialOldGenerationSize; if (constraints.initial_old_generation_size_in_bytes() > 0) { initial_old_generation_size_ = constraints.initial_old_generation_size_in_bytes(); old_generation_allocation_limit_configured_ = true; } if (v8_flags.initial_heap_size > 0) { size_t initial_heap_size = static_cast<size_t>(v8_flags.initial_heap_size) * MB; size_t young_generation_size = YoungGenerationSizeFromSemiSpaceSize(initial_semispace_size_); initial_old_generation_size_ = initial_heap_size > young_generation_size ? initial_heap_size - young_generation_size : 0; old_generation_allocation_limit_configured_ = true; } if (v8_flags.initial_old_space_size > 0) { initial_old_generation_size_ = static_cast<size_t>(v8_flags.initial_old_space_size) * MB; old_generation_allocation_limit_configured_ = true; } initial_old_generation_size_ = std::min(initial_old_generation_size_, max_old_generation_size() / 2); initial_old_generation_size_ = RoundDown<Page::kPageSize>(initial_old_generation_size_); } if (old_generation_allocation_limit_configured_) { // If the embedder pre-configures the initial old generation size, // then allow V8 to skip full GCs below that threshold. min_old_generation_size_ = initial_old_generation_size_; min_global_memory_size_ = GlobalMemorySizeFromV8Size(min_old_generation_size_); } if (v8_flags.semi_space_growth_factor < 2) { v8_flags.semi_space_growth_factor = 2; } initial_max_old_generation_size_ = max_old_generation_size(); ResetOldGenerationAndGlobalAllocationLimit(); // We rely on being able to allocate new arrays in paged spaces. DCHECK(kMaxRegularHeapObjectSize >= (JSArray::kHeaderSize + FixedArray::SizeFor(JSArray::kInitialMaxFastElementArray) + ALIGN_TO_ALLOCATION_ALIGNMENT(AllocationMemento::kSize))); code_range_size_ = constraints.code_range_size_in_bytes(); configured_ = true; } void Heap::AddToRingBuffer(const char* string) { size_t first_part = std::min(strlen(string), kTraceRingBufferSize - ring_buffer_end_); memcpy(trace_ring_buffer_ + ring_buffer_end_, string, first_part); ring_buffer_end_ += first_part; if (first_part < strlen(string)) { ring_buffer_full_ = true; size_t second_part = strlen(string) - first_part; memcpy(trace_ring_buffer_, string + first_part, second_part); ring_buffer_end_ = second_part; } } void Heap::GetFromRingBuffer(char* buffer) { size_t copied = 0; if (ring_buffer_full_) { copied = kTraceRingBufferSize - ring_buffer_end_; memcpy(buffer, trace_ring_buffer_ + ring_buffer_end_, copied); } memcpy(buffer + copied, trace_ring_buffer_, ring_buffer_end_); } void Heap::ConfigureHeapDefault() { v8::ResourceConstraints constraints; ConfigureHeap(constraints); } void Heap::RecordStats(HeapStats* stats, bool take_snapshot) { *stats->start_marker = HeapStats::kStartMarker; *stats->end_marker = HeapStats::kEndMarker; *stats->ro_space_size = read_only_space_->Size(); *stats->ro_space_capacity = read_only_space_->Capacity(); *stats->new_space_size = NewSpaceSize(); *stats->new_space_capacity = NewSpaceCapacity(); *stats->old_space_size = old_space_->SizeOfObjects(); *stats->old_space_capacity = old_space_->Capacity(); *stats->code_space_size = code_space_->SizeOfObjects(); *stats->code_space_capacity = code_space_->Capacity(); *stats->map_space_size = 0; *stats->map_space_capacity = 0; *stats->lo_space_size = lo_space_->Size(); *stats->code_lo_space_size = code_lo_space_->Size(); isolate_->global_handles()->RecordStats(stats); *stats->memory_allocator_size = memory_allocator()->Size(); *stats->memory_allocator_capacity = memory_allocator()->Size() + memory_allocator()->Available(); *stats->os_error = base::OS::GetLastError(); // TODO(leszeks): Include the string table in both current and peak usage. *stats->malloced_memory = isolate_->allocator()->GetCurrentMemoryUsage(); *stats->malloced_peak_memory = isolate_->allocator()->GetMaxMemoryUsage(); if (take_snapshot) { HeapObjectIterator iterator(this); for (Tagged<HeapObject> obj = iterator.Next(); !obj.is_null(); obj = iterator.Next()) { InstanceType type = obj->map()->instance_type(); DCHECK(0 <= type && type <= LAST_TYPE); stats->objects_per_type[type]++; stats->size_per_type[type] += obj->Size(); } } if (stats->last_few_messages != nullptr) GetFromRingBuffer(stats->last_few_messages); } size_t Heap::OldGenerationSizeOfObjects() const { PagedSpaceIterator spaces(this); size_t total = 0; for (PagedSpace* space = spaces.Next(); space != nullptr; space = spaces.Next()) { total += space->SizeOfObjects(); } if (shared_lo_space_) { total += shared_lo_space_->SizeOfObjects(); } return total + lo_space_->SizeOfObjects() + code_lo_space_->SizeOfObjects(); } size_t Heap::EmbedderSizeOfObjects() const { return cpp_heap_ ? CppHeap::From(cpp_heap_)->used_size() : 0; } size_t Heap::GlobalSizeOfObjects() const { return OldGenerationSizeOfObjects() + EmbedderSizeOfObjects(); } uint64_t Heap::AllocatedExternalMemorySinceMarkCompact() const { return external_memory_.AllocatedSinceMarkCompact(); } bool Heap::AllocationLimitOvershotByLargeMargin() const { // This guards against too eager finalization in small heaps. // The number is chosen based on v8.browsing_mobile on Nexus 7v2. constexpr size_t kMarginForSmallHeaps = 32u * MB; uint64_t size_now = OldGenerationSizeOfObjects() + AllocatedExternalMemorySinceMarkCompact(); const size_t v8_overshoot = old_generation_allocation_limit() < size_now ? size_now - old_generation_allocation_limit() : 0; const size_t global_overshoot = global_allocation_limit_ < GlobalSizeOfObjects() ? GlobalSizeOfObjects() - global_allocation_limit_ : 0; // Bail out if the V8 and global sizes are still below their respective // limits. if (v8_overshoot == 0 && global_overshoot == 0) { return false; } // Overshoot margin is 50% of allocation limit or half-way to the max heap // with special handling of small heaps. const size_t v8_margin = std::min( std::max(old_generation_allocation_limit() / 2, kMarginForSmallHeaps), (max_old_generation_size() - old_generation_allocation_limit()) / 2); const size_t global_margin = std::min(std::max(global_allocation_limit_ / 2, kMarginForSmallHeaps), (max_global_memory_size_ - global_allocation_limit_) / 2); return v8_overshoot >= v8_margin || global_overshoot >= global_margin; } bool Heap::ShouldOptimizeForLoadTime() { return isolate()->rail_mode() == PERFORMANCE_LOAD && !AllocationLimitOvershotByLargeMargin() && MonotonicallyIncreasingTimeInMs() < isolate()->LoadStartTimeMs() + kMaxLoadTimeMs; } // This predicate is called when an old generation space cannot allocated from // the free list and is about to add a new page. Returning false will cause a // major GC. It happens when the old generation allocation limit is reached and // - either we need to optimize for memory usage, // - or the incremental marking is not in progress and we cannot start it. bool Heap::ShouldExpandOldGenerationOnSlowAllocation(LocalHeap* local_heap, AllocationOrigin origin) { if (always_allocate() || OldGenerationSpaceAvailable() > 0) return true; // We reached the old generation allocation limit. // Allocations in the GC should always succeed if possible. if (origin == AllocationOrigin::kGC) return true; // Background threads need to be allowed to allocate without GC after teardown // was initiated. if (gc_state() == TEAR_DOWN) return true; // If main thread is parked, it can't perform the GC. Fix the deadlock by // allowing the allocation. if (IsMainThreadParked(local_heap)) return true; // If allocating isolate is deserialized at the moment then always allow // allocation. if (IsIsolateDeserializationActive(local_heap)) return true; // Make it more likely that retry of allocation on background thread succeeds if (IsRetryOfFailedAllocation(local_heap)) return true; // Background thread requested GC, allocation should fail if (CollectionRequested()) return false; if (ShouldOptimizeForMemoryUsage()) return false; if (ShouldOptimizeForLoadTime()) return true; if (IsMajorMarkingComplete(local_heap)) { return !AllocationLimitOvershotByLargeMargin(); } if (incremental_marking()->IsStopped() && IncrementalMarkingLimitReached() == IncrementalMarkingLimit::kNoLimit) { // We cannot start incremental marking. return false; } return true; } bool Heap::IsRetryOfFailedAllocation(LocalHeap* local_heap) { if (!local_heap) return false; return local_heap->allocation_failed_; } bool Heap::IsMainThreadParked(LocalHeap* local_heap) { if (!local_heap) return false; return local_heap->main_thread_parked_; } bool Heap::IsMajorMarkingComplete(LocalHeap* local_heap) { // Only check this on the main thread. if (!local_heap || !local_heap->is_main_thread()) return false; // But also ignore main threads of client isolates. if (local_heap->heap() != this) { DCHECK(isolate()->is_shared_space_isolate()); return false; } return incremental_marking()->IsMajorMarkingComplete(); } Heap::HeapGrowingMode Heap::CurrentHeapGrowingMode() { if (ShouldReduceMemory() || v8_flags.stress_compaction) { return Heap::HeapGrowingMode::kMinimal; } if (ShouldOptimizeForMemoryUsage()) { return Heap::HeapGrowingMode::kConservative; } if (memory_reducer() != nullptr && memory_reducer()->ShouldGrowHeapSlowly()) { return Heap::HeapGrowingMode::kSlow; } return Heap::HeapGrowingMode::kDefault; } base::Optional<size_t> Heap::GlobalMemoryAvailable() { size_t global_size = GlobalSizeOfObjects(); if (global_size < global_allocation_limit_) return global_allocation_limit_ - global_size; return 0; } double Heap::PercentToOldGenerationLimit() { double size_at_gc = old_generation_size_at_last_gc_; double size_now = OldGenerationSizeOfObjects() + AllocatedExternalMemorySinceMarkCompact(); double current_bytes = size_now - size_at_gc; double total_bytes = old_generation_allocation_limit() - size_at_gc; return total_bytes > 0 ? (current_bytes / total_bytes) * 100.0 : 0; } double Heap::PercentToGlobalMemoryLimit() { double size_at_gc = old_generation_size_at_last_gc_; double size_now = OldGenerationSizeOfObjects() + AllocatedExternalMemorySinceMarkCompact(); double current_bytes = size_now - size_at_gc; double total_bytes = old_generation_allocation_limit() - size_at_gc; return total_bytes > 0 ? (current_bytes / total_bytes) * 100.0 : 0; } // - kNoLimit means that either incremental marking is disabled or it is too // early to start incremental marking. // - kSoftLimit means that incremental marking should be started soon. // - kHardLimit means that incremental marking should be started immediately. // - kFallbackForEmbedderLimit means that incremental marking should be // started as soon as the embedder does not allocate with high throughput // anymore. Heap::IncrementalMarkingLimit Heap::IncrementalMarkingLimitReached() { // InstructionStream using an AlwaysAllocateScope assumes that the GC state // does not change; that implies that no marking steps must be performed. if (!incremental_marking()->CanBeStarted() || always_allocate()) { // Incremental marking is disabled or it is too early to start. return IncrementalMarkingLimit::kNoLimit; } if (v8_flags.stress_incremental_marking) { return IncrementalMarkingLimit::kHardLimit; } if (incremental_marking()->IsBelowActivationThresholds()) { // Incremental marking is disabled or it is too early to start. return IncrementalMarkingLimit::kNoLimit; } if (ShouldStressCompaction() || HighMemoryPressure()) { // If there is high memory pressure or stress testing is enabled, then // start marking immediately. return IncrementalMarkingLimit::kHardLimit; } if (v8_flags.stress_marking > 0) { int current_percent = static_cast<int>( std::max(PercentToOldGenerationLimit(), PercentToGlobalMemoryLimit())); if (current_percent > 0) { if (v8_flags.trace_stress_marking) { isolate()->PrintWithTimestamp( "[IncrementalMarking] %d%% of the memory limit reached\n", current_percent); } if (v8_flags.fuzzer_gc_analysis) { // Skips values >=100% since they already trigger marking. if (current_percent < 100) { max_marking_limit_reached_ = std::max<double>(max_marking_limit_reached_, current_percent); } } else if (current_percent >= stress_marking_percentage_) { return IncrementalMarkingLimit::kHardLimit; } } } if (v8_flags.incremental_marking_soft_trigger > 0 || v8_flags.incremental_marking_hard_trigger > 0) { int current_percent = static_cast<int>( std::max(PercentToOldGenerationLimit(), PercentToGlobalMemoryLimit())); if (current_percent > v8_flags.incremental_marking_hard_trigger && v8_flags.incremental_marking_hard_trigger > 0) { return IncrementalMarkingLimit::kHardLimit; } if (current_percent > v8_flags.incremental_marking_soft_trigger && v8_flags.incremental_marking_soft_trigger > 0) { return IncrementalMarkingLimit::kSoftLimit; } return IncrementalMarkingLimit::kNoLimit; } size_t old_generation_space_available = OldGenerationSpaceAvailable(); const base::Optional<size_t> global_memory_available = GlobalMemoryAvailable(); if (old_generation_space_available > NewSpaceTargetCapacity() && (!global_memory_available || global_memory_available > NewSpaceTargetCapacity())) { if (cpp_heap() && !old_generation_allocation_limit_configured_ && gc_count_ == 0) { // At this point the embedder memory is above the activation // threshold. No GC happened so far and it's thus unlikely to get a // configured heap any time soon. Start a memory reducer in this case // which will wait until the allocation rate is low to trigger garbage // collection. return IncrementalMarkingLimit::kFallbackForEmbedderLimit; } return IncrementalMarkingLimit::kNoLimit; } if (ShouldOptimizeForMemoryUsage()) { return IncrementalMarkingLimit::kHardLimit; } if (ShouldOptimizeForLoadTime()) { return IncrementalMarkingLimit::kNoLimit; } if (old_generation_space_available == 0) { return IncrementalMarkingLimit::kHardLimit; } if (global_memory_available && *global_memory_available == 0) { return IncrementalMarkingLimit::kHardLimit; } return IncrementalMarkingLimit::kSoftLimit; } bool Heap::ShouldStressCompaction() const { return v8_flags.stress_compaction && (gc_count_ & 1) != 0; } void Heap::EnableInlineAllocation() { inline_allocation_enabled_ = true; } void Heap::DisableInlineAllocation() { inline_allocation_enabled_ = false; FreeMainThreadLinearAllocationAreas(); } void Heap::SetUp(LocalHeap* main_thread_local_heap) { DCHECK_NULL(main_thread_local_heap_); main_thread_local_heap_ = main_thread_local_heap; #ifdef V8_ENABLE_ALLOCATION_TIMEOUT heap_allocator_.UpdateAllocationTimeout(); #endif // V8_ENABLE_ALLOCATION_TIMEOUT #ifdef V8_ENABLE_THIRD_PARTY_HEAP tp_heap_ = third_party_heap::Heap::New(isolate()); #endif // Initialize heap spaces and initial maps and objects. // // If the heap is not yet configured (e.g. through the API), configure it. // Configuration is based on the flags new-space-size (really the semispace // size) and old-space-size if set or the initial values of semispace_size_ // and old_generation_size_ otherwise. if (!configured_) ConfigureHeapDefault(); mmap_region_base_ = reinterpret_cast<uintptr_t>(v8::internal::GetRandomMmapAddr()) & ~kMmapRegionMask; v8::PageAllocator* code_page_allocator; if (isolate_->RequiresCodeRange() || code_range_size_ != 0) { const size_t requested_size = code_range_size_ == 0 ? kMaximalCodeRangeSize : code_range_size_; // When a target requires the code range feature, we put all code objects in // a contiguous range of virtual address space, so that they can call each // other with near calls. #ifdef V8_COMPRESS_POINTERS_IN_SHARED_CAGE // When sharing a pointer cage among Isolates, also share the // CodeRange. isolate_->page_allocator() is the process-wide pointer // compression cage's PageAllocator. code_range_ = CodeRange::EnsureProcessWideCodeRange( isolate_->page_allocator(), requested_size); #else code_range_ = std::make_unique<CodeRange>(); if (!code_range_->InitReservation(isolate_->page_allocator(), requested_size)) { V8::FatalProcessOutOfMemory( isolate_, "Failed to reserve virtual memory for CodeRange"); } #endif // V8_COMPRESS_POINTERS_IN_SHARED_CAGE LOG(isolate_, NewEvent("CodeRange", reinterpret_cast<void*>(code_range_->reservation()->address()), code_range_size_)); isolate_->AddCodeRange(code_range_->reservation()->region().begin(), code_range_->reservation()->region().size()); code_page_allocator = code_range_->page_allocator(); } else { code_page_allocator = isolate_->page_allocator(); } task_runner_ = V8::GetCurrentPlatform()->GetForegroundTaskRunner( reinterpret_cast<v8::Isolate*>(isolate())); collection_barrier_.reset(new CollectionBarrier(this, this->task_runner_)); // Set up memory allocator. memory_allocator_.reset( new MemoryAllocator(isolate_, code_page_allocator, MaxReserved())); sweeper_.reset(new Sweeper(this)); mark_compact_collector_.reset(new MarkCompactCollector(this)); scavenger_collector_.reset(new ScavengerCollector(this)); minor_mark_sweep_collector_.reset(new MinorMarkSweepCollector(this)); ephemeron_remembered_set_.reset(new EphemeronRememberedSet()); incremental_marking_.reset( new IncrementalMarking(this, mark_compact_collector_->weak_objects())); if (v8_flags.concurrent_marking || v8_flags.parallel_marking) { concurrent_marking_.reset( new ConcurrentMarking(this, mark_compact_collector_->weak_objects())); } else { concurrent_marking_.reset(new ConcurrentMarking(this, nullptr)); } // Set up layout tracing callback. if (V8_UNLIKELY(v8_flags.trace_gc_heap_layout)) { v8::GCType gc_type = kGCTypeMarkSweepCompact; if (V8_UNLIKELY(!v8_flags.trace_gc_heap_layout_ignore_minor_gc)) { gc_type = static_cast<v8::GCType>(gc_type | kGCTypeScavenge | kGCTypeMinorMarkSweep); } AddGCPrologueCallback(HeapLayoutTracer::GCProloguePrintHeapLayout, gc_type, nullptr); AddGCEpilogueCallback(HeapLayoutTracer::GCEpiloguePrintHeapLayout, gc_type, nullptr); } } void Heap::SetUpFromReadOnlyHeap(ReadOnlyHeap* ro_heap) { DCHECK_NOT_NULL(ro_heap); DCHECK_IMPLIES(read_only_space_ != nullptr, read_only_space_ == ro_heap->read_only_space()); DCHECK_NULL(space_[RO_SPACE].get()); read_only_space_ = ro_heap->read_only_space(); heap_allocator_.SetReadOnlySpace(read_only_space_); } void Heap::ReplaceReadOnlySpace(SharedReadOnlySpace* space) { CHECK(V8_SHARED_RO_HEAP_BOOL); if (read_only_space_) { read_only_space_->TearDown(memory_allocator()); delete read_only_space_; } read_only_space_ = space; heap_allocator_.SetReadOnlySpace(read_only_space_); } class StressConcurrentAllocationObserver : public AllocationObserver { public: explicit StressConcurrentAllocationObserver(Heap* heap) : AllocationObserver(1024), heap_(heap) {} void Step(int bytes_allocated, Address, size_t) override { DCHECK(heap_->deserialization_complete()); if (v8_flags.stress_concurrent_allocation) { // Only schedule task if --stress-concurrent-allocation is enabled. This // allows tests to disable flag even when Isolate was already initialized. StressConcurrentAllocatorTask::Schedule(heap_->isolate()); } heap_->RemoveAllocationObserversFromAllSpaces(this, this); heap_->need_to_remove_stress_concurrent_allocation_observer_ = false; } private: Heap* heap_; }; namespace { size_t ReturnNull() { return 0; } } // namespace void Heap::SetUpSpaces(LinearAllocationArea& new_allocation_info, LinearAllocationArea& old_allocation_info) { // Ensure SetUpFromReadOnlySpace has been ran. DCHECK_NOT_NULL(read_only_space_); if (!v8_flags.single_generation) { if (v8_flags.minor_ms) { space_[NEW_SPACE] = std::make_unique<PagedNewSpace>( this, initial_semispace_size_, max_semi_space_size_, new_allocation_info); } else { space_[NEW_SPACE] = std::make_unique<SemiSpaceNewSpace>( this, initial_semispace_size_, max_semi_space_size_, new_allocation_info); } new_space_ = static_cast<NewSpace*>(space_[NEW_SPACE].get()); space_[NEW_LO_SPACE] = std::make_unique<NewLargeObjectSpace>(this, NewSpaceCapacity()); new_lo_space_ = static_cast<NewLargeObjectSpace*>(space_[NEW_LO_SPACE].get()); } space_[OLD_SPACE] = std::make_unique<OldSpace>(this, old_allocation_info); old_space_ = static_cast<OldSpace*>(space_[OLD_SPACE].get()); space_[CODE_SPACE] = std::make_unique<CodeSpace>(this); code_space_ = static_cast<CodeSpace*>(space_[CODE_SPACE].get()); if (isolate()->is_shared_space_isolate()) { space_[SHARED_SPACE] = std::make_unique<SharedSpace>(this); shared_space_ = static_cast<SharedSpace*>(space_[SHARED_SPACE].get()); } space_[LO_SPACE] = std::make_unique<OldLargeObjectSpace>(this); lo_space_ = static_cast<OldLargeObjectSpace*>(space_[LO_SPACE].get()); space_[CODE_LO_SPACE] = std::make_unique<CodeLargeObjectSpace>(this); code_lo_space_ = static_cast<CodeLargeObjectSpace*>(space_[CODE_LO_SPACE].get()); if (isolate()->is_shared_space_isolate()) { space_[SHARED_LO_SPACE] = std::make_unique<SharedLargeObjectSpace>(this); shared_lo_space_ = static_cast<SharedLargeObjectSpace*>(space_[SHARED_LO_SPACE].get()); } space_[TRUSTED_SPACE] = std::make_unique<TrustedSpace>(this); trusted_space_ = static_cast<TrustedSpace*>(space_[TRUSTED_SPACE].get()); space_[TRUSTED_LO_SPACE] = std::make_unique<TrustedLargeObjectSpace>(this); trusted_lo_space_ = static_cast<TrustedLargeObjectSpace*>(space_[TRUSTED_LO_SPACE].get()); if (isolate()->has_shared_space()) { Heap* heap = isolate()->shared_space_isolate()->heap(); shared_space_allocator_ = std::make_unique<ConcurrentAllocator>( main_thread_local_heap(), heap->shared_space_, ConcurrentAllocator::Context::kNotGC); shared_allocation_space_ = heap->shared_space_; shared_lo_allocation_space_ = heap->shared_lo_space_; } heap_allocator_.Setup(); main_thread_local_heap()->SetUpMainThread(); for (int i = 0; i < static_cast<int>(v8::Isolate::kUseCounterFeatureCount); i++) { deferred_counters_[i] = 0; } base::TimeTicks startup_time = base::TimeTicks::Now(); tracer_.reset(new GCTracer(this, startup_time)); array_buffer_sweeper_.reset(new ArrayBufferSweeper(this)); gc_idle_time_handler_.reset(new GCIdleTimeHandler()); memory_measurement_.reset(new MemoryMeasurement(isolate())); if (v8_flags.memory_reducer) memory_reducer_.reset(new MemoryReducer(this)); if (V8_UNLIKELY(TracingFlags::is_gc_stats_enabled())) { live_object_stats_.reset(new ObjectStats(this)); dead_object_stats_.reset(new ObjectStats(this)); } if (Heap::AllocationTrackerForDebugging::IsNeeded()) { allocation_tracker_for_debugging_ = std::make_unique<Heap::AllocationTrackerForDebugging>(this); } LOG(isolate_, IntPtrTEvent("heap-capacity", Capacity())); LOG(isolate_, IntPtrTEvent("heap-available", Available())); SetGetExternallyAllocatedMemoryInBytesCallback(ReturnNull); write_protect_code_memory_ = v8_flags.write_protect_code_memory; #if V8_HEAP_USE_PKU_JIT_WRITE_PROTECT if (RwxMemoryWriteScope::IsSupported()) { // If PKU machinery is available then use it instead of conventional // mprotect. write_protect_code_memory_ = false; } #endif // V8_HEAP_USE_PKU_JIT_WRITE_PROTECT if (new_space()) { minor_gc_job_.reset(new MinorGCJob(this)); minor_gc_task_observer_.reset(new ScheduleMinorGCTaskObserver(this)); } if (v8_flags.stress_marking > 0) { stress_marking_percentage_ = NextStressMarkingLimit(); } if (IsStressingScavenge()) { stress_scavenge_observer_ = new StressScavengeObserver(this); allocator()->new_space_allocator()->AddAllocationObserver( stress_scavenge_observer_); } if (v8_flags.memory_balancer) { mb_.reset(new MemoryBalancer(this, startup_time)); } } void Heap::InitializeHashSeed() { DCHECK(!deserialization_complete_); uint64_t new_hash_seed; if (v8_flags.hash_seed == 0) { int64_t rnd = isolate()->random_number_generator()->NextInt64(); new_hash_seed = static_cast<uint64_t>(rnd); } else { new_hash_seed = static_cast<uint64_t>(v8_flags.hash_seed); } ReadOnlyRoots(this).hash_seed()->copy_in( 0, reinterpret_cast<uint8_t*>(&new_hash_seed), kInt64Size); } std::shared_ptr<v8::TaskRunner> Heap::GetForegroundTaskRunner() const { return task_runner_; } // static void Heap::InitializeOncePerProcess() { #ifdef V8_ENABLE_ALLOCATION_TIMEOUT HeapAllocator::InitializeOncePerProcess(); #endif MemoryAllocator::InitializeOncePerProcess(); if (v8_flags.predictable) { ::heap::base::WorklistBase::EnforcePredictableOrder(); } } void Heap::PrintMaxMarkingLimitReached() { PrintF("\n### Maximum marking limit reached = %.02lf\n", max_marking_limit_reached_); } void Heap::PrintMaxNewSpaceSizeReached() { PrintF("\n### Maximum new space size reached = %.02lf\n", stress_scavenge_observer_->MaxNewSpaceSizeReached()); } int Heap::NextStressMarkingLimit() { return isolate()->fuzzer_rng()->NextInt(v8_flags.stress_marking + 1); } void Heap::WeakenDescriptorArrays( GlobalHandleVector<DescriptorArray> strong_descriptor_arrays) { if (incremental_marking()->IsMajorMarking()) { // During incremental/concurrent marking regular DescriptorArray objects are // treated with custom weakness. This weakness depends on // DescriptorArray::raw_gc_state() which is not set up properly upon // deserialization. The strong arrays are transitioned to weak ones at the // end of the GC. mark_compact_collector()->RecordStrongDescriptorArraysForWeakening( std::move(strong_descriptor_arrays)); return; } // No GC is running, weaken the arrays right away. DisallowGarbageCollection no_gc; Tagged<Map> descriptor_array_map = ReadOnlyRoots(isolate()).descriptor_array_map(); for (auto it = strong_descriptor_arrays.begin(); it != strong_descriptor_arrays.end(); ++it) { Tagged<DescriptorArray> array = it.raw(); DCHECK(IsStrongDescriptorArray(array)); array->set_map_safe_transition_no_write_barrier(descriptor_array_map); DCHECK_EQ(array->raw_gc_state(kRelaxedLoad), 0); } } void Heap::NotifyDeserializationComplete() { PagedSpaceIterator spaces(this); for (PagedSpace* s = spaces.Next(); s != nullptr; s = spaces.Next()) { // Shared space is used concurrently and cannot be shrunk. if (s->identity() == SHARED_SPACE) continue; if (isolate()->snapshot_available()) s->ShrinkImmortalImmovablePages(); #ifdef DEBUG // All pages right after bootstrapping must be marked as never-evacuate. for (Page* p : *s) { DCHECK(p->NeverEvacuate()); } #endif // DEBUG } if (v8_flags.stress_concurrent_allocation) { stress_concurrent_allocation_observer_.reset( new StressConcurrentAllocationObserver(this)); AddAllocationObserversToAllSpaces( stress_concurrent_allocation_observer_.get(), stress_concurrent_allocation_observer_.get()); need_to_remove_stress_concurrent_allocation_observer_ = true; } // Deserialization will never create objects in new space. DCHECK_IMPLIES(new_space(), new_space()->Size() == 0); DCHECK_IMPLIES(new_lo_space(), new_lo_space()->Size() == 0); deserialization_complete_ = true; } void Heap::NotifyBootstrapComplete() { // This function is invoked for each native context creation. We are // interested only in the first native context. if (old_generation_capacity_after_bootstrap_ == 0) { old_generation_capacity_after_bootstrap_ = OldGenerationCapacity(); } } void Heap::NotifyOldGenerationExpansion(AllocationSpace space, MemoryChunk* chunk) { // Do the same thing we would have done for background expansion. NotifyOldGenerationExpansionBackground(space, chunk); const size_t kMemoryReducerActivationThreshold = 1 * MB; if (memory_reducer() != nullptr && old_generation_capacity_after_bootstrap_ && ms_count_ == 0 && OldGenerationCapacity() >= old_generation_capacity_after_bootstrap_ + kMemoryReducerActivationThreshold && v8_flags.memory_reducer_for_small_heaps) { memory_reducer()->NotifyPossibleGarbage(); } } void Heap::NotifyOldGenerationExpansionBackground(AllocationSpace space, MemoryChunk* chunk) { // Pages created during bootstrapping may contain immortal immovable objects. if (!deserialization_complete()) { DCHECK_NE(NEW_SPACE, chunk->owner()->identity()); chunk->MarkNeverEvacuate(); } if (IsAnyCodeSpace(space)) { isolate()->AddCodeMemoryChunk(chunk); } } void Heap::SetEmbedderRootsHandler(EmbedderRootsHandler* handler) { embedder_roots_handler_ = handler; } EmbedderRootsHandler* Heap::GetEmbedderRootsHandler() const { return embedder_roots_handler_; } void Heap::AttachCppHeap(v8::CppHeap* cpp_heap) { CHECK(!incremental_marking()->IsMarking()); CppHeap::From(cpp_heap)->AttachIsolate(isolate()); cpp_heap_ = cpp_heap; } void Heap::DetachCppHeap() { CppHeap::From(cpp_heap_)->DetachIsolate(); cpp_heap_ = nullptr; } const cppgc::EmbedderStackState* Heap::overriden_stack_state() const { const auto* cpp_heap = CppHeap::From(cpp_heap_); return cpp_heap ? cpp_heap->override_stack_state() : nullptr; } void Heap::SetStackStart(void* stack_start) { stack().SetStackStart(stack_start); } ::heap::base::Stack& Heap::stack() { return isolate_->stack(); } void Heap::StartTearDown() { // Finish any ongoing sweeping to avoid stray background tasks still accessing // the heap during teardown. CompleteSweepingFull(); memory_allocator()->unmapper()->EnsureUnmappingCompleted(); if (v8_flags.concurrent_marking) { concurrent_marking()->Pause(); } SetGCState(TEAR_DOWN); // Background threads may allocate and block until GC is performed. However // this might never happen when the main thread tries to quit and doesn't // process the event queue anymore. Avoid this deadlock by allowing all // allocations after tear down was requested to make sure all background // threads finish. collection_barrier_->NotifyShutdownRequested(); // Main thread isn't going to allocate anymore. main_thread_local_heap()->FreeLinearAllocationArea(); FreeMainThreadSharedLinearAllocationAreas(); } void Heap::TearDownWithSharedHeap() { DCHECK_EQ(gc_state(), TEAR_DOWN); // Assert that there are no background threads left and no executable memory // chunks are unprotected. safepoint()->AssertMainThreadIsOnlyThread(); // Now that all threads are stopped, verify the heap before tearing down the // heap/isolate. HeapVerifier::VerifyHeapIfEnabled(this); // Might use the external pointer which might be in the shared heap. external_string_table_.TearDown(); // Publish shared object worklist for the main thread if incremental marking // is enabled for the shared heap. main_thread_local_heap()->marking_barrier()->PublishSharedIfNeeded(); } void Heap::TearDown() { DCHECK_EQ(gc_state(), TEAR_DOWN); // Assert that there are no background threads left and no executable memory // chunks are unprotected. safepoint()->AssertMainThreadIsOnlyThread(); DCHECK(concurrent_marking()->IsStopped()); // It's too late for Heap::Verify() here, as parts of the Isolate are // already gone by the time this is called. UpdateMaximumCommitted(); if (v8_flags.fuzzer_gc_analysis) { if (v8_flags.stress_marking > 0) { PrintMaxMarkingLimitReached(); } if (IsStressingScavenge()) { PrintMaxNewSpaceSizeReached(); } } minor_gc_task_observer_.reset(); minor_gc_job_.reset(); if (need_to_remove_stress_concurrent_allocation_observer_) { RemoveAllocationObserversFromAllSpaces( stress_concurrent_allocation_observer_.get(), stress_concurrent_allocation_observer_.get()); } stress_concurrent_allocation_observer_.reset(); if (IsStressingScavenge()) { allocator()->new_space_allocator()->RemoveAllocationObserver( stress_scavenge_observer_); delete stress_scavenge_observer_; stress_scavenge_observer_ = nullptr; } if (mark_compact_collector_) { mark_compact_collector_->TearDown(); mark_compact_collector_.reset(); } if (minor_mark_sweep_collector_) { minor_mark_sweep_collector_->TearDown(); minor_mark_sweep_collector_.reset(); } sweeper_->TearDown(); sweeper_.reset(); scavenger_collector_.reset(); array_buffer_sweeper_.reset(); incremental_marking_.reset(); concurrent_marking_.reset(); gc_idle_time_handler_.reset(); memory_measurement_.reset(); allocation_tracker_for_debugging_.reset(); ephemeron_remembered_set_.reset(); if (memory_reducer_ != nullptr) { memory_reducer_->TearDown(); memory_reducer_.reset(); } live_object_stats_.reset(); dead_object_stats_.reset(); embedder_roots_handler_ = nullptr; if (cpp_heap_) { CppHeap::From(cpp_heap_)->DetachIsolate(); cpp_heap_ = nullptr; } tracer_.reset(); pretenuring_handler_.reset(); shared_space_allocator_.reset(); { CodePageHeaderModificationScope rwx_write_scope( "Deletion of CODE_SPACE and CODE_LO_SPACE requires write access to " "Code page headers"); for (int i = FIRST_MUTABLE_SPACE; i <= LAST_MUTABLE_SPACE; i++) { space_[i].reset(); } } isolate()->read_only_heap()->OnHeapTearDown(this); read_only_space_ = nullptr; memory_allocator()->TearDown(); StrongRootsEntry* next = nullptr; for (StrongRootsEntry* current = strong_roots_head_; current; current = next) { next = current->next; delete current; } strong_roots_head_ = nullptr; memory_allocator_.reset(); } void Heap::AddGCPrologueCallback(v8::Isolate::GCCallbackWithData callback, GCType gc_type, void* data) { gc_prologue_callbacks_.Add( callback, reinterpret_cast<v8::Isolate*>(isolate()), gc_type, data); } void Heap::RemoveGCPrologueCallback(v8::Isolate::GCCallbackWithData callback, void* data) { gc_prologue_callbacks_.Remove(callback, data); } void Heap::AddGCEpilogueCallback(v8::Isolate::GCCallbackWithData callback, GCType gc_type, void* data) { gc_epilogue_callbacks_.Add( callback, reinterpret_cast<v8::Isolate*>(isolate()), gc_type, data); } void Heap::RemoveGCEpilogueCallback(v8::Isolate::GCCallbackWithData callback, void* data) { gc_epilogue_callbacks_.Remove(callback, data); } namespace { Handle<WeakArrayList> CompactWeakArrayList(Heap* heap, Handle<WeakArrayList> array, AllocationType allocation) { if (array->length() == 0) { return array; } int new_length = array->CountLiveWeakReferences(); if (new_length == array->length()) { return array; } Handle<WeakArrayList> new_array = WeakArrayList::EnsureSpace( heap->isolate(), handle(ReadOnlyRoots(heap).empty_weak_array_list(), heap->isolate()), new_length, allocation); // Allocation might have caused GC and turned some of the elements into // cleared weak heap objects. Count the number of live references again and // fill in the new array. int copy_to = 0; for (int i = 0; i < array->length(); i++) { MaybeObject element = array->Get(i); if (element->IsCleared()) continue; new_array->Set(copy_to++, element); } new_array->set_length(copy_to); return new_array; } } // anonymous namespace void Heap::CompactWeakArrayLists() { // Find known PrototypeUsers and compact them. std::vector<Handle<PrototypeInfo>> prototype_infos; { HeapObjectIterator iterator(this); for (Tagged<HeapObject> o = iterator.Next(); !o.is_null(); o = iterator.Next()) { if (IsPrototypeInfo(*o)) { Tagged<PrototypeInfo> prototype_info = Tagged<PrototypeInfo>::cast(o); if (IsWeakArrayList(prototype_info->prototype_users())) { prototype_infos.emplace_back(handle(prototype_info, isolate())); } } } } for (auto& prototype_info : prototype_infos) { Handle<WeakArrayList> array( WeakArrayList::cast(prototype_info->prototype_users()), isolate()); DCHECK(InOldSpace(*array) || *array == ReadOnlyRoots(this).empty_weak_array_list()); Tagged<WeakArrayList> new_array = PrototypeUsers::Compact( array, this, JSObject::PrototypeRegistryCompactionCallback, AllocationType::kOld); prototype_info->set_prototype_users(new_array); } // Find known WeakArrayLists and compact them. Handle<WeakArrayList> scripts(script_list(), isolate()); DCHECK_IMPLIES(!V8_ENABLE_THIRD_PARTY_HEAP_BOOL, InOldSpace(*scripts)); scripts = CompactWeakArrayList(this, scripts, AllocationType::kOld); set_script_list(*scripts); } void Heap::AddRetainedMaps(Handle<NativeContext> context, GlobalHandleVector<Map> maps) { Handle<WeakArrayList> array(WeakArrayList::cast(context->retained_maps()), isolate()); if (array->IsFull()) { CompactRetainedMaps(*array); } int cur_length = array->length(); array = WeakArrayList::EnsureSpace( isolate(), array, cur_length + static_cast<int>(maps.size()) * 2); if (*array != context->retained_maps()) { context->set_retained_maps(*array); } { DisallowGarbageCollection no_gc; Tagged<WeakArrayList> raw_array = *array; for (Handle<Map> map : maps) { DCHECK(!map->InAnySharedSpace()); if (map->is_in_retained_map_list()) { continue; } raw_array->Set(cur_length, HeapObjectReference::Weak(*map)); raw_array->Set(cur_length + 1, Smi::FromInt(v8_flags.retain_maps_for_n_gc)); cur_length += 2; raw_array->set_length(cur_length); map->set_is_in_retained_map_list(true); } } } void Heap::CompactRetainedMaps(Tagged<WeakArrayList> retained_maps) { int length = retained_maps->length(); int new_length = 0; // This loop compacts the array by removing cleared weak cells. for (int i = 0; i < length; i += 2) { MaybeObject maybe_object = retained_maps->Get(i); if (maybe_object->IsCleared()) { continue; } DCHECK(maybe_object->IsWeak()); MaybeObject age = retained_maps->Get(i + 1); DCHECK(IsSmi(age)); if (i != new_length) { retained_maps->Set(new_length, maybe_object); retained_maps->Set(new_length + 1, age); } new_length += 2; } Tagged<HeapObject> undefined = ReadOnlyRoots(this).undefined_value(); for (int i = new_length; i < length; i++) { retained_maps->Set(i, HeapObjectReference::Strong(undefined)); } if (new_length != length) retained_maps->set_length(new_length); } void Heap::FatalProcessOutOfMemory(const char* location) { V8::FatalProcessOutOfMemory(isolate(), location, V8::kHeapOOM); } #ifdef DEBUG class PrintHandleVisitor : public RootVisitor { public: void VisitRootPointers(Root root, const char* description, FullObjectSlot start, FullObjectSlot end) override { for (FullObjectSlot p = start; p < end; ++p) PrintF(" handle %p to %p\n", p.ToVoidPtr(), reinterpret_cast<void*>((*p).ptr())); } }; void Heap::PrintHandles() { PrintF("Handles:\n"); PrintHandleVisitor v; isolate_->handle_scope_implementer()->Iterate(&v); } #endif class CheckHandleCountVisitor : public RootVisitor { public: CheckHandleCountVisitor() : handle_count_(0) {} ~CheckHandleCountVisitor() override { CHECK_GT(HandleScope::kCheckHandleThreshold, handle_count_); } void VisitRootPointers(Root root, const char* description, FullObjectSlot start, FullObjectSlot end) override { handle_count_ += end - start; } private: ptrdiff_t handle_count_; }; void Heap::CheckHandleCount() { CheckHandleCountVisitor v; isolate_->handle_scope_implementer()->Iterate(&v); } void Heap::ClearRecordedSlot(Tagged<HeapObject> object, ObjectSlot slot) { #ifndef V8_DISABLE_WRITE_BARRIERS DCHECK(!IsLargeObject(object)); Page* page = Page::FromAddress(slot.address()); if (!page->InYoungGeneration()) { DCHECK_EQ(page->owner_identity(), OLD_SPACE); // We only need to remove that slot when sweeping is still in progress. // Because in that case, a concurrent sweeper could find that memory and // reuse it for subsequent allocations. The runtime could install another // property at this slot but without unboxed doubles this will always be a // tagged pointer. if (!page->SweepingDone()) { // No need to update old-to-old here since that remembered set is gone // after a full GC and not re-recorded until sweeping is finished. RememberedSet<OLD_TO_NEW>::Remove(page, slot.address()); RememberedSet<OLD_TO_NEW_BACKGROUND>::Remove(page, slot.address()); RememberedSet<OLD_TO_SHARED>::Remove(page, slot.address()); } } #endif } // static int Heap::InsertIntoRememberedSetFromCode(MemoryChunk* chunk, Address slot) { // This is called during runtime by a builtin, therefore it is run in the main // thread. DCHECK_NULL(LocalHeap::Current()); RememberedSet<OLD_TO_NEW>::Insert<AccessMode::NON_ATOMIC>(chunk, slot); return 0; } #ifdef DEBUG void Heap::VerifySlotRangeHasNoRecordedSlots(Address start, Address end) { #ifndef V8_DISABLE_WRITE_BARRIERS Page* page = Page::FromAddress(start); RememberedSet<OLD_TO_NEW>::CheckNoneInRange(page, start, end); RememberedSet<OLD_TO_NEW_BACKGROUND>::CheckNoneInRange(page, start, end); RememberedSet<OLD_TO_SHARED>::CheckNoneInRange(page, start, end); #endif } #endif void Heap::ClearRecordedSlotRange(Address start, Address end) { #ifndef V8_DISABLE_WRITE_BARRIERS Page* page = Page::FromAddress(start); DCHECK(!page->IsLargePage()); if (!page->InYoungGeneration()) { // This method will be invoked on objects in shared space for // internalization and string forwarding during GC. DCHECK(page->owner_identity() == OLD_SPACE || page->owner_identity() == SHARED_SPACE); if (!page->SweepingDone()) { RememberedSet<OLD_TO_NEW>::RemoveRange(page, start, end, SlotSet::KEEP_EMPTY_BUCKETS); RememberedSet<OLD_TO_NEW_BACKGROUND>::RemoveRange( page, start, end, SlotSet::KEEP_EMPTY_BUCKETS); RememberedSet<OLD_TO_SHARED>::RemoveRange(page, start, end, SlotSet::KEEP_EMPTY_BUCKETS); } } #endif } PagedSpace* PagedSpaceIterator::Next() { DCHECK_GE(counter_, FIRST_GROWABLE_PAGED_SPACE); while (counter_ <= LAST_GROWABLE_PAGED_SPACE) { PagedSpace* space = heap_->paged_space(counter_++); if (space) return space; } return nullptr; } class HeapObjectsFilter { public: virtual ~HeapObjectsFilter() = default; virtual bool SkipObject(Tagged<HeapObject> object) = 0; }; class UnreachableObjectsFilter : public HeapObjectsFilter { public: explicit UnreachableObjectsFilter(Heap* heap) : heap_(heap) { MarkReachableObjects(); } ~UnreachableObjectsFilter() override = default; bool SkipObject(Tagged<HeapObject> object) override { // Space object iterators should skip free space or filler objects. DCHECK(!IsFreeSpaceOrFiller(object)); // If the bucket corresponding to the object's chunk does not exist, or the // object is not found in the bucket, return true. BasicMemoryChunk* chunk = BasicMemoryChunk::FromHeapObject(object); if (reachable_.count(chunk) == 0) return true; return reachable_[chunk]->count(object) == 0; } private: using BucketType = std::unordered_set<Tagged<HeapObject>, Object::Hasher>; bool MarkAsReachable(Tagged<HeapObject> object) { // If the bucket corresponding to the object's chunk does not exist, then // create an empty bucket. BasicMemoryChunk* chunk = BasicMemoryChunk::FromHeapObject(object); if (reachable_.count(chunk) == 0) { reachable_[chunk] = std::make_unique<BucketType>(); } // Insert the object if not present; return whether it was indeed inserted. if (reachable_[chunk]->count(object)) return false; reachable_[chunk]->insert(object); return true; } class MarkingVisitor : public ObjectVisitorWithCageBases, public RootVisitor { public: explicit MarkingVisitor(UnreachableObjectsFilter* filter) : ObjectVisitorWithCageBases(filter->heap_), filter_(filter) {} void VisitMapPointer(Tagged<HeapObject> object) override { MarkHeapObject(Map::unchecked_cast(object->map(cage_base()))); } void VisitPointers(Tagged<HeapObject> host, ObjectSlot start, ObjectSlot end) override { MarkPointers(MaybeObjectSlot(start), MaybeObjectSlot(end)); } void VisitPointers(Tagged<HeapObject> host, MaybeObjectSlot start, MaybeObjectSlot end) final { MarkPointers(start, end); } void VisitInstructionStreamPointer(Tagged<Code> host, InstructionStreamSlot slot) override { Tagged<Object> maybe_code = slot.load(code_cage_base()); Tagged<HeapObject> heap_object; if (maybe_code.GetHeapObject(&heap_object)) { MarkHeapObject(heap_object); } } void VisitCodeTarget(Tagged<InstructionStream> host, RelocInfo* rinfo) final { Tagged<InstructionStream> target = InstructionStream::FromTargetAddress(rinfo->target_address()); MarkHeapObject(target); } void VisitEmbeddedPointer(Tagged<InstructionStream> host, RelocInfo* rinfo) final { MarkHeapObject(rinfo->target_object(cage_base())); } void VisitRootPointers(Root root, const char* description, FullObjectSlot start, FullObjectSlot end) override { MarkPointersImpl(start, end); } void VisitRootPointers(Root root, const char* description, OffHeapObjectSlot start, OffHeapObjectSlot end) override { MarkPointersImpl(start, end); } void TransitiveClosure() { while (!marking_stack_.empty()) { Tagged<HeapObject> obj = marking_stack_.back(); marking_stack_.pop_back(); obj->Iterate(cage_base(), this); } } private: void MarkPointers(MaybeObjectSlot start, MaybeObjectSlot end) { MarkPointersImpl(start, end); } template <typename TSlot> V8_INLINE void MarkPointersImpl(TSlot start, TSlot end) { // Treat weak references as strong. for (TSlot p = start; p < end; ++p) { typename TSlot::TObject object = p.load(cage_base()); Tagged<HeapObject> heap_object; if (object.GetHeapObject(&heap_object)) { MarkHeapObject(heap_object); } } } V8_INLINE void MarkHeapObject(Tagged<HeapObject> heap_object) { if (filter_->MarkAsReachable(heap_object)) { marking_stack_.push_back(heap_object); } } UnreachableObjectsFilter* filter_; std::vector<Tagged<HeapObject>> marking_stack_; }; friend class MarkingVisitor; void MarkReachableObjects() { MarkingVisitor visitor(this); heap_->stack().SetMarkerIfNeededAndCallback( [this, &visitor]() { heap_->IterateRoots(&visitor, {}); }); visitor.TransitiveClosure(); } Heap* heap_; DISALLOW_GARBAGE_COLLECTION(no_gc_) std::unordered_map<BasicMemoryChunk*, std::unique_ptr<BucketType>, base::hash<BasicMemoryChunk*>> reachable_; }; HeapObjectIterator::HeapObjectIterator( Heap* heap, HeapObjectIterator::HeapObjectsFiltering filtering) : HeapObjectIterator( heap, new SafepointScope(heap->isolate(), heap->isolate()->is_shared_space_isolate() ? SafepointKind::kGlobal : SafepointKind::kIsolate), filtering) {} HeapObjectIterator::HeapObjectIterator(Heap* heap, const SafepointScope& safepoint_scope, HeapObjectsFiltering filtering) : HeapObjectIterator(heap, nullptr, filtering) {} HeapObjectIterator::HeapObjectIterator( Heap* heap, SafepointScope* safepoint_scope_or_nullptr, HeapObjectsFiltering filtering) : heap_(heap), safepoint_scope_(safepoint_scope_or_nullptr), space_iterator_(heap_) { heap_->MakeHeapIterable(); switch (filtering) { case kFilterUnreachable: filter_ = std::make_unique<UnreachableObjectsFilter>(heap_); break; default: break; } // Start the iteration. CHECK(space_iterator_.HasNext()); object_iterator_ = space_iterator_.Next()->GetObjectIterator(heap_); if (V8_ENABLE_THIRD_PARTY_HEAP_BOOL) heap_->tp_heap_->ResetIterator(); } HeapObjectIterator::~HeapObjectIterator() = default; Tagged<HeapObject> HeapObjectIterator::Next() { if (!filter_) return NextObject(); Tagged<HeapObject> obj = NextObject(); while (!obj.is_null() && filter_->SkipObject(obj)) obj = NextObject(); return obj; } Tagged<HeapObject> HeapObjectIterator::NextObject() { if (V8_ENABLE_THIRD_PARTY_HEAP_BOOL) return heap_->tp_heap_->NextObject(); // No iterator means we are done. if (!object_iterator_) return Tagged<HeapObject>(); Tagged<HeapObject> obj = object_iterator_->Next(); // If the current iterator has more objects we are fine. if (!obj.is_null()) return obj; // Go though the spaces looking for one that has objects. while (space_iterator_.HasNext()) { object_iterator_ = space_iterator_.Next()->GetObjectIterator(heap_); obj = object_iterator_->Next(); if (!obj.is_null()) return obj; } // Done with the last space. object_iterator_.reset(); return Tagged<HeapObject>(); } void Heap::UpdateTotalGCTime(base::TimeDelta duration) { total_gc_time_ms_ += duration; } void Heap::ExternalStringTable::CleanUpYoung() { int last = 0; Isolate* isolate = heap_->isolate(); for (size_t i = 0; i < young_strings_.size(); ++i) { Tagged<Object> o = young_strings_[i]; if (IsTheHole(o, isolate)) { continue; } // The real external string is already in one of these vectors and was or // will be processed. Re-processing it will add a duplicate to the vector. if (IsThinString(o)) continue; DCHECK(IsExternalString(o)); if (InYoungGeneration(o)) { young_strings_[last++] = o; } else { old_strings_.push_back(o); } } young_strings_.resize(last); } void Heap::ExternalStringTable::CleanUpAll() { CleanUpYoung(); int last = 0; Isolate* isolate = heap_->isolate(); for (size_t i = 0; i < old_strings_.size(); ++i) { Tagged<Object> o = old_strings_[i]; if (IsTheHole(o, isolate)) { continue; } // The real external string is already in one of these vectors and was or // will be processed. Re-processing it will add a duplicate to the vector. if (IsThinString(o)) continue; DCHECK(IsExternalString(o)); DCHECK(!InYoungGeneration(o)); old_strings_[last++] = o; } old_strings_.resize(last); if (v8_flags.verify_heap && !v8_flags.enable_third_party_heap) { Verify(); } } void Heap::ExternalStringTable::TearDown() { for (size_t i = 0; i < young_strings_.size(); ++i) { Tagged<Object> o = young_strings_[i]; // Dont finalize thin strings. if (IsThinString(o)) continue; heap_->FinalizeExternalString(ExternalString::cast(o)); } young_strings_.clear(); for (size_t i = 0; i < old_strings_.size(); ++i) { Tagged<Object> o = old_strings_[i]; // Dont finalize thin strings. if (IsThinString(o)) continue; heap_->FinalizeExternalString(ExternalString::cast(o)); } old_strings_.clear(); } void Heap::RememberUnmappedPage(Address page, bool compacted) { // Tag the page pointer to make it findable in the dump file. if (compacted) { page ^= 0xC1EAD & (Page::kPageSize - 1); // Cleared. } else { page ^= 0x1D1ED & (Page::kPageSize - 1); // I died. } remembered_unmapped_pages_[remembered_unmapped_pages_index_] = page; remembered_unmapped_pages_index_++; remembered_unmapped_pages_index_ %= kRememberedUnmappedPages; } size_t Heap::YoungArrayBufferBytes() { return array_buffer_sweeper()->YoungBytes(); } size_t Heap::OldArrayBufferBytes() { return array_buffer_sweeper()->OldBytes(); } StrongRootsEntry* Heap::RegisterStrongRoots(const char* label, FullObjectSlot start, FullObjectSlot end) { // We're either on the main thread, or in a background thread with an active // local heap. DCHECK(isolate()->CurrentLocalHeap()->IsRunning()); base::MutexGuard guard(&strong_roots_mutex_); StrongRootsEntry* entry = new StrongRootsEntry(label); entry->start = start; entry->end = end; entry->prev = nullptr; entry->next = strong_roots_head_; if (strong_roots_head_) { DCHECK_NULL(strong_roots_head_->prev); strong_roots_head_->prev = entry; } strong_roots_head_ = entry; return entry; } void Heap::UpdateStrongRoots(StrongRootsEntry* entry, FullObjectSlot start, FullObjectSlot end) { entry->start = start; entry->end = end; } void Heap::UnregisterStrongRoots(StrongRootsEntry* entry) { // We're either on the main thread, or in a background thread with an active // local heap. DCHECK(isolate()->CurrentLocalHeap()->IsRunning()); base::MutexGuard guard(&strong_roots_mutex_); StrongRootsEntry* prev = entry->prev; StrongRootsEntry* next = entry->next; if (prev) prev->next = next; if (next) next->prev = prev; if (strong_roots_head_ == entry) { DCHECK_NULL(prev); strong_roots_head_ = next; } delete entry; } void Heap::SetBuiltinsConstantsTable(Tagged<FixedArray> cache) { set_builtins_constants_table(cache); } void Heap::SetDetachedContexts(Tagged<WeakArrayList> detached_contexts) { set_detached_contexts(detached_contexts); } void Heap::PostFinalizationRegistryCleanupTaskIfNeeded() { // Only one cleanup task is posted at a time. if (!HasDirtyJSFinalizationRegistries() || is_finalization_registry_cleanup_task_posted_) { return; } auto task = std::make_unique<FinalizationRegistryCleanupTask>(this); task_runner_->PostNonNestableTask(std::move(task)); is_finalization_registry_cleanup_task_posted_ = true; } void Heap::EnqueueDirtyJSFinalizationRegistry( Tagged<JSFinalizationRegistry> finalization_registry, std::function<void(Tagged<HeapObject> object, ObjectSlot slot, Tagged<Object> target)> gc_notify_updated_slot) { // Add a FinalizationRegistry to the tail of the dirty list. DCHECK(!HasDirtyJSFinalizationRegistries() || IsJSFinalizationRegistry(dirty_js_finalization_registries_list())); DCHECK(IsUndefined(finalization_registry->next_dirty(), isolate())); DCHECK(!finalization_registry->scheduled_for_cleanup()); finalization_registry->set_scheduled_for_cleanup(true); if (IsUndefined(dirty_js_finalization_registries_list_tail(), isolate())) { DCHECK(IsUndefined(dirty_js_finalization_registries_list(), isolate())); set_dirty_js_finalization_registries_list(finalization_registry); // dirty_js_finalization_registries_list_ is rescanned by // ProcessWeakListRoots. } else { Tagged<JSFinalizationRegistry> tail = Tagged<JSFinalizationRegistry>::cast( dirty_js_finalization_registries_list_tail()); tail->set_next_dirty(finalization_registry); gc_notify_updated_slot( tail, tail->RawField(JSFinalizationRegistry::kNextDirtyOffset), finalization_registry); } set_dirty_js_finalization_registries_list_tail(finalization_registry); // dirty_js_finalization_registries_list_tail_ is rescanned by // ProcessWeakListRoots. } MaybeHandle<JSFinalizationRegistry> Heap::DequeueDirtyJSFinalizationRegistry() { // Take a FinalizationRegistry from the head of the dirty list for fairness. if (HasDirtyJSFinalizationRegistries()) { Handle<JSFinalizationRegistry> head( JSFinalizationRegistry::cast(dirty_js_finalization_registries_list()), isolate()); set_dirty_js_finalization_registries_list(head->next_dirty()); head->set_next_dirty(ReadOnlyRoots(this).undefined_value()); if (*head == dirty_js_finalization_registries_list_tail()) { set_dirty_js_finalization_registries_list_tail( ReadOnlyRoots(this).undefined_value()); } return head; } return {}; } void Heap::RemoveDirtyFinalizationRegistriesOnContext( Tagged<NativeContext> context) { DisallowGarbageCollection no_gc; Isolate* isolate = this->isolate(); Tagged<Object> prev = ReadOnlyRoots(isolate).undefined_value(); Tagged<Object> current = dirty_js_finalization_registries_list(); while (!IsUndefined(current, isolate)) { Tagged<JSFinalizationRegistry> finalization_registry = Tagged<JSFinalizationRegistry>::cast(current); if (finalization_registry->native_context() == context) { if (IsUndefined(prev, isolate)) { set_dirty_js_finalization_registries_list( finalization_registry->next_dirty()); } else { Tagged<JSFinalizationRegistry>::cast(prev)->set_next_dirty( finalization_registry->next_dirty()); } finalization_registry->set_scheduled_for_cleanup(false); current = finalization_registry->next_dirty(); finalization_registry->set_next_dirty( ReadOnlyRoots(isolate).undefined_value()); } else { prev = current; current = finalization_registry->next_dirty(); } } set_dirty_js_finalization_registries_list_tail(prev); } void Heap::KeepDuringJob(Handle<HeapObject> target) { DCHECK(IsUndefined(weak_refs_keep_during_job()) || IsOrderedHashSet(weak_refs_keep_during_job())); Handle<OrderedHashSet> table; if (IsUndefined(weak_refs_keep_during_job(), isolate())) { table = isolate()->factory()->NewOrderedHashSet(); } else { table = handle(OrderedHashSet::cast(weak_refs_keep_during_job()), isolate()); } table = OrderedHashSet::Add(isolate(), table, target).ToHandleChecked(); set_weak_refs_keep_during_job(*table); } void Heap::ClearKeptObjects() { set_weak_refs_keep_during_job(ReadOnlyRoots(isolate()).undefined_value()); } size_t Heap::NumberOfTrackedHeapObjectTypes() { return ObjectStats::OBJECT_STATS_COUNT; } size_t Heap::ObjectCountAtLastGC(size_t index) { if (live_object_stats_ == nullptr || index >= ObjectStats::OBJECT_STATS_COUNT) return 0; return live_object_stats_->object_count_last_gc(index); } size_t Heap::ObjectSizeAtLastGC(size_t index) { if (live_object_stats_ == nullptr || index >= ObjectStats::OBJECT_STATS_COUNT) return 0; return live_object_stats_->object_size_last_gc(index); } bool Heap::GetObjectTypeName(size_t index, const char** object_type, const char** object_sub_type) { if (index >= ObjectStats::OBJECT_STATS_COUNT) return false; switch (static_cast<int>(index)) { #define COMPARE_AND_RETURN_NAME(name) \ case name: \ *object_type = #name; \ *object_sub_type = ""; \ return true; INSTANCE_TYPE_LIST(COMPARE_AND_RETURN_NAME) #undef COMPARE_AND_RETURN_NAME #define COMPARE_AND_RETURN_NAME(name) \ case ObjectStats::FIRST_VIRTUAL_TYPE + ObjectStats::name: \ *object_type = #name; \ *object_sub_type = ""; \ return true; VIRTUAL_INSTANCE_TYPE_LIST(COMPARE_AND_RETURN_NAME) #undef COMPARE_AND_RETURN_NAME } return false; } size_t Heap::NumberOfNativeContexts() { int result = 0; Tagged<Object> context = native_contexts_list(); while (!IsUndefined(context, isolate())) { ++result; Tagged<Context> native_context = Tagged<Context>::cast(context); context = native_context->next_context_link(); } return result; } std::vector<Handle<NativeContext>> Heap::FindAllNativeContexts() { std::vector<Handle<NativeContext>> result; Tagged<Object> context = native_contexts_list(); while (!IsUndefined(context, isolate())) { Tagged<NativeContext> native_context = Tagged<NativeContext>::cast(context); result.push_back(handle(native_context, isolate())); context = native_context->next_context_link(); } return result; } std::vector<Tagged<WeakArrayList>> Heap::FindAllRetainedMaps() { std::vector<Tagged<WeakArrayList>> result; Tagged<Object> context = native_contexts_list(); while (!IsUndefined(context, isolate())) { Tagged<NativeContext> native_context = Tagged<NativeContext>::cast(context); result.push_back(WeakArrayList::cast(native_context->retained_maps())); context = native_context->next_context_link(); } return result; } size_t Heap::NumberOfDetachedContexts() { // The detached_contexts() array has two entries per detached context. return detached_contexts()->length() / 2; } bool Heap::AllowedToBeMigrated(Tagged<Map> map, Tagged<HeapObject> obj, AllocationSpace dst) { // Object migration is governed by the following rules: // // 1) Objects in new-space can be migrated to the old space // that matches their target space or they stay in new-space. // 2) Objects in old-space stay in the same space when migrating. // 3) Fillers (two or more words) can migrate due to left-trimming of // fixed arrays in new-space or old space. // 4) Fillers (one word) can never migrate, they are skipped by // incremental marking explicitly to prevent invalid pattern. // // Since this function is used for debugging only, we do not place // asserts here, but check everything explicitly. if (map == ReadOnlyRoots(this).one_pointer_filler_map()) return false; InstanceType type = map->instance_type(); MemoryChunk* chunk = MemoryChunk::FromHeapObject(obj); AllocationSpace src = chunk->owner_identity(); switch (src) { case NEW_SPACE: return dst == NEW_SPACE || dst == OLD_SPACE; case OLD_SPACE: return dst == OLD_SPACE; case CODE_SPACE: return dst == CODE_SPACE && type == INSTRUCTION_STREAM_TYPE; case SHARED_SPACE: return dst == SHARED_SPACE; case TRUSTED_SPACE: return dst == TRUSTED_SPACE; case LO_SPACE: case CODE_LO_SPACE: case NEW_LO_SPACE: case SHARED_LO_SPACE: case TRUSTED_LO_SPACE: case RO_SPACE: return false; } UNREACHABLE(); } size_t Heap::EmbedderAllocationCounter() const { return cpp_heap_ ? CppHeap::From(cpp_heap_)->allocated_size() : 0; } void Heap::CreateObjectStats() { if (V8_LIKELY(!TracingFlags::is_gc_stats_enabled())) return; if (!live_object_stats_) { live_object_stats_.reset(new ObjectStats(this)); } if (!dead_object_stats_) { dead_object_stats_.reset(new ObjectStats(this)); } } Tagged<Map> Heap::GcSafeMapOfHeapObject(Tagged<HeapObject> object) { PtrComprCageBase cage_base(isolate()); MapWord map_word = object->map_word(cage_base, kRelaxedLoad); if (map_word.IsForwardingAddress()) { return map_word.ToForwardingAddress(object)->map(cage_base); } return map_word.ToMap(); } Tagged<GcSafeCode> Heap::GcSafeGetCodeFromInstructionStream( Tagged<HeapObject> instruction_stream, Address inner_pointer) { Tagged<InstructionStream> istream = InstructionStream::unchecked_cast(instruction_stream); DCHECK(!istream.is_null()); DCHECK(GcSafeInstructionStreamContains(istream, inner_pointer)); return GcSafeCode::unchecked_cast(istream->raw_code(kAcquireLoad)); } bool Heap::GcSafeInstructionStreamContains(Tagged<InstructionStream> istream, Address addr) { Tagged<Map> map = GcSafeMapOfHeapObject(istream); DCHECK_EQ(map, ReadOnlyRoots(this).instruction_stream_map()); Builtin builtin_lookup_result = OffHeapInstructionStream::TryLookupCode(isolate(), addr); if (Builtins::IsBuiltinId(builtin_lookup_result)) { // Builtins don't have InstructionStream objects. DCHECK(!Builtins::IsBuiltinId(istream->code(kAcquireLoad)->builtin_id())); return false; } Address start = istream.address(); Address end = start + istream->SizeFromMap(map); return start <= addr && addr < end; } base::Optional<Tagged<InstructionStream>> Heap::GcSafeTryFindInstructionStreamForInnerPointer(Address inner_pointer) { if (V8_ENABLE_THIRD_PARTY_HEAP_BOOL) { Address start = tp_heap_->GetObjectFromInnerPointer(inner_pointer); return InstructionStream::unchecked_cast(HeapObject::FromAddress(start)); } base::Optional<Address> start = ThreadIsolation::StartOfJitAllocationAt(inner_pointer); if (start.has_value()) { return InstructionStream::unchecked_cast(HeapObject::FromAddress(*start)); } return {}; } base::Optional<Tagged<GcSafeCode>> Heap::GcSafeTryFindCodeForInnerPointer( Address inner_pointer) { Builtin maybe_builtin = OffHeapInstructionStream::TryLookupCode(isolate(), inner_pointer); if (Builtins::IsBuiltinId(maybe_builtin)) { return GcSafeCode::cast(isolate()->builtins()->code(maybe_builtin)); } base::Optional<Tagged<InstructionStream>> maybe_istream = GcSafeTryFindInstructionStreamForInnerPointer(inner_pointer); if (!maybe_istream) return {}; return GcSafeGetCodeFromInstructionStream(*maybe_istream, inner_pointer); } Tagged<Code> Heap::FindCodeForInnerPointer(Address inner_pointer) { return GcSafeFindCodeForInnerPointer(inner_pointer)->UnsafeCastToCode(); } Tagged<GcSafeCode> Heap::GcSafeFindCodeForInnerPointer(Address inner_pointer) { base::Optional<Tagged<GcSafeCode>> maybe_code = GcSafeTryFindCodeForInnerPointer(inner_pointer); // Callers expect that the code object is found. CHECK(maybe_code.has_value()); return GcSafeCode::unchecked_cast(maybe_code.value()); } base::Optional<Tagged<Code>> Heap::TryFindCodeForInnerPointerForPrinting( Address inner_pointer) { if (InSpaceSlow(inner_pointer, i::CODE_SPACE) || InSpaceSlow(inner_pointer, i::CODE_LO_SPACE) || i::OffHeapInstructionStream::PcIsOffHeap(isolate(), inner_pointer)) { base::Optional<Tagged<GcSafeCode>> maybe_code = GcSafeTryFindCodeForInnerPointer(inner_pointer); if (maybe_code.has_value()) { return maybe_code.value()->UnsafeCastToCode(); } } return {}; } void Heap::CombinedGenerationalAndSharedBarrierSlow(Tagged<HeapObject> object, Address slot, Tagged<HeapObject> value) { MemoryChunk* value_chunk = MemoryChunk::FromHeapObject(value); if (value_chunk->InYoungGeneration()) { Heap::GenerationalBarrierSlow(object, slot, value); } else { DCHECK(value_chunk->InWritableSharedSpace()); DCHECK(!object->InWritableSharedSpace()); Heap::SharedHeapBarrierSlow(object, slot); } } void Heap::CombinedGenerationalAndSharedEphemeronBarrierSlow( Tagged<EphemeronHashTable> table, Address slot, Tagged<HeapObject> value) { MemoryChunk* value_chunk = MemoryChunk::FromHeapObject(value); if (value_chunk->InYoungGeneration()) { MemoryChunk* table_chunk = MemoryChunk::FromHeapObject(table); table_chunk->heap()->RecordEphemeronKeyWrite(table, slot); } else { DCHECK(value_chunk->InWritableSharedSpace()); DCHECK(!table->InWritableSharedSpace()); Heap::SharedHeapBarrierSlow(table, slot); } } void Heap::GenerationalBarrierSlow(Tagged<HeapObject> object, Address slot, Tagged<HeapObject> value) { MemoryChunk* chunk = MemoryChunk::FromHeapObject(object); if (LocalHeap::Current() == nullptr) { RememberedSet<OLD_TO_NEW>::Insert<AccessMode::NON_ATOMIC>(chunk, slot); } else { RememberedSet<OLD_TO_NEW_BACKGROUND>::Insert<AccessMode::ATOMIC>(chunk, slot); } } void Heap::SharedHeapBarrierSlow(Tagged<HeapObject> object, Address slot) { MemoryChunk* chunk = MemoryChunk::FromHeapObject(object); DCHECK(!chunk->InWritableSharedSpace()); RememberedSet<OLD_TO_SHARED>::Insert<AccessMode::ATOMIC>(chunk, slot); } void Heap::RecordEphemeronKeyWrite(Tagged<EphemeronHashTable> table, Address slot) { ephemeron_remembered_set_->RecordEphemeronKeyWrite(table, slot); } void Heap::EphemeronKeyWriteBarrierFromCode(Address raw_object, Address key_slot_address, Isolate* isolate) { Tagged<EphemeronHashTable> table = Tagged<EphemeronHashTable>::cast(Tagged<Object>(raw_object)); ObjectSlot key_slot(key_slot_address); CombinedEphemeronWriteBarrier(table, key_slot, *key_slot, UPDATE_WRITE_BARRIER); } enum RangeWriteBarrierMode { kDoGenerationalOrShared = 1 << 0, kDoMarking = 1 << 1, kDoEvacuationSlotRecording = 1 << 2, }; template <int kModeMask, typename TSlot> void Heap::WriteBarrierForRangeImpl(MemoryChunk* source_page, Tagged<HeapObject> object, TSlot start_slot, TSlot end_slot) { // At least one of generational or marking write barrier should be requested. static_assert(kModeMask & (kDoGenerationalOrShared | kDoMarking)); // kDoEvacuationSlotRecording implies kDoMarking. static_assert(!(kModeMask & kDoEvacuationSlotRecording) || (kModeMask & kDoMarking)); MarkingBarrier* marking_barrier = nullptr; if (kModeMask & kDoMarking) { marking_barrier = WriteBarrier::CurrentMarkingBarrier(object); } MarkCompactCollector* collector = this->mark_compact_collector(); for (TSlot slot = start_slot; slot < end_slot; ++slot) { typename TSlot::TObject value = *slot; Tagged<HeapObject> value_heap_object; if (!value.GetHeapObject(&value_heap_object)) continue; if (kModeMask & kDoGenerationalOrShared) { if (Heap::InYoungGeneration(value_heap_object)) { RememberedSet<OLD_TO_NEW>::Insert<AccessMode::NON_ATOMIC>( source_page, slot.address()); } else if (value_heap_object.InWritableSharedSpace()) { RememberedSet<OLD_TO_SHARED>::Insert<AccessMode::ATOMIC>( source_page, slot.address()); } } if (kModeMask & kDoMarking) { marking_barrier->MarkValue(object, value_heap_object); if (kModeMask & kDoEvacuationSlotRecording) { collector->RecordSlot(source_page, HeapObjectSlot(slot), value_heap_object); } } } } // Instantiate Heap::WriteBarrierForRange() for ObjectSlot and MaybeObjectSlot. template void Heap::WriteBarrierForRange<ObjectSlot>(Tagged<HeapObject> object, ObjectSlot start_slot, ObjectSlot end_slot); template void Heap::WriteBarrierForRange<MaybeObjectSlot>( Tagged<HeapObject> object, MaybeObjectSlot start_slot, MaybeObjectSlot end_slot); template <typename TSlot> void Heap::WriteBarrierForRange(Tagged<HeapObject> object, TSlot start_slot, TSlot end_slot) { if (v8_flags.disable_write_barriers) return; MemoryChunk* source_page = MemoryChunk::FromHeapObject(object); base::Flags<RangeWriteBarrierMode> mode; if (!source_page->InYoungGeneration() && !source_page->InWritableSharedSpace()) { mode |= kDoGenerationalOrShared; } if (incremental_marking()->IsMarking()) { mode |= kDoMarking; if (!source_page->ShouldSkipEvacuationSlotRecording()) { mode |= kDoEvacuationSlotRecording; } } switch (mode) { // Nothing to be done. case 0: return; // Generational only. case kDoGenerationalOrShared: return WriteBarrierForRangeImpl<kDoGenerationalOrShared>( source_page, object, start_slot, end_slot); // Marking, no evacuation slot recording. case kDoMarking: return WriteBarrierForRangeImpl<kDoMarking>(source_page, object, start_slot, end_slot); // Marking with evacuation slot recording. case kDoMarking | kDoEvacuationSlotRecording: return WriteBarrierForRangeImpl<kDoMarking | kDoEvacuationSlotRecording>( source_page, object, start_slot, end_slot); // Generational and marking, no evacuation slot recording. case kDoGenerationalOrShared | kDoMarking: return WriteBarrierForRangeImpl<kDoGenerationalOrShared | kDoMarking>( source_page, object, start_slot, end_slot); // Generational and marking with evacuation slot recording. case kDoGenerationalOrShared | kDoMarking | kDoEvacuationSlotRecording: return WriteBarrierForRangeImpl<kDoGenerationalOrShared | kDoMarking | kDoEvacuationSlotRecording>( source_page, object, start_slot, end_slot); default: UNREACHABLE(); } } void Heap::GenerationalBarrierForCodeSlow(Tagged<InstructionStream> host, RelocInfo* rinfo, Tagged<HeapObject> object) { DCHECK(InYoungGeneration(object)); const MarkCompactCollector::RecordRelocSlotInfo info = MarkCompactCollector::ProcessRelocInfo(host, rinfo, object); base::MutexGuard write_scope(info.memory_chunk->mutex()); RememberedSet<OLD_TO_NEW>::InsertTyped(info.memory_chunk, info.slot_type, info.offset); } bool Heap::PageFlagsAreConsistent(Tagged<HeapObject> object) { if (V8_ENABLE_THIRD_PARTY_HEAP_BOOL) { return true; } BasicMemoryChunk* chunk = BasicMemoryChunk::FromHeapObject(object); heap_internals::MemoryChunk* slim_chunk = heap_internals::MemoryChunk::FromHeapObject(object); // Slim chunk flags consistency. CHECK_EQ(chunk->InYoungGeneration(), slim_chunk->InYoungGeneration()); CHECK_EQ(chunk->IsFlagSet(MemoryChunk::INCREMENTAL_MARKING), slim_chunk->IsMarking()); AllocationSpace identity = chunk->owner()->identity(); // Generation consistency. CHECK_EQ(identity == NEW_SPACE || identity == NEW_LO_SPACE, slim_chunk->InYoungGeneration()); // Read-only consistency. CHECK_EQ(chunk->InReadOnlySpace(), slim_chunk->InReadOnlySpace()); // Marking consistency. if (chunk->IsWritable()) { // RO_SPACE can be shared between heaps, so we can't use RO_SPACE objects to // find a heap. The exception is when the ReadOnlySpace is writeable, during // bootstrapping, so explicitly allow this case. Heap* heap = Heap::FromWritableHeapObject(object); CHECK_EQ(slim_chunk->IsMarking(), heap->incremental_marking()->IsMarking()); } else { // Non-writable RO_SPACE must never have marking flag set. CHECK(!slim_chunk->IsMarking()); } return true; } #ifdef DEBUG void Heap::IncrementObjectCounters() { isolate_->counters()->objs_since_last_full()->Increment(); isolate_->counters()->objs_since_last_young()->Increment(); } #endif // DEBUG bool Heap::IsStressingScavenge() { return v8_flags.stress_scavenge > 0 && new_space(); } void Heap::SetIsMarkingFlag(bool value) { isolate()->isolate_data()->is_marking_flag_ = value; } uint8_t* Heap::IsMarkingFlagAddress() { return &isolate()->isolate_data()->is_marking_flag_; } void Heap::SetIsMinorMarkingFlag(bool value) { isolate()->isolate_data()->is_minor_marking_flag_ = value; } uint8_t* Heap::IsMinorMarkingFlagAddress() { return &isolate()->isolate_data()->is_minor_marking_flag_; } // StrongRootBlocks are allocated as a block of addresses, prefixed with a // StrongRootsEntry pointer: // // | StrongRootsEntry* // | Address 1 // | ... // | Address N // // The allocate method registers the range "Address 1" to "Address N" with the // heap as a strong root array, saves that entry in StrongRootsEntry*, and // returns a pointer to Address 1. Address* StrongRootBlockAllocator::allocate(size_t n) { void* block = base::Malloc(sizeof(StrongRootsEntry*) + n * sizeof(Address)); StrongRootsEntry** header = reinterpret_cast<StrongRootsEntry**>(block); Address* ret = reinterpret_cast<Address*>(reinterpret_cast<char*>(block) + sizeof(StrongRootsEntry*)); memset(ret, kNullAddress, n * sizeof(Address)); *header = heap_->RegisterStrongRoots( "StrongRootBlockAllocator", FullObjectSlot(ret), FullObjectSlot(ret + n)); return ret; } void StrongRootBlockAllocator::deallocate(Address* p, size_t n) noexcept { // The allocate method returns a pointer to Address 1, so the deallocate // method has to offset that pointer back by sizeof(StrongRootsEntry*). void* block = reinterpret_cast<char*>(p) - sizeof(StrongRootsEntry*); StrongRootsEntry** header = reinterpret_cast<StrongRootsEntry**>(block); heap_->UnregisterStrongRoots(*header); base::Free(block); } #ifdef V8_ENABLE_ALLOCATION_TIMEOUT void Heap::set_allocation_timeout(int allocation_timeout) { heap_allocator_.SetAllocationTimeout(allocation_timeout); } #endif // V8_ENABLE_ALLOCATION_TIMEOUT void Heap::FinishSweepingIfOutOfWork() { if (sweeper()->major_sweeping_in_progress() && v8_flags.concurrent_sweeping && !sweeper()->AreMajorSweeperTasksRunning()) { // At this point we know that all concurrent sweeping tasks have run // out of work and quit: all pages are swept. The main thread still needs // to complete sweeping though. EnsureSweepingCompleted(SweepingForcedFinalizationMode::kV8Only); } if (cpp_heap()) { // Ensure that sweeping is also completed for the C++ managed heap, if one // exists and it's out of work. CppHeap::From(cpp_heap())->FinishSweepingIfOutOfWork(); } } void Heap::EnsureSweepingCompleted(SweepingForcedFinalizationMode mode) { CompleteArrayBufferSweeping(this); if (sweeper()->sweeping_in_progress()) { bool was_minor_sweeping_in_progress = minor_sweeping_in_progress(); bool was_major_sweeping_in_progress = major_sweeping_in_progress(); sweeper()->EnsureMajorCompleted(); if (was_major_sweeping_in_progress) { TRACE_GC_EPOCH_WITH_FLOW(tracer(), GCTracer::Scope::MC_COMPLETE_SWEEPING, ThreadKind::kMain, sweeper_->GetTraceIdForFlowEvent( GCTracer::Scope::MC_COMPLETE_SWEEPING), TRACE_EVENT_FLAG_FLOW_IN); old_space()->RefillFreeList(); { CodePageHeaderModificationScope rwx_write_scope( "Updating per-page stats stored in page headers requires write " "access to Code page headers"); code_space()->RefillFreeList(); } if (shared_space()) { shared_space()->RefillFreeList(); } trusted_space()->RefillFreeList(); } if (v8_flags.minor_ms && new_space() && was_minor_sweeping_in_progress) { TRACE_GC_EPOCH_WITH_FLOW( tracer(), GCTracer::Scope::MINOR_MS_COMPLETE_SWEEPING, ThreadKind::kMain, sweeper_->GetTraceIdForFlowEvent( GCTracer::Scope::MINOR_MS_COMPLETE_SWEEPING), TRACE_EVENT_FLAG_FLOW_IN | TRACE_EVENT_FLAG_FLOW_OUT); paged_new_space()->paged_space()->RefillFreeList(); // Refill OLD_SPACE's freelist again for swept promoted pages. old_space()->RefillFreeList(); } tracer()->NotifyFullSweepingCompleted(); #ifdef VERIFY_HEAP if (v8_flags.verify_heap) { EvacuationVerifier verifier(this); verifier.Run(); } #endif } if (mode == SweepingForcedFinalizationMode::kUnifiedHeap && cpp_heap()) { // Ensure that sweeping is also completed for the C++ managed heap, if one // exists. CppHeap::From(cpp_heap())->FinishSweepingIfRunning(); DCHECK(!CppHeap::From(cpp_heap())->sweeper().IsSweepingInProgress()); } DCHECK_IMPLIES( mode == SweepingForcedFinalizationMode::kUnifiedHeap || !cpp_heap(), !tracer()->IsSweepingInProgress()); } void Heap::EnsureYoungSweepingCompleted() { if (!sweeper()->minor_sweeping_in_progress()) return; TRACE_GC_EPOCH_WITH_FLOW( tracer(), GCTracer::Scope::MINOR_MS_COMPLETE_SWEEPING, ThreadKind::kMain, sweeper_->GetTraceIdForFlowEvent( GCTracer::Scope::MINOR_MS_COMPLETE_SWEEPING), TRACE_EVENT_FLAG_FLOW_IN); sweeper()->EnsureMinorCompleted(); paged_new_space()->paged_space()->RefillFreeList(); old_space()->RefillFreeList(); tracer()->NotifyYoungSweepingCompleted(); } void Heap::DrainSweepingWorklistForSpace(AllocationSpace space) { if (!sweeper()->sweeping_in_progress_for_space(space)) return; sweeper()->DrainSweepingWorklistForSpace(space); } EmbedderStackStateScope::EmbedderStackStateScope(Heap* heap, Origin origin, StackState stack_state) : heap_(heap), old_stack_state_(heap_->embedder_stack_state_) { if (origin == kImplicitThroughTask && heap->overriden_stack_state()) { stack_state = *heap->overriden_stack_state(); } heap_->embedder_stack_state_ = stack_state; } // static EmbedderStackStateScope EmbedderStackStateScope::ExplicitScopeForTesting( Heap* heap, StackState stack_state) { return EmbedderStackStateScope(heap, Origin::kExplicitInvocation, stack_state); } EmbedderStackStateScope::~EmbedderStackStateScope() { heap_->embedder_stack_state_ = old_stack_state_; } CppClassNamesAsHeapObjectNameScope::CppClassNamesAsHeapObjectNameScope( v8::CppHeap* heap) : scope_(std::make_unique<cppgc::internal::ClassNameAsHeapObjectNameScope>( *CppHeap::From(heap))) {} CppClassNamesAsHeapObjectNameScope::~CppClassNamesAsHeapObjectNameScope() = default; #if V8_HEAP_USE_PTHREAD_JIT_WRITE_PROTECT || V8_HEAP_USE_PKU_JIT_WRITE_PROTECT CodePageMemoryModificationScopeForDebugging:: CodePageMemoryModificationScopeForDebugging(Heap* heap, VirtualMemory* reservation, base::AddressRegion region) : rwx_write_scope_("Write access for zapping.") { #if !defined(DEBUG) && !defined(VERIFY_HEAP) UNREACHABLE(); #endif } CodePageMemoryModificationScopeForDebugging:: CodePageMemoryModificationScopeForDebugging(BasicMemoryChunk* chunk) : rwx_write_scope_("Write access for zapping.") { #if !defined(DEBUG) && !defined(VERIFY_HEAP) UNREACHABLE(); #endif } CodePageMemoryModificationScopeForDebugging:: ~CodePageMemoryModificationScopeForDebugging() {} #else // V8_HEAP_USE_PTHREAD_JIT_WRITE_PROTECT || // V8_HEAP_USE_PKU_JIT_WRITE_PROTECT CodePageMemoryModificationScopeForDebugging:: CodePageMemoryModificationScopeForDebugging(Heap* heap, VirtualMemory* reservation, base::AddressRegion region) { #if !defined(DEBUG) && !defined(VERIFY_HEAP) UNREACHABLE(); #else if (heap->write_protect_code_memory()) { reservation_ = reservation; region_.emplace(region); CHECK(reservation_->SetPermissions( region_->begin(), region_->size(), MemoryChunk::GetCodeModificationPermission())); } #endif } CodePageMemoryModificationScopeForDebugging:: CodePageMemoryModificationScopeForDebugging(BasicMemoryChunk* chunk) : memory_modification_scope_(chunk) { #if !defined(DEBUG) && !defined(VERIFY_HEAP) UNREACHABLE(); #endif } CodePageMemoryModificationScopeForDebugging:: ~CodePageMemoryModificationScopeForDebugging() { if (reservation_) { DCHECK(region_.has_value()); CHECK(reservation_->SetPermissions( region_->begin(), region_->size(), v8_flags.jitless ? PageAllocator::Permission::kRead : PageAllocator::Permission::kReadExecute)); } } #endif } // namespace internal } // namespace v8