%PDF- %PDF-
Direktori : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/heap/ |
Current File : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/heap/heap.h |
// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_HEAP_HEAP_H_ #define V8_HEAP_HEAP_H_ #include <atomic> #include <cmath> #include <memory> #include <unordered_map> #include <unordered_set> #include <vector> // Clients of this interface shouldn't depend on lots of heap internals. // Do not include anything from src/heap here! #include "include/v8-callbacks.h" #include "include/v8-embedder-heap.h" #include "include/v8-internal.h" #include "include/v8-isolate.h" #include "src/base/atomic-utils.h" #include "src/base/enum-set.h" #include "src/base/platform/condition-variable.h" #include "src/base/platform/mutex.h" #include "src/builtins/accessors.h" #include "src/common/assert-scope.h" #include "src/common/code-memory-access.h" #include "src/common/globals.h" #include "src/heap/allocation-observer.h" #include "src/heap/allocation-result.h" #include "src/heap/gc-callbacks.h" #include "src/heap/heap-allocator.h" #include "src/heap/marking-state.h" #include "src/heap/minor-gc-job.h" #include "src/heap/pretenuring-handler.h" #include "src/heap/sweeper.h" #include "src/init/heap-symbols.h" #include "src/objects/allocation-site.h" #include "src/objects/fixed-array.h" #include "src/objects/hash-table.h" #include "src/objects/heap-object.h" #include "src/objects/js-array-buffer.h" #include "src/objects/objects.h" #include "src/objects/smi.h" #include "src/objects/visitors.h" #include "src/roots/roots.h" #include "src/sandbox/code-pointer-table.h" #include "src/sandbox/external-pointer-table.h" #include "src/sandbox/indirect-pointer-table.h" #include "src/utils/allocation.h" #include "testing/gtest/include/gtest/gtest_prod.h" // nogncheck namespace cppgc::internal { enum class HeapObjectNameForUnnamedObject : uint8_t; class ClassNameAsHeapObjectNameScope; } // namespace cppgc::internal namespace heap::base { class Stack; } // namespace heap::base namespace v8 { namespace debug { using OutOfMemoryCallback = void (*)(void* data); } // namespace debug namespace internal { namespace heap { class HeapTester; class TestMemoryAllocatorScope; } // namespace heap namespace third_party_heap { class Heap; class Impl; } // namespace third_party_heap class ArrayBufferCollector; class ArrayBufferSweeper; class BackingStore; class BasicMemoryChunk; class Boolean; class CodeLargeObjectSpace; class CodeRange; class CollectionBarrier; class ConcurrentAllocator; class ConcurrentMarking; class CppHeap; class EphemeronRememberedSet; class GCIdleTimeHandler; class GCIdleTimeHeapState; class GCTracer; class IncrementalMarking; class IsolateSafepoint; class HeapObjectAllocationTracker; class HeapObjectsFilter; class HeapStats; class Isolate; class JSArrayBuffer; class JSFinalizationRegistry; class JSPromise; class LinearAllocationArea; class LocalHeap; class MemoryAllocator; class MemoryBalancer; class MemoryChunk; class MemoryMeasurement; class MemoryReducer; class MinorMarkSweepCollector; class NativeContext; class NopRwxMemoryWriteScope; class ObjectIterator; class ObjectStats; class Page; class PagedSpace; class PagedNewSpace; class ReadOnlyHeap; class RootVisitor; class RwxMemoryWriteScope; class SafepointScope; class Scavenger; class ScavengerCollector; class SharedLargeObjectSpace; class SharedReadOnlySpace; class SharedSpace; class Space; class StressScavengeObserver; class TimedHistogram; class TrustedLargeObjectSpace; class TrustedSpace; class WeakObjectRetainer; enum class ClearRecordedSlots { kYes, kNo }; enum class InvalidateRecordedSlots { kYes, kNo }; enum class ClearFreedMemoryMode { kClearFreedMemory, kDontClearFreedMemory }; enum class RetainingPathOption { kDefault, kTrackEphemeronPath }; enum class GCIdleTimeAction : uint8_t; enum class SkipRoot { kExternalStringTable, kGlobalHandles, kTracedHandles, kOldGeneration, kStack, kMainThreadHandles, kUnserializable, kWeak, kConservativeStack, kReadOnlyBuiltins, }; class StrongRootsEntry final { explicit StrongRootsEntry(const char* label) : label(label) {} // Label that identifies the roots in tooling. const char* label; FullObjectSlot start; FullObjectSlot end; StrongRootsEntry* prev; StrongRootsEntry* next; friend class Heap; }; #ifdef DEBUG struct CommentStatistic { const char* comment; int size; int count; void Clear() { comment = nullptr; size = 0; count = 0; } // Must be small, since an iteration is used for lookup. static const int kMaxComments = 64; }; #endif // An alias for std::unordered_map<Tagged<HeapObject>, T> which also // sets proper Hash and KeyEqual functions. template <typename T> using UnorderedHeapObjectMap = std::unordered_map<Tagged<HeapObject>, T, Object::Hasher, Object::KeyEqualSafe>; enum class GCFlag : uint8_t { kNoFlags = 0, kReduceMemoryFootprint = 1 << 0, // GCs that are forced, either through testing configurations (requiring // --expose-gc) or through DevTools (using LowMemoryNotification). kForced = 1 << 1, }; using GCFlags = base::Flags<GCFlag, uint8_t>; DEFINE_OPERATORS_FOR_FLAGS(GCFlags) class Heap final { public: enum class HeapGrowingMode { kSlow, kConservative, kMinimal, kDefault }; enum HeapState { NOT_IN_GC, SCAVENGE, MARK_COMPACT, MINOR_MARK_SWEEP, TEAR_DOWN }; // Emits GC events for DevTools timeline. class V8_NODISCARD DevToolsTraceEventScope { public: DevToolsTraceEventScope(Heap* heap, const char* event_name, const char* event_type); ~DevToolsTraceEventScope(); private: Heap* heap_; const char* event_name_; }; class ExternalMemoryAccounting { public: int64_t total() const { return total_.load(std::memory_order_relaxed); } int64_t limit() const { return limit_.load(std::memory_order_relaxed); } int64_t low_since_mark_compact() const { return low_since_mark_compact_.load(std::memory_order_relaxed); } void ResetAfterGC() { set_low_since_mark_compact(total()); set_limit(total() + kExternalAllocationSoftLimit); } int64_t Update(int64_t delta) { const int64_t amount = total_.fetch_add(delta, std::memory_order_relaxed) + delta; if (amount < low_since_mark_compact()) { set_low_since_mark_compact(amount); set_limit(amount + kExternalAllocationSoftLimit); } return amount; } int64_t AllocatedSinceMarkCompact() const { int64_t total_bytes = total(); int64_t low_since_mark_compact_bytes = low_since_mark_compact(); if (total_bytes <= low_since_mark_compact_bytes) { return 0; } return static_cast<uint64_t>(total_bytes - low_since_mark_compact_bytes); } private: void set_total(int64_t value) { total_.store(value, std::memory_order_relaxed); } void set_limit(int64_t value) { limit_.store(value, std::memory_order_relaxed); } void set_low_since_mark_compact(int64_t value) { low_since_mark_compact_.store(value, std::memory_order_relaxed); } // The amount of external memory registered through the API. std::atomic<int64_t> total_{0}; // The limit when to trigger memory pressure from the API. std::atomic<int64_t> limit_{kExternalAllocationSoftLimit}; // Caches the amount of external memory registered at the last MC. std::atomic<int64_t> low_since_mark_compact_{0}; }; // Taking this mutex prevents the GC from entering a phase that relocates // object references. base::Mutex* relocation_mutex() { return &relocation_mutex_; } // Support for context snapshots. After calling this we have a linear // space to write objects in each space. struct Chunk { uint32_t size; Address start; Address end; }; using Reservation = std::vector<Chunk>; #if V8_OS_ANDROID // Don't apply pointer multiplier on Android since it has no swap space and // should instead adapt it's heap size based on available physical memory. static const int kPointerMultiplier = 1; static const int kHeapLimitMultiplier = 1; #else static const int kPointerMultiplier = kTaggedSize / 4; // The heap limit needs to be computed based on the system pointer size // because we want a pointer-compressed heap to have larger limit than // an ordinary 32-bit which that is constrained by 2GB virtual address space. static const int kHeapLimitMultiplier = kSystemPointerSize / 4; #endif static const size_t kMaxInitialOldGenerationSize = 256 * MB * kHeapLimitMultiplier; // These constants control heap configuration based on the physical memory. static constexpr size_t kPhysicalMemoryToOldGenerationRatio = 4; static constexpr size_t kOldGenerationLowMemory = 128 * MB * kHeapLimitMultiplier; static constexpr size_t kNewLargeObjectSpaceToSemiSpaceRatio = 1; static const int kTraceRingBufferSize = 512; static const int kStacktraceBufferSize = 512; // The minimum size of a HeapObject on the heap. static const int kMinObjectSizeInTaggedWords = 2; static size_t DefaultMinSemiSpaceSize(); V8_EXPORT_PRIVATE static size_t DefaultMaxSemiSpaceSize(); // Young generation size is the same for compressed heaps and 32-bit heaps. static size_t OldGenerationToSemiSpaceRatio(); static size_t OldGenerationToSemiSpaceRatioLowMemory(); // Calculates the maximum amount of filler that could be required by the // given alignment. V8_EXPORT_PRIVATE static int GetMaximumFillToAlign( AllocationAlignment alignment); // Calculates the actual amount of filler required for a given address at the // given alignment. V8_EXPORT_PRIVATE static int GetFillToAlign(Address address, AllocationAlignment alignment); // Returns the size of the initial area of a code-range, which is marked // writable and reserved to contain unwind information. static size_t GetCodeRangeReservedAreaSize(); [[noreturn]] V8_EXPORT_PRIVATE void FatalProcessOutOfMemory( const char* location); // Checks whether the space is valid. static bool IsValidAllocationSpace(AllocationSpace space); // Helper function to get the bytecode flushing mode based on the flags. This // is required because it is not safe to access flags in concurrent marker. static inline base::EnumSet<CodeFlushMode> GetCodeFlushMode(Isolate* isolate); static inline bool IsYoungGenerationCollector(GarbageCollector collector) { return collector == GarbageCollector::SCAVENGER || collector == GarbageCollector::MINOR_MARK_SWEEPER; } static inline GarbageCollector YoungGenerationCollector() { return (v8_flags.minor_ms) ? GarbageCollector::MINOR_MARK_SWEEPER : GarbageCollector::SCAVENGER; } // Copy block of memory from src to dst. Size of block should be aligned // by pointer size. static inline void CopyBlock(Address dst, Address src, int byte_size); // Executes generational and/or marking write barrier for a [start, end) range // of non-weak slots inside |object|. template <typename TSlot> V8_EXPORT_PRIVATE void WriteBarrierForRange(Tagged<HeapObject> object, TSlot start, TSlot end); // Implements slow path of both generational & shared heap barrier. V8_EXPORT_PRIVATE static void CombinedGenerationalAndSharedBarrierSlow( Tagged<HeapObject> object, Address slot, Tagged<HeapObject> value); V8_EXPORT_PRIVATE static void CombinedGenerationalAndSharedEphemeronBarrierSlow( Tagged<EphemeronHashTable> table, Address slot, Tagged<HeapObject> value); V8_EXPORT_PRIVATE static void GenerationalBarrierSlow( Tagged<HeapObject> object, Address slot, Tagged<HeapObject> value); V8_EXPORT_PRIVATE static void SharedHeapBarrierSlow(Tagged<HeapObject> object, Address slot); V8_EXPORT_PRIVATE static void GenerationalBarrierForCodeSlow( Tagged<InstructionStream> host, RelocInfo* rinfo, Tagged<HeapObject> value); V8_EXPORT_PRIVATE static bool PageFlagsAreConsistent( Tagged<HeapObject> object); V8_EXPORT_PRIVATE inline void RecordEphemeronKeyWrite( Tagged<EphemeronHashTable> table, Address key_slot); V8_EXPORT_PRIVATE static void EphemeronKeyWriteBarrierFromCode( Address raw_object, Address address, Isolate* isolate); EphemeronRememberedSet* ephemeron_remembered_set() { return ephemeron_remembered_set_.get(); } // Notifies the heap that is ok to start marking or other activities that // should not happen during deserialization. void NotifyDeserializationComplete(); // Weakens StrongDescriptorArray objects into regular DescriptorArray objects. // // Thread-safe. void WeakenDescriptorArrays( GlobalHandleVector<DescriptorArray> strong_descriptor_arrays); void NotifyBootstrapComplete(); void NotifyOldGenerationExpansion(AllocationSpace space, MemoryChunk* chunk); void NotifyOldGenerationExpansionBackground(AllocationSpace space, MemoryChunk* chunk); inline Address* NewSpaceAllocationTopAddress(); inline Address* NewSpaceAllocationLimitAddress(); inline Address* OldSpaceAllocationTopAddress(); inline Address* OldSpaceAllocationLimitAddress(); size_t NewSpaceSize(); size_t NewSpaceCapacity() const; size_t NewSpaceTargetCapacity() const; // Move len non-weak tagged elements from src_slot to dst_slot of dst_object. // The source and destination memory ranges can overlap. V8_EXPORT_PRIVATE void MoveRange(Tagged<HeapObject> dst_object, ObjectSlot dst_slot, ObjectSlot src_slot, int len, WriteBarrierMode mode); // Copy len non-weak tagged elements from src_slot to dst_slot of dst_object. // The source and destination memory ranges must not overlap. template <typename TSlot> void CopyRange(Tagged<HeapObject> dst_object, TSlot dst_slot, TSlot src_slot, int len, WriteBarrierMode mode); // Initialize a filler object to keep the ability to iterate over the heap // when introducing gaps within pages. This method will verify that no slots // are recorded in this free memory. V8_EXPORT_PRIVATE void CreateFillerObjectAt( Address addr, int size, ClearFreedMemoryMode clear_memory_mode = ClearFreedMemoryMode::kDontClearFreedMemory); // Initialize a filler object at a specific address. Unlike // `CreateFillerObjectAt` this method will not perform slot verification since // this would race on background threads. void CreateFillerObjectAtBackground(Address addr, int size); // This method is used by the sweeper on free memory ranges to make the page // iterable again. Unlike `CreateFillerObjectAt` this method will not verify // slots since the sweeper can run concurrently. void CreateFillerObjectAtSweeper(Address addr, int size); template <typename T> void CreateFillerForArray(Tagged<T> object, int elements_to_trim, int bytes_to_trim); bool CanMoveObjectStart(Tagged<HeapObject> object); bool IsImmovable(Tagged<HeapObject> object); V8_EXPORT_PRIVATE static bool IsLargeObject(Tagged<HeapObject> object); // Trim the given array from the left. Note that this relocates the object // start and hence is only valid if there is only a single reference to it. V8_EXPORT_PRIVATE Tagged<FixedArrayBase> LeftTrimFixedArray( Tagged<FixedArrayBase> obj, int elements_to_trim); // Trim the given array from the right. V8_EXPORT_PRIVATE void RightTrimFixedArray(Tagged<FixedArrayBase> obj, int elements_to_trim); void RightTrimWeakFixedArray(Tagged<WeakFixedArray> obj, int elements_to_trim); // Converts the given boolean condition to JavaScript boolean value. inline Tagged<Boolean> ToBoolean(bool condition); // Notify the heap that a context has been disposed. `has_dependent_context` // implies that a top-level context (no dependent contexts) has been disposed. V8_EXPORT_PRIVATE int NotifyContextDisposed(bool has_dependent_context); void set_native_contexts_list(Tagged<Object> object) { native_contexts_list_.store(object.ptr(), std::memory_order_release); } Tagged<Object> native_contexts_list() const { return Tagged<Object>( native_contexts_list_.load(std::memory_order_acquire)); } void set_allocation_sites_list(Tagged<Object> object) { allocation_sites_list_ = object; } Tagged<Object> allocation_sites_list() { return allocation_sites_list_; } void set_dirty_js_finalization_registries_list(Tagged<Object> object) { dirty_js_finalization_registries_list_ = object; } Tagged<Object> dirty_js_finalization_registries_list() { return dirty_js_finalization_registries_list_; } void set_dirty_js_finalization_registries_list_tail(Tagged<Object> object) { dirty_js_finalization_registries_list_tail_ = object; } Tagged<Object> dirty_js_finalization_registries_list_tail() { return dirty_js_finalization_registries_list_tail_; } // Used in CreateAllocationSiteStub and the (de)serializer. Address allocation_sites_list_address() { return reinterpret_cast<Address>(&allocation_sites_list_); } // Traverse all the allocation_sites [nested_site and weak_next] in the list // and foreach call the visitor void ForeachAllocationSite( Tagged<Object> list, const std::function<void(Tagged<AllocationSite>)>& visitor); // Number of mark-sweeps. int ms_count() const { return ms_count_; } // Checks whether the given object is allowed to be migrated from it's // current space into the given destination space. Used for debugging. bool AllowedToBeMigrated(Tagged<Map> map, Tagged<HeapObject> object, AllocationSpace dest); void CheckHandleCount(); // Print short heap statistics. void PrintShortHeapStatistics(); // Print statistics of freelists of old_space: // with v8_flags.trace_gc_freelists: summary of each FreeListCategory. // with v8_flags.trace_gc_freelists_verbose: also prints the statistics of // each FreeListCategory of each page. void PrintFreeListsStats(); // Dump heap statistics in JSON format. void DumpJSONHeapStatistics(std::stringstream& stream); bool write_protect_code_memory() const { if (V8_HAS_PTHREAD_JIT_WRITE_PROTECT) { // On MacOS on ARM64 ("Apple M1"/Apple Silicon) code modification // protection must be used. It can be achieved by one of the following // approaches: // 1) switching memory protection between RW-RX as on other architectures // => return true, // 2) fast W^X machinery (see V8_HEAP_USE_PTHREAD_JIT_WRITE_PROTECT) which // doesn not require memory protection changes => return false. return !V8_HEAP_USE_PTHREAD_JIT_WRITE_PROTECT; } return write_protect_code_memory_; } inline HeapState gc_state() const { return gc_state_.load(std::memory_order_relaxed); } void SetGCState(HeapState state); bool IsTearingDown() const { return gc_state() == TEAR_DOWN; } bool IsInGC() const { return gc_state() != NOT_IN_GC && gc_state() != TEAR_DOWN; } bool force_oom() const { return force_oom_; } bool ignore_local_gc_requests() const { return ignore_local_gc_requests_depth_ > 0; } bool IsAllocationObserverActive() const { return pause_allocation_observers_depth_ == 0; } bool IsGCWithStack() const; V8_EXPORT_PRIVATE void ForceSharedGCWithEmptyStackForTesting(); bool CanShortcutStringsDuringGC(GarbageCollector collector) const; // Performs GC after background allocation failure. void CollectGarbageForBackground(LocalHeap* local_heap); // // Support for the API. // void CreateReadOnlyApiObjects(); void CreateMutableApiObjects(); // Implements the corresponding V8 API function. bool IdleNotification(double deadline_in_seconds); bool IdleNotification(int idle_time_in_ms); V8_EXPORT_PRIVATE void MemoryPressureNotification( v8::MemoryPressureLevel level, bool is_isolate_locked); void CheckMemoryPressure(); V8_EXPORT_PRIVATE void AddNearHeapLimitCallback(v8::NearHeapLimitCallback, void* data); V8_EXPORT_PRIVATE void RemoveNearHeapLimitCallback( v8::NearHeapLimitCallback callback, size_t heap_limit); V8_EXPORT_PRIVATE void AutomaticallyRestoreInitialHeapLimit( double threshold_percent); void AppendArrayBufferExtension(Tagged<JSArrayBuffer> object, ArrayBufferExtension* extension); void DetachArrayBufferExtension(Tagged<JSArrayBuffer> object, ArrayBufferExtension* extension); IsolateSafepoint* safepoint() { return safepoint_.get(); } V8_EXPORT_PRIVATE double MonotonicallyIncreasingTimeInMs() const; #if DEBUG void VerifyNewSpaceTop(); #endif // DEBUG void RecordStats(HeapStats* stats, bool take_snapshot = false); bool MeasureMemory(std::unique_ptr<v8::MeasureMemoryDelegate> delegate, v8::MeasureMemoryExecution execution); std::unique_ptr<v8::MeasureMemoryDelegate> MeasureMemoryDelegate( Handle<NativeContext> context, Handle<JSPromise> promise, v8::MeasureMemoryMode mode); void VisitExternalResources(v8::ExternalResourceVisitor* visitor); void IncrementDeferredCount(v8::Isolate::UseCounterFeature feature); inline int NextScriptId(); inline int NextDebuggingId(); inline int GetNextTemplateSerialNumber(); void SetSerializedObjects(Tagged<FixedArray> objects); void SetSerializedGlobalProxySizes(Tagged<FixedArray> sizes); void SetBasicBlockProfilingData(Handle<ArrayList> list); // For post mortem debugging. void RememberUnmappedPage(Address page, bool compacted); int64_t external_memory_hard_limit() { return max_old_generation_size() / 2; } V8_INLINE int64_t external_memory(); V8_EXPORT_PRIVATE int64_t external_memory_limit(); V8_INLINE int64_t update_external_memory(int64_t delta); V8_EXPORT_PRIVATE size_t YoungArrayBufferBytes(); V8_EXPORT_PRIVATE size_t OldArrayBufferBytes(); uint64_t backing_store_bytes() const { return backing_store_bytes_.load(std::memory_order_relaxed); } void CompactWeakArrayLists(); V8_EXPORT_PRIVATE void AddRetainedMaps(Handle<NativeContext> context, GlobalHandleVector<Map> maps); // This event is triggered after object is moved to a new place. void OnMoveEvent(Tagged<HeapObject> source, Tagged<HeapObject> target, int size_in_bytes); bool deserialization_complete() const { return deserialization_complete_; } // We can only invoke Safepoint() on the main thread local heap after // deserialization is complete. Before that, main_thread_local_heap_ might be // null. V8_INLINE bool CanSafepoint() const { return deserialization_complete(); } bool HasLowAllocationRate(); bool HasHighFragmentation(); void ActivateMemoryReducerIfNeeded(); V8_EXPORT_PRIVATE bool ShouldOptimizeForMemoryUsage(); bool HighMemoryPressure() { return memory_pressure_level_.load(std::memory_order_relaxed) != v8::MemoryPressureLevel::kNone; } bool CollectionRequested(); void CheckCollectionRequested(); void RestoreHeapLimit(size_t heap_limit) { // Do not set the limit lower than the live size + some slack. size_t min_limit = SizeOfObjects() + SizeOfObjects() / 4; SetOldGenerationAndGlobalMaximumSize( std::min(max_old_generation_size(), std::max(heap_limit, min_limit))); } #if V8_ENABLE_WEBASSEMBLY // TODO(manoskouk): Consider inlining/moving this if // STRONG_MUTABLE_MOVABLE_ROOT_LIST setters become public. V8_EXPORT_PRIVATE void EnsureWasmCanonicalRttsSize(int length); #endif // =========================================================================== // Initialization. =========================================================== // =========================================================================== void ConfigureHeap(const v8::ResourceConstraints& constraints); void ConfigureHeapDefault(); // Prepares the heap, setting up for deserialization. void SetUp(LocalHeap* main_thread_local_heap); // Sets read-only heap and space. void SetUpFromReadOnlyHeap(ReadOnlyHeap* ro_heap); void ReplaceReadOnlySpace(SharedReadOnlySpace* shared_ro_space); // Sets up the heap memory without creating any objects. void SetUpSpaces(LinearAllocationArea& new_allocation_info, LinearAllocationArea& old_allocation_info); // Prepares the heap, setting up for deserialization. void InitializeMainThreadLocalHeap(LocalHeap* main_thread_local_heap); // (Re-)Initialize hash seed from flag or RNG. void InitializeHashSeed(); // Invoked once for the process from V8::Initialize. static void InitializeOncePerProcess(); // Bootstraps the object heap with the core set of objects required to run. // Returns whether it succeeded. bool CreateReadOnlyHeapObjects(); bool CreateMutableHeapObjects(); // Create ObjectStats if live_object_stats_ or dead_object_stats_ are nullptr. void CreateObjectStats(); // Sets the TearDown state, so no new GC tasks get posted. void StartTearDown(); // Destroys all data that might require the shared heap. void TearDownWithSharedHeap(); // Destroys all memory allocated by the heap. void TearDown(); // Returns whether SetUp has been called. bool HasBeenSetUp() const; // =========================================================================== // Getters for spaces. ======================================================= // =========================================================================== V8_INLINE Address NewSpaceTop(); V8_INLINE Address NewSpaceLimit(); NewSpace* new_space() const { return new_space_; } inline PagedNewSpace* paged_new_space() const; OldSpace* old_space() const { return old_space_; } CodeSpace* code_space() const { return code_space_; } SharedSpace* shared_space() const { return shared_space_; } OldLargeObjectSpace* lo_space() const { return lo_space_; } CodeLargeObjectSpace* code_lo_space() const { return code_lo_space_; } SharedLargeObjectSpace* shared_lo_space() const { return shared_lo_space_; } NewLargeObjectSpace* new_lo_space() const { return new_lo_space_; } ReadOnlySpace* read_only_space() const { return read_only_space_; } TrustedSpace* trusted_space() const { return trusted_space_; } TrustedLargeObjectSpace* trusted_lo_space() const { return trusted_lo_space_; } PagedSpace* shared_allocation_space() const { return shared_allocation_space_; } OldLargeObjectSpace* shared_lo_allocation_space() const { return shared_lo_allocation_space_; } inline PagedSpace* paged_space(int idx) const; inline Space* space(int idx) const; #ifdef V8_COMPRESS_POINTERS ExternalPointerTable::Space* external_pointer_space() { return &external_pointer_space_; } ExternalPointerTable::Space* read_only_external_pointer_space() { return &read_only_external_pointer_space_; } IndirectPointerTable::Space* indirect_pointer_space() { return &indirect_pointer_space_; } #endif // V8_COMPRESS_POINTERS #ifdef V8_ENABLE_SANDBOX CodePointerTable::Space* code_pointer_space() { return &code_pointer_space_; } #endif // V8_ENABLE_SANDBOX // =========================================================================== // Getters to other components. ============================================== // =========================================================================== GCTracer* tracer() { return tracer_.get(); } MemoryAllocator* memory_allocator() { return memory_allocator_.get(); } const MemoryAllocator* memory_allocator() const { return memory_allocator_.get(); } inline Isolate* isolate() const; // Check if we run on isolate's main thread. inline bool IsMainThread() const; // Check if we run on the current main thread of the shared isolate during // shared GC. inline bool IsSharedMainThread() const; MarkCompactCollector* mark_compact_collector() { return mark_compact_collector_.get(); } MinorMarkSweepCollector* minor_mark_sweep_collector() { return minor_mark_sweep_collector_.get(); } Sweeper* sweeper() { return sweeper_.get(); } ArrayBufferSweeper* array_buffer_sweeper() { return array_buffer_sweeper_.get(); } // The potentially overreserved address space region reserved by the code // range if it exists or empty region otherwise. const base::AddressRegion& code_region(); CodeRange* code_range() { #if V8_COMPRESS_POINTERS_IN_SHARED_CAGE return code_range_; #else return code_range_.get(); #endif } // The base of the code range if it exists or null address. inline Address code_range_base(); LocalHeap* main_thread_local_heap() { return main_thread_local_heap_; } Heap* AsHeap() { return this; } // =========================================================================== // Root set access. ========================================================== // =========================================================================== // Shortcut to the roots table stored in the Isolate. V8_INLINE RootsTable& roots_table(); // Heap root getters. #define ROOT_ACCESSOR(type, name, CamelName) inline Tagged<type> name(); MUTABLE_ROOT_LIST(ROOT_ACCESSOR) #undef ROOT_ACCESSOR V8_INLINE Tagged<FixedArray> single_character_string_table(); V8_INLINE void SetRootMaterializedObjects(Tagged<FixedArray> objects); V8_INLINE void SetRootScriptList(Tagged<Object> value); V8_INLINE void SetRootNoScriptSharedFunctionInfos(Tagged<Object> value); V8_INLINE void SetMessageListeners(Tagged<ArrayList> value); V8_INLINE void SetFunctionsMarkedForManualOptimization( Tagged<Object> bytecode); StrongRootsEntry* RegisterStrongRoots(const char* label, FullObjectSlot start, FullObjectSlot end); void UnregisterStrongRoots(StrongRootsEntry* entry); void UpdateStrongRoots(StrongRootsEntry* entry, FullObjectSlot start, FullObjectSlot end); void SetBuiltinsConstantsTable(Tagged<FixedArray> cache); void SetDetachedContexts(Tagged<WeakArrayList> detached_contexts); void EnqueueDirtyJSFinalizationRegistry( Tagged<JSFinalizationRegistry> finalization_registry, std::function<void(Tagged<HeapObject> object, ObjectSlot slot, Tagged<Object> target)> gc_notify_updated_slot); MaybeHandle<JSFinalizationRegistry> DequeueDirtyJSFinalizationRegistry(); // Called from Heap::NotifyContextDisposed to remove all // FinalizationRegistries with {context} from the dirty list when the context // e.g. navigates away or is detached. If the dirty list is empty afterwards, // the cleanup task is aborted if needed. void RemoveDirtyFinalizationRegistriesOnContext( Tagged<NativeContext> context); inline bool HasDirtyJSFinalizationRegistries(); void PostFinalizationRegistryCleanupTaskIfNeeded(); void set_is_finalization_registry_cleanup_task_posted(bool posted) { is_finalization_registry_cleanup_task_posted_ = posted; } bool is_finalization_registry_cleanup_task_posted() { return is_finalization_registry_cleanup_task_posted_; } V8_EXPORT_PRIVATE void KeepDuringJob(Handle<HeapObject> target); void ClearKeptObjects(); // =========================================================================== // Inline allocation. ======================================================== // =========================================================================== // Switch whether inline bump-pointer allocation should be used. V8_EXPORT_PRIVATE void EnableInlineAllocation(); V8_EXPORT_PRIVATE void DisableInlineAllocation(); // =========================================================================== // Methods triggering GCs. =================================================== // =========================================================================== // Performs garbage collection operation. // Returns whether there is a chance that another major GC could // collect more garbage. V8_EXPORT_PRIVATE void CollectGarbage( AllocationSpace space, GarbageCollectionReason gc_reason, const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags); // Performs a full garbage collection. V8_EXPORT_PRIVATE void CollectAllGarbage( GCFlags gc_flags, GarbageCollectionReason gc_reason, const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags); // Last hope garbage collection. Will try to free as much memory as possible // with multiple rounds of garbage collection. V8_EXPORT_PRIVATE void CollectAllAvailableGarbage( GarbageCollectionReason gc_reason); // Precise garbage collection that potentially finalizes already running // incremental marking before performing an atomic garbage collection. // Only use if absolutely necessary or in tests to avoid floating garbage! V8_EXPORT_PRIVATE void PreciseCollectAllGarbage( GCFlags gc_flags, GarbageCollectionReason gc_reason, const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags); // Performs garbage collection operation for the shared heap. V8_EXPORT_PRIVATE bool CollectGarbageShared( LocalHeap* local_heap, GarbageCollectionReason gc_reason); // Requests garbage collection from some other thread. V8_EXPORT_PRIVATE bool CollectGarbageFromAnyThread( LocalHeap* local_heap, GarbageCollectionReason gc_reason = GarbageCollectionReason::kBackgroundAllocationFailure); // Reports and external memory pressure event, either performs a major GC or // completes incremental marking in order to free external resources. void ReportExternalMemoryPressure(); using GetExternallyAllocatedMemoryInBytesCallback = v8::Isolate::GetExternallyAllocatedMemoryInBytesCallback; void SetGetExternallyAllocatedMemoryInBytesCallback( GetExternallyAllocatedMemoryInBytesCallback callback) { external_memory_callback_ = callback; } // Invoked when GC was requested via the stack guard. void HandleGCRequest(); // =========================================================================== // Iterators. ================================================================ // =========================================================================== // In the case of shared GC, kMainIsolate is used for the main isolate and // kClientIsolate for the (other) client isolates. enum class IterateRootsMode { kMainIsolate, kClientIsolate }; // None of these methods iterate over the read-only roots. To do this use // ReadOnlyRoots::Iterate. Read-only root iteration is not necessary for // garbage collection and is usually only performed as part of // (de)serialization or heap verification. // Iterates over the strong roots and the weak roots. void IterateRoots( RootVisitor* v, base::EnumSet<SkipRoot> options, IterateRootsMode roots_mode = IterateRootsMode::kMainIsolate); void IterateRootsIncludingClients(RootVisitor* v, base::EnumSet<SkipRoot> options); // Iterates over entries in the smi roots list. Only interesting to the // serializer/deserializer, since GC does not care about smis. void IterateSmiRoots(RootVisitor* v); // Iterates over weak string tables. void IterateWeakRoots(RootVisitor* v, base::EnumSet<SkipRoot> options); void IterateWeakGlobalHandles(RootVisitor* v); void IterateBuiltins(RootVisitor* v); void IterateStackRoots(RootVisitor* v); void IterateConservativeStackRoots( RootVisitor* v, IterateRootsMode roots_mode = IterateRootsMode::kMainIsolate); // =========================================================================== // Remembered set API. ======================================================= // =========================================================================== // Used for query incremental marking status in generated code. uint8_t* IsMarkingFlagAddress(); uint8_t* IsMinorMarkingFlagAddress(); void ClearRecordedSlot(Tagged<HeapObject> object, ObjectSlot slot); void ClearRecordedSlotRange(Address start, Address end); static int InsertIntoRememberedSetFromCode(MemoryChunk* chunk, Address slot); #ifdef DEBUG void VerifySlotRangeHasNoRecordedSlots(Address start, Address end); #endif // =========================================================================== // Incremental marking API. ================================================== // =========================================================================== GCFlags GCFlagsForIncrementalMarking() { return ShouldOptimizeForMemoryUsage() ? GCFlag::kReduceMemoryFootprint : GCFlag::kNoFlags; } // Starts incremental marking assuming incremental marking is currently // stopped. V8_EXPORT_PRIVATE void StartIncrementalMarking( GCFlags gc_flags, GarbageCollectionReason gc_reason, GCCallbackFlags gc_callback_flags = GCCallbackFlags::kNoGCCallbackFlags, GarbageCollector collector = GarbageCollector::MARK_COMPACTOR); V8_EXPORT_PRIVATE void StartIncrementalMarkingOnInterrupt(); V8_EXPORT_PRIVATE void StartIncrementalMarkingIfAllocationLimitIsReached( GCFlags gc_flags, GCCallbackFlags gc_callback_flags = GCCallbackFlags::kNoGCCallbackFlags); void StartIncrementalMarkingIfAllocationLimitIsReachedBackground(); // Synchronously finalizes incremental marking. V8_EXPORT_PRIVATE void FinalizeIncrementalMarkingAtomically( GarbageCollectionReason gc_reason); V8_EXPORT_PRIVATE void CompleteSweepingFull(); void CompleteSweepingYoung(); // Ensures that sweeping is finished for that object's page. void EnsureSweepingCompletedForObject(Tagged<HeapObject> object); IncrementalMarking* incremental_marking() const { return incremental_marking_.get(); } // =========================================================================== // Concurrent marking API. =================================================== // =========================================================================== ConcurrentMarking* concurrent_marking() const { return concurrent_marking_.get(); } // The runtime uses this function to notify potentially unsafe object layout // changes that require special synchronization with the concurrent marker. // By default recorded slots in the object are invalidated. Pass // InvalidateRecordedSlots::kNo if this is not necessary or to perform this // manually. void NotifyObjectLayoutChange( Tagged<HeapObject> object, const DisallowGarbageCollection&, InvalidateRecordedSlots invalidate_recorded_slots, int new_size = 0); V8_EXPORT_PRIVATE static void NotifyObjectLayoutChangeDone( Tagged<HeapObject> object); // The runtime uses this function to inform the GC of object size changes. The // GC will fill this area with a filler object and might clear recorded slots // in that area. void NotifyObjectSizeChange(Tagged<HeapObject>, int old_size, int new_size, ClearRecordedSlots clear_recorded_slots); // =========================================================================== // Deoptimization support API. =============================================== // =========================================================================== // Setters for code offsets of well-known deoptimization targets. void SetConstructStubCreateDeoptPCOffset(int pc_offset); void SetConstructStubInvokeDeoptPCOffset(int pc_offset); void SetInterpreterEntryReturnPCOffset(int pc_offset); void DeoptMarkedAllocationSites(); // =========================================================================== // Unified heap (C++) support. =============================================== // =========================================================================== V8_EXPORT_PRIVATE void AttachCppHeap(v8::CppHeap* cpp_heap); V8_EXPORT_PRIVATE void DetachCppHeap(); v8::CppHeap* cpp_heap() const { return cpp_heap_; } const cppgc::EmbedderStackState* overriden_stack_state() const; V8_EXPORT_PRIVATE void SetStackStart(void* stack_start); V8_EXPORT_PRIVATE ::heap::base::Stack& stack(); // =========================================================================== // Embedder roots optimizations. ============================================= // =========================================================================== V8_EXPORT_PRIVATE void SetEmbedderRootsHandler(EmbedderRootsHandler* handler); EmbedderRootsHandler* GetEmbedderRootsHandler() const; // =========================================================================== // External string table API. ================================================ // =========================================================================== // Registers an external string. inline void RegisterExternalString(Tagged<String> string); // Called when a string's resource is changed. The size of the payload is sent // as argument of the method. V8_EXPORT_PRIVATE void UpdateExternalString(Tagged<String> string, size_t old_payload, size_t new_payload); // Finalizes an external string by deleting the associated external // data and clearing the resource pointer. inline void FinalizeExternalString(Tagged<String> string); static Tagged<String> UpdateYoungReferenceInExternalStringTableEntry( Heap* heap, FullObjectSlot pointer); // =========================================================================== // Methods checking/returning the space of a given object/address. =========== // =========================================================================== // Returns whether the object resides in new space. static inline bool InYoungGeneration(Tagged<Object> object); static inline bool InYoungGeneration(MaybeObject object); static inline bool InYoungGeneration(Tagged<HeapObject> heap_object); static inline bool InFromPage(Tagged<Object> object); static inline bool InFromPage(MaybeObject object); static inline bool InFromPage(Tagged<HeapObject> heap_object); static inline bool InToPage(Tagged<Object> object); static inline bool InToPage(MaybeObject object); static inline bool InToPage(Tagged<HeapObject> heap_object); // Returns whether the object resides in old space. inline bool InOldSpace(Tagged<Object> object); // Checks whether an address/object is in the non-read-only heap (including // auxiliary area and unused area). Use IsValidHeapObject if checking both // heaps is required. V8_EXPORT_PRIVATE bool Contains(Tagged<HeapObject> value) const; // Same as above, but checks whether the object resides in any of the code // spaces. V8_EXPORT_PRIVATE bool ContainsCode(Tagged<HeapObject> value) const; // Checks whether object resides in the non-read-only shared heap. static inline bool InWritableSharedSpace(MaybeObject object); // Checks whether an address/object is in the non-read-only heap (including // auxiliary area and unused area). Use IsValidHeapObject if checking both // heaps is required. V8_EXPORT_PRIVATE bool SharedHeapContains(Tagged<HeapObject> value) const; // Returns whether the object must be in the shared old space. V8_EXPORT_PRIVATE bool MustBeInSharedOldSpace(Tagged<HeapObject> value); // Checks whether an address/object in a space. // Currently used by tests, serialization and heap verification only. V8_EXPORT_PRIVATE bool InSpace(Tagged<HeapObject> value, AllocationSpace space) const; // Slow methods that can be used for verification as they can also be used // with off-heap Addresses. V8_EXPORT_PRIVATE bool InSpaceSlow(Address addr, AllocationSpace space) const; static inline Heap* FromWritableHeapObject(Tagged<HeapObject> obj); // =========================================================================== // Object statistics tracking. =============================================== // =========================================================================== // Returns the number of buckets used by object statistics tracking during a // major GC. Note that the following methods fail gracefully when the bounds // are exceeded though. size_t NumberOfTrackedHeapObjectTypes(); // Returns object statistics about count and size at the last major GC. // Objects are being grouped into buckets that roughly resemble existing // instance types. size_t ObjectCountAtLastGC(size_t index); size_t ObjectSizeAtLastGC(size_t index); // Retrieves names of buckets used by object statistics tracking. bool GetObjectTypeName(size_t index, const char** object_type, const char** object_sub_type); // The total number of native contexts object on the heap. size_t NumberOfNativeContexts(); // The total number of native contexts that were detached but were not // garbage collected yet. size_t NumberOfDetachedContexts(); // =========================================================================== // Code statistics. // ========================================================== // =========================================================================== // Collect code (Code and BytecodeArray objects) statistics. void CollectCodeStatistics(); // =========================================================================== // GC statistics. ============================================================ // =========================================================================== // Returns the maximum amount of memory reserved for the heap. V8_EXPORT_PRIVATE size_t MaxReserved() const; size_t MaxSemiSpaceSize() { return max_semi_space_size_; } size_t InitialSemiSpaceSize() { return initial_semispace_size_; } size_t MaxOldGenerationSize() { return max_old_generation_size(); } // Limit on the max old generation size imposed by the underlying allocator. V8_EXPORT_PRIVATE static size_t AllocatorLimitOnMaxOldGenerationSize(); V8_EXPORT_PRIVATE static size_t HeapSizeFromPhysicalMemory( uint64_t physical_memory); V8_EXPORT_PRIVATE static void GenerationSizesFromHeapSize( size_t heap_size, size_t* young_generation_size, size_t* old_generation_size); V8_EXPORT_PRIVATE static size_t YoungGenerationSizeFromOldGenerationSize( size_t old_generation_size); V8_EXPORT_PRIVATE static size_t YoungGenerationSizeFromSemiSpaceSize( size_t semi_space_size); V8_EXPORT_PRIVATE static size_t SemiSpaceSizeFromYoungGenerationSize( size_t young_generation_size); V8_EXPORT_PRIVATE static size_t MinYoungGenerationSize(); V8_EXPORT_PRIVATE static size_t MinOldGenerationSize(); V8_EXPORT_PRIVATE static size_t MaxOldGenerationSize( uint64_t physical_memory); // Returns the capacity of the heap in bytes w/o growing. Heap grows when // more spaces are needed until it reaches the limit. size_t Capacity(); // Returns the capacity of the old generation. V8_EXPORT_PRIVATE size_t OldGenerationCapacity() const; base::Mutex* heap_expansion_mutex() { return &heap_expansion_mutex_; } // Returns the amount of memory currently held alive by the unmapper. size_t CommittedMemoryOfUnmapper(); // Returns the amount of memory currently committed for the heap. size_t CommittedMemory(); // Returns the amount of memory currently committed for the old space. size_t CommittedOldGenerationMemory(); // Returns the amount of executable memory currently committed for the heap. size_t CommittedMemoryExecutable(); // Returns the amount of physical memory currently committed for the heap. size_t CommittedPhysicalMemory(); // Returns the maximum amount of memory ever committed for the heap. size_t MaximumCommittedMemory() { return maximum_committed_; } // Updates the maximum committed memory for the heap. Should be called // whenever a space grows. void UpdateMaximumCommitted(); // Returns the available bytes in space w/o growing. // Heap doesn't guarantee that it can allocate an object that requires // all available bytes. Check MaxHeapObjectSize() instead. size_t Available(); // Returns size of all objects residing in the heap. V8_EXPORT_PRIVATE size_t SizeOfObjects(); // Returns size of all global handles in the heap. V8_EXPORT_PRIVATE size_t TotalGlobalHandlesSize(); // Returns size of all allocated/used global handles in the heap. V8_EXPORT_PRIVATE size_t UsedGlobalHandlesSize(); void UpdateSurvivalStatistics(int start_new_space_size); inline void IncrementPromotedObjectsSize(size_t object_size) { promoted_objects_size_ += object_size; } inline size_t promoted_objects_size() { return promoted_objects_size_; } inline void IncrementNewSpaceSurvivingObjectSize(size_t object_size) { new_space_surviving_object_size_ += object_size; } inline size_t new_space_surviving_object_size() { return new_space_surviving_object_size_; } inline size_t SurvivedYoungObjectSize() { return promoted_objects_size_ + new_space_surviving_object_size_; } inline void IncrementNodesDiedInNewSpace(int count) { nodes_died_in_new_space_ += count; } inline void IncrementNodesCopiedInNewSpace() { nodes_copied_in_new_space_++; } inline void IncrementNodesPromoted() { nodes_promoted_++; } inline void IncrementYoungSurvivorsCounter(size_t survived) { survived_since_last_expansion_ += survived; } void UpdateNewSpaceAllocationCounter(); V8_EXPORT_PRIVATE size_t NewSpaceAllocationCounter(); // This should be used only for testing. void set_new_space_allocation_counter(size_t new_value) { new_space_allocation_counter_ = new_value; } void UpdateOldGenerationAllocationCounter() { old_generation_allocation_counter_at_last_gc_ = OldGenerationAllocationCounter(); old_generation_size_at_last_gc_ = 0; } size_t OldGenerationAllocationCounter() { return old_generation_allocation_counter_at_last_gc_ + PromotedSinceLastGC(); } size_t EmbedderAllocationCounter() const; // This should be used only for testing. void set_old_generation_allocation_counter_at_last_gc(size_t new_value) { old_generation_allocation_counter_at_last_gc_ = new_value; } size_t PromotedSinceLastGC() { size_t old_generation_size = OldGenerationSizeOfObjects(); return old_generation_size > old_generation_size_at_last_gc_ ? old_generation_size - old_generation_size_at_last_gc_ : 0; } int gc_count() const { return gc_count_; } bool is_current_gc_forced() const { return is_current_gc_forced_; } GarbageCollector current_or_last_garbage_collector() const { return current_or_last_garbage_collector_; } // Returns whether the currently in-progress GC should avoid increasing the // ages on any objects that live for a set number of collections. bool ShouldCurrentGCKeepAgesUnchanged() const { return is_current_gc_forced_ || is_current_gc_for_heap_profiler_; } // Returns the size of objects residing in non-new spaces. // Excludes external memory held by those objects. V8_EXPORT_PRIVATE size_t OldGenerationSizeOfObjects() const; // Returns the size of objects held by the EmbedderHeapTracer. V8_EXPORT_PRIVATE size_t EmbedderSizeOfObjects() const; // Returns the global size of objects (embedder + V8 non-new spaces). V8_EXPORT_PRIVATE size_t GlobalSizeOfObjects() const; // We allow incremental marking to overshoot the V8 and global allocation // limit for performance reasons. If the overshoot is too large then we are // more eager to finalize incremental marking. bool AllocationLimitOvershotByLargeMargin() const; // Return the maximum size objects can be before having to allocate them as // large objects. This takes into account allocating in the code space for // which the size of the allocatable space per V8 page may depend on the OS // page size at runtime. You may use kMaxRegularHeapObjectSize as a constant // instead if you know the allocation isn't in the code spaces. inline V8_EXPORT_PRIVATE int MaxRegularHeapObjectSize( AllocationType allocation); // =========================================================================== // Prologue/epilogue callback methods.======================================== // =========================================================================== void AddGCPrologueCallback(v8::Isolate::GCCallbackWithData callback, GCType gc_type_filter, void* data); void RemoveGCPrologueCallback(v8::Isolate::GCCallbackWithData callback, void* data); void AddGCEpilogueCallback(v8::Isolate::GCCallbackWithData callback, GCType gc_type_filter, void* data); void RemoveGCEpilogueCallback(v8::Isolate::GCCallbackWithData callback, void* data); void CallGCPrologueCallbacks(GCType gc_type, GCCallbackFlags flags, GCTracer::Scope::ScopeId scope_id); void CallGCEpilogueCallbacks(GCType gc_type, GCCallbackFlags flags, GCTracer::Scope::ScopeId scope_id); // =========================================================================== // Allocation methods. ======================================================= // =========================================================================== // Creates a filler object and returns a heap object immediately after it. V8_EXPORT_PRIVATE Tagged<HeapObject> PrecedeWithFiller( Tagged<HeapObject> object, int filler_size); // Creates a filler object and returns a heap object immediately after it. // Unlike `PrecedeWithFiller` this method will not perform slot verification // since this would race on background threads. V8_EXPORT_PRIVATE Tagged<HeapObject> PrecedeWithFillerBackground( Tagged<HeapObject> object, int filler_size); // Creates a filler object if needed for alignment and returns a heap object // immediately after it. If any space is left after the returned object, // another filler object is created so the over allocated memory is iterable. V8_WARN_UNUSED_RESULT Tagged<HeapObject> AlignWithFillerBackground( Tagged<HeapObject> object, int object_size, int allocation_size, AllocationAlignment alignment); // Allocate an external backing store with the given allocation callback. // If the callback fails (indicated by a nullptr result) then this function // will re-try the allocation after performing GCs. This is useful for // external backing stores that may be retained by (unreachable) V8 objects // such as ArrayBuffers, ExternalStrings, etc. // // The function may also proactively trigger GCs even if the allocation // callback does not fail to keep the memory usage low. V8_EXPORT_PRIVATE void* AllocateExternalBackingStore( const std::function<void*(size_t)>& allocate, size_t byte_length); // =========================================================================== // Allocation tracking. ====================================================== // =========================================================================== // Adds {new_space_observer} to new space and {observer} to any other space. void AddAllocationObserversToAllSpaces( AllocationObserver* observer, AllocationObserver* new_space_observer); // Removes {new_space_observer} from new space and {observer} from any other // space. void RemoveAllocationObserversFromAllSpaces( AllocationObserver* observer, AllocationObserver* new_space_observer); // Check if the given object was recently allocated and its fields may appear // as uninitialized to background threads. // This predicate may be invoked from a background thread. inline bool IsPendingAllocation(Tagged<HeapObject> object); inline bool IsPendingAllocation(Tagged<Object> object); // Notifies that all previously allocated objects are properly initialized // and ensures that IsPendingAllocation returns false for them. This function // may be invoked only on the main thread. V8_EXPORT_PRIVATE void PublishPendingAllocations(); // =========================================================================== // Heap object allocation tracking. ========================================== // =========================================================================== V8_EXPORT_PRIVATE void AddHeapObjectAllocationTracker( HeapObjectAllocationTracker* tracker); V8_EXPORT_PRIVATE void RemoveHeapObjectAllocationTracker( HeapObjectAllocationTracker* tracker); bool has_heap_object_allocation_tracker() const { return !allocation_trackers_.empty(); } // =========================================================================== // Retaining path tracking. ================================================== // =========================================================================== // Adds the given object to the weak table of retaining path targets. // On each GC if the marker discovers the object, it will print the retaining // path. This requires --track-retaining-path flag. void AddRetainingPathTarget(Handle<HeapObject> object, RetainingPathOption option); // =========================================================================== // Stack frame support. ====================================================== // =========================================================================== // Searches for a Code object by the given interior pointer. V8_EXPORT_PRIVATE Tagged<Code> FindCodeForInnerPointer(Address inner_pointer); // Use the GcSafe family of functions if called while GC is in progress. Tagged<GcSafeCode> GcSafeFindCodeForInnerPointer(Address inner_pointer); base::Optional<Tagged<GcSafeCode>> GcSafeTryFindCodeForInnerPointer( Address inner_pointer); base::Optional<Tagged<InstructionStream>> GcSafeTryFindInstructionStreamForInnerPointer(Address inner_pointer); // Only intended for use from the `jco` gdb macro. base::Optional<Tagged<Code>> TryFindCodeForInnerPointerForPrinting( Address inner_pointer); // Returns true if {addr} is contained within {instruction_stream} and false // otherwise. Mostly useful for debugging. bool GcSafeInstructionStreamContains( Tagged<InstructionStream> instruction_stream, Address addr); // =========================================================================== // Sweeping. ================================================================= // =========================================================================== bool sweeping_in_progress() const { return sweeper_->sweeping_in_progress(); } bool sweeping_in_progress_for_space(AllocationSpace space) const { return sweeper_->sweeping_in_progress_for_space(space); } bool minor_sweeping_in_progress() const { return sweeper_->minor_sweeping_in_progress(); } bool major_sweeping_in_progress() const { return sweeper_->major_sweeping_in_progress(); } void FinishSweepingIfOutOfWork(); enum class SweepingForcedFinalizationMode { kUnifiedHeap, kV8Only }; // Ensures that sweeping is finished. // // Note: Can only be called safely from main thread. V8_EXPORT_PRIVATE void EnsureSweepingCompleted( SweepingForcedFinalizationMode mode); void EnsureYoungSweepingCompleted(); void DrainSweepingWorklistForSpace(AllocationSpace space); // ============================================================================= #ifdef V8_ENABLE_ALLOCATION_TIMEOUT void V8_EXPORT_PRIVATE set_allocation_timeout(int allocation_timeout); #endif // V8_ENABLE_ALLOCATION_TIMEOUT #ifdef DEBUG void VerifyCountersAfterSweeping(); void VerifyCountersBeforeConcurrentSweeping(GarbageCollector collector); void VerifyCommittedPhysicalMemory(); void Print(); void PrintHandles(); // Report code statistics. void ReportCodeStatistics(const char* title); #endif // DEBUG void* GetRandomMmapAddr() { void* result = v8::internal::GetRandomMmapAddr(); #if V8_TARGET_ARCH_X64 #if V8_OS_DARWIN // The Darwin kernel [as of macOS 10.12.5] does not clean up page // directory entries [PDE] created from mmap or mach_vm_allocate, even // after the region is destroyed. Using a virtual address space that is // too large causes a leak of about 1 wired [can never be paged out] page // per call to mmap(). The page is only reclaimed when the process is // killed. Confine the hint to a 32-bit section of the virtual address // space. See crbug.com/700928. uintptr_t offset = reinterpret_cast<uintptr_t>(result) & kMmapRegionMask; result = reinterpret_cast<void*>(mmap_region_base_ + offset); #endif // V8_OS_DARWIN #endif // V8_TARGET_ARCH_X64 return result; } // Calculates the nof entries for the full sized number to string cache. inline int MaxNumberToStringCacheSize() const; static Isolate* GetIsolateFromWritableObject(Tagged<HeapObject> object); // Ensure that we have swept all spaces in such a way that we can iterate // over all objects. V8_EXPORT_PRIVATE void MakeHeapIterable(); // Free all LABs in the heap. V8_EXPORT_PRIVATE void FreeLinearAllocationAreas(); V8_EXPORT_PRIVATE bool CanPromoteYoungAndExpandOldGeneration( size_t size) const; V8_EXPORT_PRIVATE bool CanExpandOldGeneration(size_t size) const; // Checks whether OldGenerationCapacity() can be expanded by `size` bytes and // still fits into `max_old_generation_size_`. V8_EXPORT_PRIVATE bool IsOldGenerationExpansionAllowed( size_t size, const base::MutexGuard& expansion_mutex_witness) const; bool ShouldReduceMemory() const { return current_gc_flags_ & GCFlag::kReduceMemoryFootprint; } MarkingState* marking_state() { return &marking_state_; } NonAtomicMarkingState* non_atomic_marking_state() { return &non_atomic_marking_state_; } PretenuringHandler* pretenuring_handler() { return &pretenuring_handler_; } bool IsInlineAllocationEnabled() const { return inline_allocation_enabled_; } // Returns the amount of external memory registered since last global gc. V8_EXPORT_PRIVATE uint64_t AllocatedExternalMemorySinceMarkCompact() const; std::shared_ptr<v8::TaskRunner> GetForegroundTaskRunner() const; bool ShouldUseBackgroundThreads() const; private: class AllocationTrackerForDebugging; using ExternalStringTableUpdaterCallback = Tagged<String> (*)(Heap* heap, FullObjectSlot pointer); // External strings table is a place where all external strings are // registered. We need to keep track of such strings to properly // finalize them. class ExternalStringTable { public: explicit ExternalStringTable(Heap* heap) : heap_(heap) {} ExternalStringTable(const ExternalStringTable&) = delete; ExternalStringTable& operator=(const ExternalStringTable&) = delete; // Registers an external string. inline void AddString(Tagged<String> string); bool Contains(Tagged<String> string); void IterateAll(RootVisitor* v); void IterateYoung(RootVisitor* v); void PromoteYoung(); // Restores internal invariant and gets rid of collected strings. Must be // called after each Iterate*() that modified the strings. void CleanUpAll(); void CleanUpYoung(); // Finalize all registered external strings and clear tables. void TearDown(); void UpdateYoungReferences( Heap::ExternalStringTableUpdaterCallback updater_func); void UpdateReferences( Heap::ExternalStringTableUpdaterCallback updater_func); bool HasYoung() const { return !young_strings_.empty(); } private: void Verify(); void VerifyYoung(); Heap* const heap_; // To speed up scavenge collections young string are kept separate from old // strings. std::vector<TaggedBase> young_strings_; std::vector<TaggedBase> old_strings_; // Used to protect access with --shared-string-table. base::Mutex mutex_; }; static const int kInitialEvalCacheSize = 64; static const int kInitialNumberStringCacheSize = 256; static const int kRememberedUnmappedPages = 128; static const int kYoungSurvivalRateHighThreshold = 90; static const int kYoungSurvivalRateAllowedDeviation = 15; static const int kOldSurvivalRateLowThreshold = 10; static const int kMaxMarkCompactsInIdleRound = 7; Heap(); ~Heap(); Heap(const Heap&) = delete; Heap& operator=(const Heap&) = delete; static bool IsRegularObjectAllocation(AllocationType allocation) { return AllocationType::kYoung == allocation || AllocationType::kOld == allocation; } #define ROOT_ACCESSOR(type, name, CamelName) \ inline void set_##name(Tagged<type> value); ROOT_LIST(ROOT_ACCESSOR) #undef ROOT_ACCESSOR int NumberOfScavengeTasks(); // Checks whether a global GC is necessary GarbageCollector SelectGarbageCollector(AllocationSpace space, GarbageCollectionReason gc_reason, const char** reason) const; // Frees all LABs owned by the main thread. void FreeMainThreadLinearAllocationAreas(); // Free all shared LABs. void FreeSharedLinearAllocationAreas(); // Makes all shared LABs iterable. void MakeSharedLinearAllocationAreasIterable(); // Free all shared LABs of main thread. void FreeMainThreadSharedLinearAllocationAreas(); // Enables/Disables black allocation in shared LABs. void MarkSharedLinearAllocationAreasBlack(); void UnmarkSharedLinearAllocationAreas(); // Performs garbage collection in a safepoint. void PerformGarbageCollection(GarbageCollector collector, GarbageCollectionReason gc_reason, const char* collector_reason); void PerformHeapVerification(); std::vector<Isolate*> PauseConcurrentThreadsInClients( GarbageCollector collector); void ResumeConcurrentThreadsInClients(std::vector<Isolate*> paused_clients); // For static-roots builds, pads the object to the required size. void StaticRootsEnsureAllocatedSize(Handle<HeapObject> obj, int required); bool CreateEarlyReadOnlyMaps(); bool CreateImportantReadOnlyObjects(); bool CreateLateReadOnlyNonJSReceiverMaps(); bool CreateLateReadOnlyJSReceiverMaps(); bool CreateReadOnlyObjects(); void CreateInternalAccessorInfoObjects(); void CreateInitialMutableObjects(); enum class VerifyNoSlotsRecorded { kYes, kNo }; // Creates a filler object in the specified memory area. This method is the // internal method used by all CreateFillerObjectAtXXX-methods. void CreateFillerObjectAtRaw(Address addr, int size, ClearFreedMemoryMode clear_memory_mode, ClearRecordedSlots clear_slots_mode, VerifyNoSlotsRecorded verify_no_slots_recorded); // Range write barrier implementation. template <int kModeMask, typename TSlot> V8_INLINE void WriteBarrierForRangeImpl(MemoryChunk* source_page, Tagged<HeapObject> object, TSlot start_slot, TSlot end_slot); // Deopts all code that contains allocation instruction which are tenured or // not tenured. Moreover it clears the pretenuring allocation site statistics. void ResetAllAllocationSitesDependentCode(AllocationType allocation); // Evaluates local pretenuring for the old space and calls // ResetAllTenuredAllocationSitesDependentCode if too many objects died in // the old space. void EvaluateOldSpaceLocalPretenuring(uint64_t size_of_objects_before_gc); // Record statistics after garbage collection. void ReportStatisticsAfterGC(); // Flush the number to string cache. void FlushNumberStringCache(); void ActivateMemoryReducerIfNeededOnMainThread(); void ShrinkOldGenerationAllocationLimitIfNotConfigured(); double ComputeMutatorUtilization(const char* tag, double mutator_speed, double gc_speed); bool HasLowYoungGenerationAllocationRate(); bool HasLowOldGenerationAllocationRate(); bool HasLowEmbedderAllocationRate(); enum class ResizeNewSpaceMode { kShrink, kGrow, kNone }; ResizeNewSpaceMode ShouldResizeNewSpace(); void ExpandNewSpaceSize(); void ReduceNewSpaceSize(); GCIdleTimeHeapState ComputeHeapState(); bool PerformIdleTimeAction(GCIdleTimeAction action, GCIdleTimeHeapState heap_state, double deadline_in_ms); void IdleNotificationEpilogue(GCIdleTimeAction action, GCIdleTimeHeapState heap_state, double start_ms, double deadline_in_ms); void PrintMaxMarkingLimitReached(); void PrintMaxNewSpaceSizeReached(); int NextStressMarkingLimit(); void AddToRingBuffer(const char* string); void GetFromRingBuffer(char* buffer); void CompactRetainedMaps(Tagged<WeakArrayList> retained_maps); void CollectGarbageOnMemoryPressure(); void EagerlyFreeExternalMemory(); bool InvokeNearHeapLimitCallback(); void InvokeIncrementalMarkingPrologueCallbacks(); void InvokeIncrementalMarkingEpilogueCallbacks(); // Casts a heap object to an InstructionStream, DCHECKs that the // inner_pointer is within the object, and returns the attached Code object. Tagged<GcSafeCode> GcSafeGetCodeFromInstructionStream( Tagged<HeapObject> instruction_stream, Address inner_pointer); // Returns the map of a HeapObject. Can be used during garbage collection, // i.e. it supports a forwarded map. Tagged<Map> GcSafeMapOfHeapObject(Tagged<HeapObject> object); // =========================================================================== // Actual GC. ================================================================ // =========================================================================== // Code that should be run before and after each GC. Includes // some reporting/verification activities when compiled with DEBUG set. void GarbageCollectionPrologue(GarbageCollectionReason gc_reason, const v8::GCCallbackFlags gc_callback_flags); void GarbageCollectionPrologueInSafepoint(); void GarbageCollectionEpilogue(GarbageCollector collector); void GarbageCollectionEpilogueInSafepoint(GarbageCollector collector); // Performs a major collection in the whole heap. void MarkCompact(); // Performs a minor collection of just the young generation. void MinorMarkSweep(); // Code to be run before and after mark-compact. void MarkCompactPrologue(); void MarkCompactEpilogue(); // Performs a minor collection in new generation. void Scavenge(); void UpdateYoungReferencesInExternalStringTable( ExternalStringTableUpdaterCallback updater_func); void UpdateReferencesInExternalStringTable( ExternalStringTableUpdaterCallback updater_func); void ProcessAllWeakReferences(WeakObjectRetainer* retainer); void ProcessNativeContexts(WeakObjectRetainer* retainer); void ProcessAllocationSites(WeakObjectRetainer* retainer); void ProcessDirtyJSFinalizationRegistries(WeakObjectRetainer* retainer); void ProcessWeakListRoots(WeakObjectRetainer* retainer); // =========================================================================== // GC statistics. ============================================================ // =========================================================================== inline size_t OldGenerationSpaceAvailable() { uint64_t bytes = OldGenerationSizeOfObjects() + AllocatedExternalMemorySinceMarkCompact(); if (old_generation_allocation_limit() <= bytes) return 0; return old_generation_allocation_limit() - static_cast<size_t>(bytes); } void UpdateTotalGCTime(base::TimeDelta duration); bool IsIneffectiveMarkCompact(size_t old_generation_size, double mutator_utilization); void CheckIneffectiveMarkCompact(size_t old_generation_size, double mutator_utilization); inline void IncrementExternalBackingStoreBytes(ExternalBackingStoreType type, size_t amount); inline void DecrementExternalBackingStoreBytes(ExternalBackingStoreType type, size_t amount); // =========================================================================== // Growing strategy. ========================================================= // =========================================================================== MemoryReducer* memory_reducer() { return memory_reducer_.get(); } // For some webpages RAIL mode does not switch from PERFORMANCE_LOAD. // This constant limits the effect of load RAIL mode on GC. // The value is arbitrary and chosen as the largest load time observed in // v8 browsing benchmarks. static const int kMaxLoadTimeMs = 7000; V8_EXPORT_PRIVATE bool ShouldOptimizeForLoadTime(); size_t old_generation_allocation_limit() const { return old_generation_allocation_limit_.load(std::memory_order_relaxed); } size_t global_allocation_limit() const { return global_allocation_limit_; } size_t max_old_generation_size() const { return max_old_generation_size_.load(std::memory_order_relaxed); } size_t min_old_generation_size() const { return min_old_generation_size_; } // Sets max_old_generation_size_ and computes the new global heap limit from // it. void SetOldGenerationAndGlobalMaximumSize(size_t max_old_generation_size); // Sets allocation limits for both old generation and the global heap. void SetOldGenerationAndGlobalAllocationLimit( size_t new_old_generation_allocation_limit, size_t new_global_allocation_limit); void ResetOldGenerationAndGlobalAllocationLimit(); bool always_allocate() { return always_allocate_scope_count_ != 0; } bool ShouldExpandOldGenerationOnSlowAllocation(LocalHeap* local_heap, AllocationOrigin origin); bool IsRetryOfFailedAllocation(LocalHeap* local_heap); bool IsMainThreadParked(LocalHeap* local_heap); bool IsMajorMarkingComplete(LocalHeap* local_heap); HeapGrowingMode CurrentHeapGrowingMode(); double PercentToOldGenerationLimit(); double PercentToGlobalMemoryLimit(); enum class IncrementalMarkingLimit { kNoLimit, kSoftLimit, kHardLimit, kFallbackForEmbedderLimit }; IncrementalMarkingLimit IncrementalMarkingLimitReached(); bool ShouldStressCompaction() const; base::Optional<size_t> GlobalMemoryAvailable(); void RecomputeLimits(GarbageCollector collector, base::TimeTicks time); // =========================================================================== // GC Tasks. ================================================================= // =========================================================================== void ScheduleMinorGCTaskIfNeeded(); V8_EXPORT_PRIVATE void StartMinorMSIncrementalMarkingIfNeeded(); bool MinorMSSizeTaskTriggerReached() const; MinorGCJob* minor_gc_job() { return minor_gc_job_.get(); } // =========================================================================== // Allocation methods. ======================================================= // =========================================================================== HeapAllocator* allocator() { return &heap_allocator_; } // Allocates a JS Map in the heap. V8_WARN_UNUSED_RESULT AllocationResult AllocateMap(AllocationType allocation_type, InstanceType instance_type, int instance_size, ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND, int inobject_properties = 0); // Allocate an uninitialized object. The memory is non-executable if the // hardware and OS allow. This is the single choke-point for allocations // performed by the runtime and should not be bypassed (to extend this to // inlined allocations, use the Heap::DisableInlineAllocation() support). V8_WARN_UNUSED_RESULT V8_INLINE AllocationResult AllocateRaw(int size_in_bytes, AllocationType allocation, AllocationOrigin origin = AllocationOrigin::kRuntime, AllocationAlignment alignment = kTaggedAligned); // This method will try to allocate objects quickly (AllocationType::kYoung) // otherwise it falls back to a slower path indicated by the mode. enum AllocationRetryMode { kLightRetry, kRetryOrFail }; template <AllocationRetryMode mode> V8_WARN_UNUSED_RESULT V8_INLINE Tagged<HeapObject> AllocateRawWith( int size, AllocationType allocation, AllocationOrigin origin = AllocationOrigin::kRuntime, AllocationAlignment alignment = kTaggedAligned); // Call AllocateRawWith with kRetryOrFail. Matches the method in LocalHeap. V8_WARN_UNUSED_RESULT inline Address AllocateRawOrFail( int size, AllocationType allocation, AllocationOrigin origin = AllocationOrigin::kRuntime, AllocationAlignment alignment = kTaggedAligned); // Allocates a heap object based on the map. V8_WARN_UNUSED_RESULT AllocationResult Allocate(Handle<Map> map, AllocationType allocation); // Allocates a partial map for bootstrapping. V8_WARN_UNUSED_RESULT AllocationResult AllocatePartialMap(InstanceType instance_type, int instance_size); void FinalizePartialMap(Tagged<Map> map); void set_force_oom(bool value) { force_oom_ = value; } void set_force_gc_on_next_allocation() { force_gc_on_next_allocation_ = true; } // Helper for IsPendingAllocation. inline bool IsPendingAllocationInternal(Tagged<HeapObject> object); // =========================================================================== // Retaining path tracing ==================================================== // =========================================================================== void AddRetainer(Tagged<HeapObject> retainer, Tagged<HeapObject> object); void AddEphemeronRetainer(Tagged<HeapObject> retainer, Tagged<HeapObject> object); void AddRetainingRoot(Root root, Tagged<HeapObject> object); // Returns true if the given object is a target of retaining path tracking. // Stores the option corresponding to the object in the provided *option. bool IsRetainingPathTarget(Tagged<HeapObject> object, RetainingPathOption* option); void PrintRetainingPath(Tagged<HeapObject> object, RetainingPathOption option); void UpdateRetainersAfterScavenge(); #ifdef DEBUG V8_EXPORT_PRIVATE void IncrementObjectCounters(); #endif // DEBUG std::vector<Handle<NativeContext>> FindAllNativeContexts(); std::vector<Tagged<WeakArrayList>> FindAllRetainedMaps(); MemoryMeasurement* memory_measurement() { return memory_measurement_.get(); } AllocationType allocation_type_for_in_place_internalizable_strings() const { return allocation_type_for_in_place_internalizable_strings_; } bool IsStressingScavenge(); void SetIsMarkingFlag(bool value); void SetIsMinorMarkingFlag(bool value); ExternalMemoryAccounting external_memory_; // This can be calculated directly from a pointer to the heap; however, it is // more expedient to get at the isolate directly from within Heap methods. Isolate* isolate_ = nullptr; HeapAllocator heap_allocator_; // These limits are initialized in Heap::ConfigureHeap based on the resource // constraints and flags. size_t code_range_size_ = 0; size_t max_semi_space_size_ = 0; size_t initial_semispace_size_ = 0; // Full garbage collections can be skipped if the old generation size // is below this threshold. size_t min_old_generation_size_ = 0; // If the old generation size exceeds this limit, then V8 will // crash with out-of-memory error. std::atomic<size_t> max_old_generation_size_{0}; // TODO(mlippautz): Clarify whether this should take some embedder // configurable limit into account. size_t min_global_memory_size_ = 0; size_t max_global_memory_size_ = 0; size_t initial_max_old_generation_size_ = 0; size_t initial_max_old_generation_size_threshold_ = 0; size_t initial_old_generation_size_ = 0; // Before the first full GC the old generation allocation limit is considered // to be *not* configured (unless initial limits were provided by the // embedder). In this mode V8 starts with a very large old generation // allocation limit initially. Minor GCs may then shrink this initial limit // down until the first full GC computes a proper old generation allocation // limit in Heap::RecomputeLimits. The old generation allocation limit is then // considered to be configured for all subsequent GCs. After the first full GC // this field is only ever reset for top context disposals. bool old_generation_allocation_limit_configured_ = false; size_t maximum_committed_ = 0; size_t old_generation_capacity_after_bootstrap_ = 0; // Backing store bytes (array buffers and external strings). // Use uint64_t counter since the counter could overflow the 32-bit range // temporarily on 32-bit. std::atomic<uint64_t> backing_store_bytes_{0}; // For keeping track of how much data has survived // scavenge since last new space expansion. size_t survived_since_last_expansion_ = 0; // This is not the depth of nested AlwaysAllocateScope's but rather a single // count, as scopes can be acquired from multiple tasks (read: threads). std::atomic<size_t> always_allocate_scope_count_{0}; // Stores the memory pressure level that set by MemoryPressureNotification // and reset by a mark-compact garbage collection. std::atomic<v8::MemoryPressureLevel> memory_pressure_level_; std::vector<std::pair<v8::NearHeapLimitCallback, void*>> near_heap_limit_callbacks_; // For keeping track of context disposals. int contexts_disposed_ = 0; // Spaces owned by this heap through space_. NewSpace* new_space_ = nullptr; OldSpace* old_space_ = nullptr; CodeSpace* code_space_ = nullptr; SharedSpace* shared_space_ = nullptr; OldLargeObjectSpace* lo_space_ = nullptr; CodeLargeObjectSpace* code_lo_space_ = nullptr; NewLargeObjectSpace* new_lo_space_ = nullptr; SharedLargeObjectSpace* shared_lo_space_ = nullptr; ReadOnlySpace* read_only_space_ = nullptr; TrustedSpace* trusted_space_ = nullptr; TrustedLargeObjectSpace* trusted_lo_space_ = nullptr; // Either pointer to owned shared spaces or pointer to unowned shared spaces // in another isolate. PagedSpace* shared_allocation_space_ = nullptr; OldLargeObjectSpace* shared_lo_allocation_space_ = nullptr; // Allocators for the shared spaces. std::unique_ptr<ConcurrentAllocator> shared_space_allocator_; // Map from the space id to the space. std::unique_ptr<Space> space_[LAST_SPACE + 1]; #ifdef V8_COMPRESS_POINTERS // The space in the ExternalPointerTable containing entries owned by objects // in this heap. ExternalPointerTable::Space external_pointer_space_; // Likewise but for slots in host objects in ReadOnlySpace. ExternalPointerTable::Space read_only_external_pointer_space_; // Likewise but for the indirect pointer table. IndirectPointerTable::Space indirect_pointer_space_; #endif // V8_COMPRESS_POINTERS #ifdef V8_ENABLE_SANDBOX // The space in the process-wide code pointer table managed by this heap. CodePointerTable::Space code_pointer_space_; #endif // V8_ENABLE_SANDBOX LocalHeap* main_thread_local_heap_ = nullptr; // Determines whether code space is write-protected. This is essentially a // race-free copy of the {v8_flags.write_protect_code_memory} flag. bool write_protect_code_memory_ = false; std::atomic<HeapState> gc_state_{NOT_IN_GC}; // Starts marking when stress_marking_percentage_% of the marking start limit // is reached. int stress_marking_percentage_ = 0; // Observer that can cause early scavenge start. StressScavengeObserver* stress_scavenge_observer_ = nullptr; // The maximum percent of the marking limit reached without causing marking. // This is tracked when specifying --fuzzer-gc-analysis. double max_marking_limit_reached_ = 0.0; // How many mark-sweep collections happened. unsigned int ms_count_ = 0; // How many gc happened. unsigned int gc_count_ = 0; // The number of Mark-Compact garbage collections that are considered as // ineffective. See IsIneffectiveMarkCompact() predicate. int consecutive_ineffective_mark_compacts_ = 0; static const uintptr_t kMmapRegionMask = 0xFFFFFFFFu; uintptr_t mmap_region_base_ = 0; // For post mortem debugging. int remembered_unmapped_pages_index_ = 0; Address remembered_unmapped_pages_[kRememberedUnmappedPages]; // Limit that triggers a global GC on the next (normally caused) GC. This // is checked when we have already decided to do a GC to help determine // which collector to invoke, before expanding a paged space in the old // generation and on every allocation in large object space. std::atomic<size_t> old_generation_allocation_limit_{0}; size_t global_allocation_limit_ = 0; // Weak list heads, threaded through the objects. // List heads are initialized lazily and contain the undefined_value at start. // {native_contexts_list_} is an Address instead of an Object to allow the use // of atomic accessors. std::atomic<Address> native_contexts_list_; Tagged<Object> allocation_sites_list_ = Smi::zero(); Tagged<Object> dirty_js_finalization_registries_list_ = Smi::zero(); // Weak list tails. Tagged<Object> dirty_js_finalization_registries_list_tail_ = Smi::zero(); GCCallbacks gc_prologue_callbacks_; GCCallbacks gc_epilogue_callbacks_; GetExternallyAllocatedMemoryInBytesCallback external_memory_callback_; int deferred_counters_[v8::Isolate::kUseCounterFeatureCount]; size_t promoted_objects_size_ = 0; double promotion_ratio_ = 0.0; double promotion_rate_ = 0.0; size_t new_space_surviving_object_size_ = 0; size_t previous_new_space_surviving_object_size_ = 0; double new_space_surviving_rate_ = 0.0; int nodes_died_in_new_space_ = 0; int nodes_copied_in_new_space_ = 0; int nodes_promoted_ = 0; // Total time spent in GC. base::TimeDelta total_gc_time_ms_; // Last time a garbage collection happened. double last_gc_time_ = 0.0; std::unique_ptr<GCTracer> tracer_; std::unique_ptr<Sweeper> sweeper_; std::unique_ptr<MarkCompactCollector> mark_compact_collector_; std::unique_ptr<MinorMarkSweepCollector> minor_mark_sweep_collector_; std::unique_ptr<ScavengerCollector> scavenger_collector_; std::unique_ptr<ArrayBufferSweeper> array_buffer_sweeper_; std::unique_ptr<MemoryAllocator> memory_allocator_; std::unique_ptr<IncrementalMarking> incremental_marking_; std::unique_ptr<ConcurrentMarking> concurrent_marking_; std::unique_ptr<GCIdleTimeHandler> gc_idle_time_handler_; std::unique_ptr<MemoryMeasurement> memory_measurement_; std::unique_ptr<MemoryReducer> memory_reducer_; std::unique_ptr<ObjectStats> live_object_stats_; std::unique_ptr<ObjectStats> dead_object_stats_; std::unique_ptr<MinorGCJob> minor_gc_job_; std::unique_ptr<AllocationObserver> minor_gc_task_observer_; std::unique_ptr<AllocationObserver> stress_concurrent_allocation_observer_; std::unique_ptr<AllocationTrackerForDebugging> allocation_tracker_for_debugging_; std::unique_ptr<EphemeronRememberedSet> ephemeron_remembered_set_; std::shared_ptr<v8::TaskRunner> task_runner_; // This object controls virtual space reserved for code on the V8 heap. This // is only valid for 64-bit architectures where kRequiresCodeRange. // // Owned by the heap when !V8_COMPRESS_POINTERS_IN_SHARED_CAGE, otherwise is // process-wide. #if V8_COMPRESS_POINTERS_IN_SHARED_CAGE CodeRange* code_range_ = nullptr; #else std::unique_ptr<CodeRange> code_range_; #endif v8::CppHeap* cpp_heap_ = nullptr; // Owned by the embedder. EmbedderRootsHandler* embedder_roots_handler_ = nullptr; // Owned by the embedder. cppgc::EmbedderStackState embedder_stack_state_ = cppgc::EmbedderStackState::kMayContainHeapPointers; StrongRootsEntry* strong_roots_head_ = nullptr; base::Mutex strong_roots_mutex_; base::Mutex heap_expansion_mutex_; bool need_to_remove_stress_concurrent_allocation_observer_ = false; // This counter is increased before each GC and never reset. // To account for the bytes allocated since the last GC, use the // NewSpaceAllocationCounter() function. size_t new_space_allocation_counter_ = 0; // This counter is increased before each GC and never reset. To // account for the bytes allocated since the last GC, use the // OldGenerationAllocationCounter() function. size_t old_generation_allocation_counter_at_last_gc_ = 0; // The size of objects in old generation after the last MarkCompact GC. size_t old_generation_size_at_last_gc_{0}; // The size of global memory after the last MarkCompact GC. size_t global_memory_at_last_gc_ = 0; char trace_ring_buffer_[kTraceRingBufferSize]; // If it's not full then the data is from 0 to ring_buffer_end_. If it's // full then the data is from ring_buffer_end_ to the end of the buffer and // from 0 to ring_buffer_end_. bool ring_buffer_full_ = false; size_t ring_buffer_end_ = 0; // Flag is set when the heap has been configured. The heap can be repeatedly // configured through the API until it is set up. bool configured_ = false; // Currently set GC flags that are respected by all GC components. GCFlags current_gc_flags_ = GCFlag::kNoFlags; // Currently set GC callback flags that are used to pass information between // the embedder and V8's GC. GCCallbackFlags current_gc_callback_flags_ = GCCallbackFlags::kNoGCCallbackFlags; std::unique_ptr<IsolateSafepoint> safepoint_; bool is_current_gc_forced_ = false; bool is_current_gc_for_heap_profiler_ = false; GarbageCollector current_or_last_garbage_collector_ = GarbageCollector::SCAVENGER; ExternalStringTable external_string_table_; const AllocationType allocation_type_for_in_place_internalizable_strings_; base::Mutex relocation_mutex_; std::unique_ptr<CollectionBarrier> collection_barrier_; int ignore_local_gc_requests_depth_ = 0; int gc_callbacks_depth_ = 0; bool deserialization_complete_ = false; int max_regular_code_object_size_ = 0; bool inline_allocation_enabled_ = true; int pause_allocation_observers_depth_ = 0; // Used for testing purposes. bool force_oom_ = false; bool force_gc_on_next_allocation_ = false; bool delay_sweeper_tasks_for_testing_ = false; UnorderedHeapObjectMap<Tagged<HeapObject>> retainer_; UnorderedHeapObjectMap<Root> retaining_root_; // If an object is retained by an ephemeron, then the retaining key of the // ephemeron is stored in this map. UnorderedHeapObjectMap<Tagged<HeapObject>> ephemeron_retainer_; // For each index in the retaining_path_targets_ array this map // stores the option of the corresponding target. std::unordered_map<int, RetainingPathOption> retaining_path_target_option_; std::vector<HeapObjectAllocationTracker*> allocation_trackers_; bool is_finalization_registry_cleanup_task_posted_ = false; std::unique_ptr<third_party_heap::Heap> tp_heap_; MarkingState marking_state_; NonAtomicMarkingState non_atomic_marking_state_; PretenuringHandler pretenuring_handler_; // This field is used only when not running with MinorMS. ResizeNewSpaceMode resize_new_space_mode_ = ResizeNewSpaceMode::kNone; std::unique_ptr<MemoryBalancer> mb_; // Classes in "heap" can be friends. friend class ActivateMemoryReducerTask; friend class AlwaysAllocateScope; friend class ArrayBufferCollector; friend class ArrayBufferSweeper; friend class ConcurrentAllocator; friend class ConcurrentMarking; friend class ConservativeTracedHandlesMarkingVisitor; friend class EmbedderStackStateScope; friend class EvacuateVisitorBase; friend class GCCallbacksScope; friend class GCTracer; friend class HeapAllocator; friend class HeapObjectIterator; friend class HeapVerifier; friend class IgnoreLocalGCRequests; friend class IncrementalMarking; friend class IncrementalMarkingRootMarkingVisitor; friend class IncrementalMarkingJob; friend class LargeObjectSpace; friend class LocalHeap; friend class MarkingBarrier; friend class OldLargeObjectSpace; template <typename ConcreteVisitor> friend class MarkingVisitorBase; friend class MarkCompactCollector; friend class MemoryBalancer; friend class MinorGCJob; friend class MinorGCTaskObserver; friend class MinorMarkSweepCollector; friend class MinorMSIncrementalMarkingTaskObserver; friend class NewLargeObjectSpace; friend class NewSpace; friend class ObjectStatsCollector; friend class Page; friend class PagedSpaceBase; friend class PagedSpaceForNewSpace; friend class PauseAllocationObserversScope; friend class PretenuringHandler; friend class ReadOnlyRoots; friend class DisableConservativeStackScanningScopeForTesting; friend class Scavenger; friend class ScavengerCollector; friend class ScheduleMinorGCTaskObserver; friend class StressConcurrentAllocationObserver; friend class Space; friend class SpaceWithLinearArea; friend class Sweeper; friend class UnifiedHeapMarkingState; friend class heap::TestMemoryAllocatorScope; friend class third_party_heap::Heap; friend class third_party_heap::Impl; // The allocator interface. friend class Factory; friend class LocalFactory; template <typename IsolateT> friend class Deserializer; // The Isolate constructs us. friend class Isolate; // Used in cctest. friend class heap::HeapTester; FRIEND_TEST(SpacesTest, InlineAllocationObserverCadence); FRIEND_TEST(SpacesTest, AllocationObserver); friend class HeapInternalsBase; }; class HeapStats { public: static const int kStartMarker = 0xDECADE00; static const int kEndMarker = 0xDECADE01; intptr_t* start_marker; // 0 size_t* ro_space_size; // 1 size_t* ro_space_capacity; // 2 size_t* new_space_size; // 3 size_t* new_space_capacity; // 4 size_t* old_space_size; // 5 size_t* old_space_capacity; // 6 size_t* code_space_size; // 7 size_t* code_space_capacity; // 8 size_t* map_space_size; // 9 size_t* map_space_capacity; // 10 size_t* lo_space_size; // 11 size_t* code_lo_space_size; // 12 size_t* global_handle_count; // 13 size_t* weak_global_handle_count; // 14 size_t* pending_global_handle_count; // 15 size_t* near_death_global_handle_count; // 16 size_t* free_global_handle_count; // 17 size_t* memory_allocator_size; // 18 size_t* memory_allocator_capacity; // 19 size_t* malloced_memory; // 20 size_t* malloced_peak_memory; // 21 size_t* objects_per_type; // 22 size_t* size_per_type; // 23 int* os_error; // 24 char* last_few_messages; // 25 char* js_stacktrace; // 26 intptr_t* end_marker; // 27 }; // Disables GC for all allocations. It should not be used // outside heap, deserializer, and isolate bootstrap. // Use AlwaysAllocateScopeForTesting in tests. class V8_NODISCARD AlwaysAllocateScope { public: inline ~AlwaysAllocateScope(); private: friend class AlwaysAllocateScopeForTesting; friend class Evacuator; friend class Heap; friend class HeapAllocator; friend class Isolate; // TODO(1445003): Remove this after investigating the crash. friend class GlobalBackingStoreRegistry; explicit inline AlwaysAllocateScope(Heap* heap); Heap* heap_; }; class V8_NODISCARD GCCallbacksScope final { public: explicit GCCallbacksScope(Heap* heap); ~GCCallbacksScope(); bool CheckReenter() const; private: Heap* const heap_; }; class V8_NODISCARD AlwaysAllocateScopeForTesting { public: explicit inline AlwaysAllocateScopeForTesting(Heap* heap); private: AlwaysAllocateScope scope_; }; // The CodePageHeaderModificationScope enables write access to Code // space page headers. On most of the configurations it's a no-op because // Code space page headers are configured as writable and // permissions are never changed. However, on MacOS on ARM64 ("Apple M1"/Apple // Silicon) the situation is different. In order to be able to use fast W^X // permissions switching machinery (APRR/MAP_JIT) it's necessary to configure // executable memory as readable writable executable (RWX). Also, on MacOS on // ARM64 reconfiguration of RWX page permissions to anything else is prohibited. // So, in order to be able to allocate large code pages over freed regular // code pages and vice versa we have to allocate Code page headers // as RWX too and switch them to writable mode when it's necessary to modify the // code page header. The scope can be used from any thread and affects only // current thread, see RwxMemoryWriteScope for details about semantics of the // scope. #if V8_HEAP_USE_PTHREAD_JIT_WRITE_PROTECT using CodePageHeaderModificationScope = RwxMemoryWriteScope; #else // When write protection of code page headers is not required the scope is // a no-op. using CodePageHeaderModificationScope = NopRwxMemoryWriteScope; #endif // V8_HEAP_USE_PTHREAD_JIT_WRITE_PROTECT // The CodePageMemoryModificationScope does not check if transitions to // writeable and back to executable are actually allowed, i.e. the MemoryChunk // was registered to be executable. It can be used by concurrent threads. class V8_NODISCARD CodePageMemoryModificationScope { public: explicit inline CodePageMemoryModificationScope(BasicMemoryChunk* chunk); explicit inline CodePageMemoryModificationScope( Tagged<InstructionStream> object); inline ~CodePageMemoryModificationScope(); private: #if V8_HEAP_USE_PTHREAD_JIT_WRITE_PROTECT || V8_HEAP_USE_PKU_JIT_WRITE_PROTECT base::Optional<RwxMemoryWriteScope> rwx_write_scope_; #else BasicMemoryChunk* chunk_; bool scope_active_; base::Optional<base::MutexGuard> guard_; #endif // Disallow any GCs inside this scope, as a relocation of the underlying // object would change the {MemoryChunk} that this scope targets. DISALLOW_GARBAGE_COLLECTION(no_heap_allocation_) }; class CodePageMemoryModificationScopeForDebugging { public: // When we zap newly allocated MemoryChunks, the chunk is not initialized yet // and we can't use the regular CodePageMemoryModificationScope since it will // access the page header. Hence, use the VirtualMemory for tracking instead. explicit CodePageMemoryModificationScopeForDebugging( Heap* heap, VirtualMemory* reservation, base::AddressRegion region); explicit CodePageMemoryModificationScopeForDebugging(BasicMemoryChunk* chunk); ~CodePageMemoryModificationScopeForDebugging(); private: #if V8_HEAP_USE_PTHREAD_JIT_WRITE_PROTECT || V8_HEAP_USE_PKU_JIT_WRITE_PROTECT RwxMemoryWriteScope rwx_write_scope_; #else VirtualMemory* reservation_ = nullptr; base::Optional<base::AddressRegion> region_; base::Optional<CodePageMemoryModificationScope> memory_modification_scope_; #endif }; class V8_NODISCARD IgnoreLocalGCRequests { public: explicit inline IgnoreLocalGCRequests(Heap* heap); inline ~IgnoreLocalGCRequests(); private: Heap* heap_; }; // Space iterator for iterating over all the paged spaces of the heap: Map // space, old space and code space. Returns each space in turn, and null when it // is done. class V8_EXPORT_PRIVATE PagedSpaceIterator { public: explicit PagedSpaceIterator(const Heap* heap) : heap_(heap), counter_(FIRST_GROWABLE_PAGED_SPACE) {} PagedSpace* Next(); private: const Heap* const heap_; int counter_; }; // A HeapObjectIterator provides iteration over the entire non-read-only heap. // It aggregates the specific iterators for the different spaces as these can // only iterate over one space only. // // HeapObjectIterator ensures there is no allocation during its lifetime (using // an embedded DisallowGarbageCollection instance). // // HeapObjectIterator can skip free list nodes (that is, de-allocated heap // objects that still remain in the heap). // // See ReadOnlyHeapObjectIterator if you need to iterate over read-only space // objects, or CombinedHeapObjectIterator if you need to iterate over both // heaps. class V8_EXPORT_PRIVATE HeapObjectIterator { public: enum HeapObjectsFiltering { kNoFiltering, kFilterUnreachable }; explicit HeapObjectIterator(Heap* heap, HeapObjectsFiltering filtering = kNoFiltering); // .. when already in a SafepointScope: HeapObjectIterator(Heap* heap, const SafepointScope& safepoint_scope, HeapObjectsFiltering filtering = kNoFiltering); ~HeapObjectIterator(); Tagged<HeapObject> Next(); private: HeapObjectIterator(Heap* heap, SafepointScope* safepoint_scope_or_nullptr, HeapObjectsFiltering filtering); Tagged<HeapObject> NextObject(); Heap* heap_; DISALLOW_GARBAGE_COLLECTION(no_heap_allocation_) // The safepoint scope pointer is null if a scope already existed when the // iterator was created (i.e. when using the constructor that passes a // safepoint_scope reference). std::unique_ptr<SafepointScope> safepoint_scope_; // nullable std::unique_ptr<HeapObjectsFilter> filter_; // Space iterator for iterating all the spaces. SpaceIterator space_iterator_; // Object iterator for the space currently being iterated. std::unique_ptr<ObjectIterator> object_iterator_; }; // Abstract base class for checking whether a weak object should be retained. class WeakObjectRetainer { public: virtual ~WeakObjectRetainer() = default; // Return whether this object should be retained. If nullptr is returned the // object has no references. Otherwise the address of the retained object // should be returned as in some GC situations the object has been moved. virtual Tagged<Object> RetainAs(Tagged<Object> object) = 0; }; // ----------------------------------------------------------------------------- // Allows observation of heap object allocations. class HeapObjectAllocationTracker { public: virtual void AllocationEvent(Address addr, int size) = 0; virtual void MoveEvent(Address from, Address to, int size) {} virtual void UpdateObjectSizeEvent(Address addr, int size) {} virtual ~HeapObjectAllocationTracker() = default; }; template <typename T> inline T ForwardingAddress(T heap_obj); // Address block allocator compatible with standard containers which registers // its allocated range as strong roots. class StrongRootBlockAllocator { public: using pointer = Address*; using const_pointer = const Address*; using reference = Address&; using const_reference = const Address&; using value_type = Address; using size_type = size_t; using difference_type = ptrdiff_t; template <class U> struct rebind; explicit StrongRootBlockAllocator(Heap* heap) : heap_(heap) {} V8_EXPORT_PRIVATE Address* allocate(size_t n); V8_EXPORT_PRIVATE void deallocate(Address* p, size_t n) noexcept; private: Heap* heap_; }; // Rebinding to Address gives another StrongRootBlockAllocator. template <> struct StrongRootBlockAllocator::rebind<Address> { using other = StrongRootBlockAllocator; }; // Rebinding to something other than Address gives a std::allocator that // is copy-constructable from StrongRootBlockAllocator. template <class U> struct StrongRootBlockAllocator::rebind { class other : public std::allocator<U> { public: // NOLINTNEXTLINE other(const StrongRootBlockAllocator&) {} }; }; class V8_EXPORT_PRIVATE V8_NODISCARD EmbedderStackStateScope final { public: enum Origin { kImplicitThroughTask, kExplicitInvocation, }; // Only used for testing where the Origin is always an explicit invocation. static EmbedderStackStateScope ExplicitScopeForTesting( Heap* heap, StackState stack_state); EmbedderStackStateScope(Heap* heap, Origin origin, StackState stack_state); ~EmbedderStackStateScope(); private: Heap* const heap_; const StackState old_stack_state_; }; class V8_NODISCARD DisableConservativeStackScanningScopeForTesting { public: explicit inline DisableConservativeStackScanningScopeForTesting(Heap* heap) : embedder_scope_(EmbedderStackStateScope::ExplicitScopeForTesting( heap, cppgc::EmbedderStackState::kNoHeapPointers)) {} private: EmbedderStackStateScope embedder_scope_; }; class V8_NODISCARD CppClassNamesAsHeapObjectNameScope final { public: explicit CppClassNamesAsHeapObjectNameScope(v8::CppHeap* heap); ~CppClassNamesAsHeapObjectNameScope(); private: std::unique_ptr<cppgc::internal::ClassNameAsHeapObjectNameScope> scope_; }; } // namespace internal } // namespace v8 // Opt out from libc++ backing sanitization, since root iteration walks up to // the capacity. #ifdef _LIBCPP_HAS_ASAN_CONTAINER_ANNOTATIONS_FOR_ALL_ALLOCATORS template <> struct ::std::__asan_annotate_container_with_allocator< v8::internal::StrongRootBlockAllocator> : ::std::false_type {}; #endif // _LIBCPP_HAS_ASAN_CONTAINER_ANNOTATIONS_FOR_ALL_ALLOCATORS #endif // V8_HEAP_HEAP_H_