%PDF- %PDF-
Direktori : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/wasm/ |
Current File : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/src/wasm/wasm-module-builder.cc |
// Copyright 2015 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/wasm/wasm-module-builder.h" #include "src/codegen/signature.h" #include "src/wasm/function-body-decoder.h" #include "src/wasm/leb-helper.h" #include "src/wasm/wasm-constants.h" #include "src/wasm/wasm-module.h" #include "src/zone/zone-containers.h" namespace v8 { namespace internal { namespace wasm { namespace { // Emit a section code and the size as a padded varint that can be patched // later. size_t EmitSection(SectionCode code, ZoneBuffer* buffer) { // Emit the section code. buffer->write_u8(code); // Emit a placeholder for the length. return buffer->reserve_u32v(); } // Patch the size of a section after it's finished. void FixupSection(ZoneBuffer* buffer, size_t start) { buffer->patch_u32v(start, static_cast<uint32_t>(buffer->offset() - start - kPaddedVarInt32Size)); } } // namespace WasmFunctionBuilder::WasmFunctionBuilder(WasmModuleBuilder* builder) : builder_(builder), locals_(builder->zone()), signature_index_(0), func_index_(static_cast<uint32_t>(builder->functions_.size())), body_(builder->zone(), 256), i32_temps_(builder->zone()), i64_temps_(builder->zone()), f32_temps_(builder->zone()), f64_temps_(builder->zone()), direct_calls_(builder->zone()), asm_offsets_(builder->zone(), 8) {} void WasmFunctionBuilder::EmitByte(uint8_t val) { body_.write_u8(val); } void WasmFunctionBuilder::EmitI32V(int32_t val) { body_.write_i32v(val); } void WasmFunctionBuilder::EmitU32V(uint32_t val) { body_.write_u32v(val); } void WasmFunctionBuilder::SetSignature(const FunctionSig* sig) { DCHECK(!locals_.has_sig()); locals_.set_sig(sig); signature_index_ = builder_->AddSignature(sig, true); } void WasmFunctionBuilder::SetSignature(uint32_t sig_index) { DCHECK(!locals_.has_sig()); DCHECK_EQ(builder_->types_[sig_index].kind, TypeDefinition::kFunction); signature_index_ = sig_index; locals_.set_sig(builder_->types_[sig_index].function_sig); } uint32_t WasmFunctionBuilder::AddLocal(ValueType type) { DCHECK(locals_.has_sig()); return locals_.AddLocals(1, type); } void WasmFunctionBuilder::EmitGetLocal(uint32_t local_index) { EmitWithU32V(kExprLocalGet, local_index); } void WasmFunctionBuilder::EmitSetLocal(uint32_t local_index) { EmitWithU32V(kExprLocalSet, local_index); } void WasmFunctionBuilder::EmitTeeLocal(uint32_t local_index) { EmitWithU32V(kExprLocalTee, local_index); } void WasmFunctionBuilder::EmitCode(const uint8_t* code, uint32_t code_size) { body_.write(code, code_size); } void WasmFunctionBuilder::Emit(WasmOpcode opcode) { DCHECK_LE(opcode, 0xFF); body_.write_u8(opcode); } void WasmFunctionBuilder::EmitWithPrefix(WasmOpcode opcode) { DCHECK_GT(opcode, 0xFF); if (opcode > 0xFFFF) { DCHECK_EQ(kSimdPrefix, opcode >> 12); body_.write_u8(kSimdPrefix); body_.write_u32v(opcode & 0xFFF); } else { body_.write_u8(opcode >> 8); // Prefix. body_.write_u32v(opcode & 0xff); // LEB encoded tail. } } void WasmFunctionBuilder::EmitWithU8(WasmOpcode opcode, const uint8_t immediate) { body_.write_u8(opcode); body_.write_u8(immediate); } void WasmFunctionBuilder::EmitWithU8U8(WasmOpcode opcode, const uint8_t imm1, const uint8_t imm2) { body_.write_u8(opcode); body_.write_u8(imm1); body_.write_u8(imm2); } void WasmFunctionBuilder::EmitWithI32V(WasmOpcode opcode, int32_t immediate) { body_.write_u8(opcode); body_.write_i32v(immediate); } void WasmFunctionBuilder::EmitWithU32V(WasmOpcode opcode, uint32_t immediate) { body_.write_u8(opcode); body_.write_u32v(immediate); } namespace { void WriteValueType(ZoneBuffer* buffer, const ValueType& type) { buffer->write_u8(type.value_type_code()); if (type.encoding_needs_heap_type()) { buffer->write_i32v(type.heap_type().code()); } if (type.is_rtt()) { buffer->write_u32v(type.ref_index()); } } } // namespace void WasmFunctionBuilder::EmitValueType(ValueType type) { WriteValueType(&body_, type); } void WasmFunctionBuilder::EmitI32Const(int32_t value) { EmitWithI32V(kExprI32Const, value); } void WasmFunctionBuilder::EmitI64Const(int64_t value) { body_.write_u8(kExprI64Const); body_.write_i64v(value); } void WasmFunctionBuilder::EmitF32Const(float value) { body_.write_u8(kExprF32Const); body_.write_f32(value); } void WasmFunctionBuilder::EmitF64Const(double value) { body_.write_u8(kExprF64Const); body_.write_f64(value); } void WasmFunctionBuilder::EmitDirectCallIndex(uint32_t index) { DirectCallIndex call; call.offset = body_.size(); call.direct_index = index; direct_calls_.push_back(call); uint8_t placeholder_bytes[kMaxVarInt32Size] = {0}; EmitCode(placeholder_bytes, arraysize(placeholder_bytes)); } void WasmFunctionBuilder::SetName(base::Vector<const char> name) { name_ = name; } void WasmFunctionBuilder::AddAsmWasmOffset(size_t call_position, size_t to_number_position) { // We only want to emit one mapping per byte offset. DCHECK(asm_offsets_.size() == 0 || body_.size() > last_asm_byte_offset_); DCHECK_LE(body_.size(), kMaxUInt32); uint32_t byte_offset = static_cast<uint32_t>(body_.size()); asm_offsets_.write_u32v(byte_offset - last_asm_byte_offset_); last_asm_byte_offset_ = byte_offset; DCHECK_GE(std::numeric_limits<uint32_t>::max(), call_position); uint32_t call_position_u32 = static_cast<uint32_t>(call_position); asm_offsets_.write_i32v(call_position_u32 - last_asm_source_position_); DCHECK_GE(std::numeric_limits<uint32_t>::max(), to_number_position); uint32_t to_number_position_u32 = static_cast<uint32_t>(to_number_position); asm_offsets_.write_i32v(to_number_position_u32 - call_position_u32); last_asm_source_position_ = to_number_position_u32; } void WasmFunctionBuilder::SetAsmFunctionStartPosition( size_t function_position) { DCHECK_EQ(0, asm_func_start_source_position_); DCHECK_GE(std::numeric_limits<uint32_t>::max(), function_position); uint32_t function_position_u32 = static_cast<uint32_t>(function_position); // Must be called before emitting any asm.js source position. DCHECK_EQ(0, asm_offsets_.size()); asm_func_start_source_position_ = function_position_u32; last_asm_source_position_ = function_position_u32; } void WasmFunctionBuilder::SetCompilationHint( WasmCompilationHintStrategy strategy, WasmCompilationHintTier baseline, WasmCompilationHintTier top_tier) { uint8_t hint_byte = static_cast<uint8_t>(strategy) | static_cast<uint8_t>(baseline) << 2 | static_cast<uint8_t>(top_tier) << 4; DCHECK_NE(hint_byte, kNoCompilationHint); hint_ = hint_byte; } void WasmFunctionBuilder::DeleteCodeAfter(size_t position) { DCHECK_LE(position, body_.size()); body_.Truncate(position); } void WasmFunctionBuilder::WriteSignature(ZoneBuffer* buffer) const { buffer->write_u32v(signature_index_); } void WasmFunctionBuilder::WriteBody(ZoneBuffer* buffer) const { size_t locals_size = locals_.Size(); buffer->write_size(locals_size + body_.size()); buffer->EnsureSpace(locals_size); uint8_t** ptr = buffer->pos_ptr(); locals_.Emit(*ptr); (*ptr) += locals_size; // UGLY: manual bump of position pointer if (body_.size() > 0) { size_t base = buffer->offset(); buffer->write(body_.begin(), body_.size()); for (DirectCallIndex call : direct_calls_) { buffer->patch_u32v( base + call.offset, call.direct_index + static_cast<uint32_t>(builder_->function_imports_.size())); } } } void WasmFunctionBuilder::WriteAsmWasmOffsetTable(ZoneBuffer* buffer) const { if (asm_func_start_source_position_ == 0 && asm_offsets_.size() == 0) { buffer->write_size(0); return; } size_t locals_enc_size = LEBHelper::sizeof_u32v(locals_.Size()); size_t func_start_size = LEBHelper::sizeof_u32v(asm_func_start_source_position_); buffer->write_size(asm_offsets_.size() + locals_enc_size + func_start_size); // Offset of the recorded byte offsets. DCHECK_GE(kMaxUInt32, locals_.Size()); buffer->write_u32v(static_cast<uint32_t>(locals_.Size())); // Start position of the function. buffer->write_u32v(asm_func_start_source_position_); buffer->write(asm_offsets_.begin(), asm_offsets_.size()); } WasmModuleBuilder::WasmModuleBuilder(Zone* zone) : zone_(zone), types_(zone), function_imports_(zone), global_imports_(zone), exports_(zone), functions_(zone), tables_(zone), data_segments_(zone), element_segments_(zone), globals_(zone), exceptions_(zone), signature_map_(zone), current_recursive_group_start_(-1), recursive_groups_(zone), start_function_index_(-1), min_memory_size_(16), max_memory_size_(0), has_max_memory_size_(false), has_shared_memory_(false) {} WasmFunctionBuilder* WasmModuleBuilder::AddFunction(const FunctionSig* sig) { functions_.push_back(zone_->New<WasmFunctionBuilder>(this)); // Add the signature if one was provided here. if (sig) functions_.back()->SetSignature(sig); return functions_.back(); } WasmFunctionBuilder* WasmModuleBuilder::AddFunction(uint32_t sig_index) { functions_.push_back(zone_->New<WasmFunctionBuilder>(this)); functions_.back()->SetSignature(sig_index); return functions_.back(); } void WasmModuleBuilder::AddDataSegment(const uint8_t* data, uint32_t size, uint32_t dest) { data_segments_.push_back({ZoneVector<uint8_t>(zone()), dest}); ZoneVector<uint8_t>& vec = data_segments_.back().data; for (uint32_t i = 0; i < size; i++) { vec.push_back(data[i]); } } void WasmModuleBuilder::AddPassiveDataSegment(const uint8_t* data, uint32_t size) { data_segments_.push_back({ZoneVector<uint8_t>(zone()), 0, false}); ZoneVector<uint8_t>& vec = data_segments_.back().data; for (uint32_t i = 0; i < size; i++) { vec.push_back(data[i]); } } uint32_t WasmModuleBuilder::ForceAddSignature(const FunctionSig* sig, bool is_final, uint32_t supertype) { uint32_t index = static_cast<uint32_t>(types_.size()); signature_map_.emplace(*sig, index); types_.emplace_back(sig, supertype, is_final); return index; } uint32_t WasmModuleBuilder::AddSignature(const FunctionSig* sig, bool is_final, uint32_t supertype) { auto sig_entry = signature_map_.find(*sig); if (sig_entry != signature_map_.end()) return sig_entry->second; return ForceAddSignature(sig, is_final, supertype); } uint32_t WasmModuleBuilder::AddException(const FunctionSig* type) { DCHECK_EQ(0, type->return_count()); int type_index = AddSignature(type, true); uint32_t except_index = static_cast<uint32_t>(exceptions_.size()); exceptions_.push_back(type_index); return except_index; } uint32_t WasmModuleBuilder::AddStructType(StructType* type, bool is_final, uint32_t supertype) { uint32_t index = static_cast<uint32_t>(types_.size()); types_.emplace_back(type, supertype, is_final); return index; } uint32_t WasmModuleBuilder::AddArrayType(ArrayType* type, bool is_final, uint32_t supertype) { uint32_t index = static_cast<uint32_t>(types_.size()); types_.emplace_back(type, supertype, is_final); return index; } uint32_t WasmModuleBuilder::IncreaseTableMinSize(uint32_t table_index, uint32_t count) { DCHECK_LT(table_index, tables_.size()); uint32_t old_min_size = tables_[table_index].min_size; if (count > v8_flags.wasm_max_table_size - old_min_size) { return std::numeric_limits<uint32_t>::max(); } tables_[table_index].min_size = old_min_size + count; tables_[table_index].max_size = std::max(old_min_size + count, tables_[table_index].max_size); return old_min_size; } uint32_t WasmModuleBuilder::AddTable(ValueType type, uint32_t min_size) { tables_.push_back({type, min_size, 0, false, {}}); return static_cast<uint32_t>(tables_.size() - 1); } uint32_t WasmModuleBuilder::AddTable(ValueType type, uint32_t min_size, uint32_t max_size) { tables_.push_back({type, min_size, max_size, true, {}}); return static_cast<uint32_t>(tables_.size() - 1); } uint32_t WasmModuleBuilder::AddTable(ValueType type, uint32_t min_size, uint32_t max_size, WasmInitExpr init) { tables_.push_back({type, min_size, max_size, true, {init}}); return static_cast<uint32_t>(tables_.size() - 1); } uint32_t WasmModuleBuilder::AddElementSegment(WasmElemSegment segment) { element_segments_.push_back(std::move(segment)); return static_cast<uint32_t>(element_segments_.size() - 1); } void WasmModuleBuilder::SetIndirectFunction( uint32_t table_index, uint32_t index_in_table, uint32_t direct_function_index, WasmElemSegment::FunctionIndexingMode indexing_mode) { WasmElemSegment segment(zone_, kWasmFuncRef, table_index, WasmInitExpr(static_cast<int>(index_in_table))); segment.indexing_mode = indexing_mode; segment.entries.emplace_back(WasmElemSegment::Entry::kRefFuncEntry, direct_function_index); AddElementSegment(std::move(segment)); } uint32_t WasmModuleBuilder::AddImport(base::Vector<const char> name, FunctionSig* sig, base::Vector<const char> module) { DCHECK(adding_imports_allowed_); function_imports_.push_back({module, name, AddSignature(sig, true)}); return static_cast<uint32_t>(function_imports_.size() - 1); } uint32_t WasmModuleBuilder::AddGlobalImport(base::Vector<const char> name, ValueType type, bool mutability, base::Vector<const char> module) { global_imports_.push_back({module, name, type.value_type_code(), mutability}); return static_cast<uint32_t>(global_imports_.size() - 1); } void WasmModuleBuilder::MarkStartFunction(WasmFunctionBuilder* function) { start_function_index_ = function->func_index(); } void WasmModuleBuilder::AddExport(base::Vector<const char> name, ImportExportKindCode kind, uint32_t index) { DCHECK_LE(index, std::numeric_limits<int>::max()); exports_.push_back({name, kind, static_cast<int>(index)}); } uint32_t WasmModuleBuilder::AddExportedGlobal(ValueType type, bool mutability, WasmInitExpr init, base::Vector<const char> name) { uint32_t index = AddGlobal(type, mutability, init); AddExport(name, kExternalGlobal, index); return index; } void WasmModuleBuilder::ExportImportedFunction(base::Vector<const char> name, int import_index) { #if DEBUG // The size of function_imports_ must not change any more. adding_imports_allowed_ = false; #endif exports_.push_back( {name, kExternalFunction, import_index - static_cast<int>(function_imports_.size())}); } uint32_t WasmModuleBuilder::AddGlobal(ValueType type, bool mutability, WasmInitExpr init) { globals_.push_back({type, mutability, init}); return static_cast<uint32_t>(globals_.size() - 1); } void WasmModuleBuilder::SetMinMemorySize(uint32_t value) { min_memory_size_ = value; } void WasmModuleBuilder::SetMaxMemorySize(uint32_t value) { has_max_memory_size_ = true; max_memory_size_ = value; } void WasmModuleBuilder::SetHasSharedMemory() { has_shared_memory_ = true; } namespace { WasmOpcode FromInitExprOperator(WasmInitExpr::Operator op) { switch (op) { case WasmInitExpr::kGlobalGet: return kExprGlobalGet; case WasmInitExpr::kI32Const: return kExprI32Const; case WasmInitExpr::kI64Const: return kExprI64Const; case WasmInitExpr::kF32Const: return kExprF32Const; case WasmInitExpr::kF64Const: return kExprF64Const; case WasmInitExpr::kS128Const: return kExprS128Const; case WasmInitExpr::kI32Add: return kExprI32Add; case WasmInitExpr::kI32Sub: return kExprI32Sub; case WasmInitExpr::kI32Mul: return kExprI32Mul; case WasmInitExpr::kI64Add: return kExprI64Add; case WasmInitExpr::kI64Sub: return kExprI64Sub; case WasmInitExpr::kI64Mul: return kExprI64Mul; case WasmInitExpr::kRefNullConst: return kExprRefNull; case WasmInitExpr::kRefFuncConst: return kExprRefFunc; case WasmInitExpr::kStructNew: return kExprStructNew; case WasmInitExpr::kStructNewDefault: return kExprStructNewDefault; case WasmInitExpr::kArrayNew: return kExprArrayNew; case WasmInitExpr::kArrayNewDefault: return kExprArrayNewDefault; case WasmInitExpr::kArrayNewFixed: return kExprArrayNewFixed; case WasmInitExpr::kRefI31: return kExprRefI31; case WasmInitExpr::kStringConst: return kExprStringConst; case WasmInitExpr::kExternInternalize: return kExprExternInternalize; case WasmInitExpr::kExternExternalize: return kExprExternExternalize; } } void WriteInitializerExpressionWithoutEnd(ZoneBuffer* buffer, const WasmInitExpr& init) { switch (init.kind()) { case WasmInitExpr::kI32Const: buffer->write_u8(kExprI32Const); buffer->write_i32v(init.immediate().i32_const); break; case WasmInitExpr::kI64Const: buffer->write_u8(kExprI64Const); buffer->write_i64v(init.immediate().i64_const); break; case WasmInitExpr::kF32Const: buffer->write_u8(kExprF32Const); buffer->write_f32(init.immediate().f32_const); break; case WasmInitExpr::kF64Const: buffer->write_u8(kExprF64Const); buffer->write_f64(init.immediate().f64_const); break; case WasmInitExpr::kS128Const: buffer->write_u8(kSimdPrefix); buffer->write_u8(kExprS128Const & 0xFF); buffer->write(init.immediate().s128_const.data(), kSimd128Size); break; case WasmInitExpr::kI32Add: case WasmInitExpr::kI32Sub: case WasmInitExpr::kI32Mul: case WasmInitExpr::kI64Add: case WasmInitExpr::kI64Sub: case WasmInitExpr::kI64Mul: WriteInitializerExpressionWithoutEnd(buffer, (*init.operands())[0]); WriteInitializerExpressionWithoutEnd(buffer, (*init.operands())[1]); buffer->write_u8(FromInitExprOperator(init.kind())); break; case WasmInitExpr::kGlobalGet: buffer->write_u8(kExprGlobalGet); buffer->write_u32v(init.immediate().index); break; case WasmInitExpr::kRefNullConst: buffer->write_u8(kExprRefNull); buffer->write_i32v(HeapType(init.immediate().heap_type).code()); break; case WasmInitExpr::kRefFuncConst: buffer->write_u8(kExprRefFunc); buffer->write_u32v(init.immediate().index); break; case WasmInitExpr::kStructNew: case WasmInitExpr::kStructNewDefault: case WasmInitExpr::kArrayNew: case WasmInitExpr::kArrayNewDefault: { if (init.operands() != nullptr) { for (const WasmInitExpr& operand : *init.operands()) { WriteInitializerExpressionWithoutEnd(buffer, operand); } } WasmOpcode opcode = FromInitExprOperator(init.kind()); DCHECK_EQ(opcode >> 8, kGCPrefix); DCHECK_EQ(opcode & 0x80, 0); buffer->write_u8(kGCPrefix); buffer->write_u8(static_cast<uint8_t>(opcode)); buffer->write_u32v(init.immediate().index); break; } case WasmInitExpr::kArrayNewFixed: { static_assert((kExprArrayNewFixed >> 8) == kGCPrefix); static_assert((kExprArrayNewFixed & 0x80) == 0); for (const WasmInitExpr& operand : *init.operands()) { WriteInitializerExpressionWithoutEnd(buffer, operand); } buffer->write_u8(kGCPrefix); buffer->write_u8(static_cast<uint8_t>(kExprArrayNewFixed)); buffer->write_u32v(init.immediate().index); buffer->write_u32v(static_cast<uint32_t>(init.operands()->size())); break; } case WasmInitExpr::kRefI31: case WasmInitExpr::kExternInternalize: case WasmInitExpr::kExternExternalize: { WriteInitializerExpressionWithoutEnd(buffer, (*init.operands())[0]); WasmOpcode opcode = FromInitExprOperator(init.kind()); DCHECK_EQ(opcode >> 8, kGCPrefix); DCHECK_EQ(opcode & 0x80, 0); buffer->write_u8(kGCPrefix); buffer->write_u8(opcode); break; } case WasmInitExpr::kStringConst: buffer->write_u8(kGCPrefix); buffer->write_u32v(kExprStringConst & 0xFF); buffer->write_u32v(init.immediate().index); break; } } void WriteInitializerExpression(ZoneBuffer* buffer, const WasmInitExpr& init) { WriteInitializerExpressionWithoutEnd(buffer, init); buffer->write_u8(kExprEnd); } } // namespace void WasmModuleBuilder::WriteTo(ZoneBuffer* buffer) const { // == Emit magic ============================================================= buffer->write_u32(kWasmMagic); buffer->write_u32(kWasmVersion); // == Emit types ============================================================= if (types_.size() > 0) { size_t start = EmitSection(kTypeSectionCode, buffer); size_t type_count = types_.size(); for (auto pair : recursive_groups_) { // Every rec. group counts as one type entry. type_count -= pair.second - 1; } buffer->write_size(type_count); for (uint32_t i = 0; i < types_.size(); i++) { auto recursive_group = recursive_groups_.find(i); if (recursive_group != recursive_groups_.end()) { buffer->write_u8(kWasmRecursiveTypeGroupCode); buffer->write_u32v(recursive_group->second); } const TypeDefinition& type = types_[i]; if (type.supertype != kNoSuperType) { buffer->write_u8(type.is_final ? kWasmSubtypeFinalCode : kWasmSubtypeCode); buffer->write_u8(1); buffer->write_u32v(type.supertype); } else if (!type.is_final) { buffer->write_u8(kWasmSubtypeCode); buffer->write_u8(0); } switch (type.kind) { case TypeDefinition::kFunction: { const FunctionSig* sig = type.function_sig; buffer->write_u8(kWasmFunctionTypeCode); buffer->write_size(sig->parameter_count()); for (auto param : sig->parameters()) { WriteValueType(buffer, param); } buffer->write_size(sig->return_count()); for (auto ret : sig->returns()) { WriteValueType(buffer, ret); } break; } case TypeDefinition::kStruct: { const StructType* struct_type = type.struct_type; buffer->write_u8(kWasmStructTypeCode); buffer->write_size(struct_type->field_count()); for (uint32_t i = 0; i < struct_type->field_count(); i++) { WriteValueType(buffer, struct_type->field(i)); buffer->write_u8(struct_type->mutability(i) ? 1 : 0); } break; } case TypeDefinition::kArray: { const ArrayType* array_type = type.array_type; buffer->write_u8(kWasmArrayTypeCode); WriteValueType(buffer, array_type->element_type()); buffer->write_u8(array_type->mutability() ? 1 : 0); break; } } } FixupSection(buffer, start); } // == Emit imports =========================================================== if (global_imports_.size() + function_imports_.size() > 0) { size_t start = EmitSection(kImportSectionCode, buffer); buffer->write_size(global_imports_.size() + function_imports_.size()); for (auto import : global_imports_) { buffer->write_string(import.module); // module name buffer->write_string(import.name); // field name buffer->write_u8(kExternalGlobal); buffer->write_u8(import.type_code); buffer->write_u8(import.mutability ? 1 : 0); } for (auto import : function_imports_) { buffer->write_string(import.module); // module name buffer->write_string(import.name); // field name buffer->write_u8(kExternalFunction); buffer->write_u32v(import.sig_index); } FixupSection(buffer, start); } // == Emit function signatures =============================================== uint32_t num_function_names = 0; if (functions_.size() > 0) { size_t start = EmitSection(kFunctionSectionCode, buffer); buffer->write_size(functions_.size()); for (auto* function : functions_) { function->WriteSignature(buffer); if (!function->name_.empty()) ++num_function_names; } FixupSection(buffer, start); } // == Emit tables ============================================================ if (tables_.size() > 0) { size_t start = EmitSection(kTableSectionCode, buffer); buffer->write_size(tables_.size()); for (const WasmTable& table : tables_) { if (table.init) { buffer->write_u8(0x40); // table-with-initializer buffer->write_u8(0x00); // reserved byte } WriteValueType(buffer, table.type); buffer->write_u8(table.has_maximum ? kWithMaximum : kNoMaximum); buffer->write_size(table.min_size); if (table.has_maximum) buffer->write_size(table.max_size); if (table.init) { WriteInitializerExpression(buffer, *table.init); } } FixupSection(buffer, start); } // == Emit memory declaration ================================================ { size_t start = EmitSection(kMemorySectionCode, buffer); buffer->write_u8(1); // memory count if (has_shared_memory_) { buffer->write_u8(has_max_memory_size_ ? kSharedWithMaximum : kSharedNoMaximum); } else { buffer->write_u8(has_max_memory_size_ ? kWithMaximum : kNoMaximum); } buffer->write_u32v(min_memory_size_); if (has_max_memory_size_) { buffer->write_u32v(max_memory_size_); } FixupSection(buffer, start); } // Emit event section. if (exceptions_.size() > 0) { size_t start = EmitSection(kTagSectionCode, buffer); buffer->write_size(exceptions_.size()); for (int type : exceptions_) { buffer->write_u32v(kExceptionAttribute); buffer->write_u32v(type); } FixupSection(buffer, start); } // == Emit globals =========================================================== if (globals_.size() > 0) { size_t start = EmitSection(kGlobalSectionCode, buffer); buffer->write_size(globals_.size()); for (const WasmGlobal& global : globals_) { WriteValueType(buffer, global.type); buffer->write_u8(global.mutability ? 1 : 0); WriteInitializerExpression(buffer, global.init); } FixupSection(buffer, start); } // == emit exports =========================================================== if (exports_.size() > 0) { size_t start = EmitSection(kExportSectionCode, buffer); buffer->write_size(exports_.size()); for (auto ex : exports_) { buffer->write_string(ex.name); buffer->write_u8(ex.kind); switch (ex.kind) { case kExternalFunction: buffer->write_size(ex.index + function_imports_.size()); break; case kExternalGlobal: buffer->write_size(ex.index + global_imports_.size()); break; case kExternalMemory: case kExternalTable: // The WasmModuleBuilder doesn't support importing tables or memories // yet, so there is no index offset to add. buffer->write_size(ex.index); break; case kExternalTag: UNREACHABLE(); } } FixupSection(buffer, start); } // == emit start function index ============================================== if (start_function_index_ >= 0) { size_t start = EmitSection(kStartSectionCode, buffer); buffer->write_size(start_function_index_ + function_imports_.size()); FixupSection(buffer, start); } // == emit element segments ================================================== if (element_segments_.size() > 0) { size_t start = EmitSection(kElementSectionCode, buffer); buffer->write_size(element_segments_.size()); for (const WasmElemSegment& segment : element_segments_) { bool is_active = segment.status == WasmElemSegment::kStatusActive; // We pick the most general syntax, i.e., we always explicitly emit the // table index and the type, and use the expressions-as-elements syntax. // The initial byte is one of 0x05, 0x06, and 0x07. uint8_t kind_mask = segment.status == WasmElemSegment::kStatusActive ? 0b10 : segment.status == WasmElemSegment::kStatusDeclarative ? 0b11 : 0b01; uint8_t expressions_as_elements_mask = 0b100; buffer->write_u8(kind_mask | expressions_as_elements_mask); if (is_active) { buffer->write_u32v(segment.table_index); WriteInitializerExpression(buffer, segment.offset); } WriteValueType(buffer, segment.type); buffer->write_size(segment.entries.size()); for (const WasmElemSegment::Entry entry : segment.entries) { uint8_t opcode = entry.kind == WasmElemSegment::Entry::kGlobalGetEntry ? kExprGlobalGet : entry.kind == WasmElemSegment::Entry::kRefFuncEntry ? kExprRefFunc : kExprRefNull; bool needs_function_offset = segment.indexing_mode == WasmElemSegment::kRelativeToDeclaredFunctions && entry.kind == WasmElemSegment::Entry::kRefFuncEntry; uint32_t index = entry.index + (needs_function_offset ? static_cast<uint32_t>(function_imports_.size()) : 0); buffer->write_u8(opcode); buffer->write_u32v(index); buffer->write_u8(kExprEnd); } } FixupSection(buffer, start); } // == emit data segment count section ======================================== if (std::any_of( data_segments_.begin(), data_segments_.end(), [](const WasmDataSegment& segment) { return !segment.is_active; })) { buffer->write_u8(kDataCountSectionCode); buffer->write_u32v(1); // section length buffer->write_u32v(static_cast<uint32_t>(data_segments_.size())); } // == emit compilation hints section ========================================= bool emit_compilation_hints = false; for (auto* fn : functions_) { if (fn->hint_ != kNoCompilationHint) { emit_compilation_hints = true; break; } } if (emit_compilation_hints) { // Emit the section code. buffer->write_u8(kUnknownSectionCode); // Emit a placeholder for section length. size_t start = buffer->reserve_u32v(); // Emit custom section name. buffer->write_string(base::CStrVector("compilationHints")); // Emit hint count. buffer->write_size(functions_.size()); // Emit hint bytes. for (auto* fn : functions_) { uint8_t hint_byte = fn->hint_ != kNoCompilationHint ? fn->hint_ : kDefaultCompilationHint; buffer->write_u8(hint_byte); } FixupSection(buffer, start); } // == emit code ============================================================== if (functions_.size() > 0) { size_t start = EmitSection(kCodeSectionCode, buffer); buffer->write_size(functions_.size()); for (auto* function : functions_) { function->WriteBody(buffer); } FixupSection(buffer, start); } // == emit data segments ===================================================== if (data_segments_.size() > 0) { size_t start = EmitSection(kDataSectionCode, buffer); buffer->write_size(data_segments_.size()); for (auto segment : data_segments_) { if (segment.is_active) { buffer->write_u8(0); // linear memory segment buffer->write_u8(kExprI32Const); // constant expression for dest buffer->write_u32v(segment.dest); buffer->write_u8(kExprEnd); } else { buffer->write_u8(kPassive); } buffer->write_u32v(static_cast<uint32_t>(segment.data.size())); buffer->write(segment.data.data(), segment.data.size()); } FixupSection(buffer, start); } // == Emit names ============================================================= if (num_function_names > 0 || !function_imports_.empty()) { // Emit the section code. buffer->write_u8(kUnknownSectionCode); // Emit a placeholder for the length. size_t start = buffer->reserve_u32v(); // Emit the section string. buffer->write_string(base::CStrVector("name")); // Emit a subsection for the function names. buffer->write_u8(NameSectionKindCode::kFunctionCode); // Emit a placeholder for the subsection length. size_t functions_start = buffer->reserve_u32v(); // Emit the function names. // Imports are always named. uint32_t num_imports = static_cast<uint32_t>(function_imports_.size()); buffer->write_size(num_imports + num_function_names); uint32_t function_index = 0; for (; function_index < num_imports; ++function_index) { const WasmFunctionImport* import = &function_imports_[function_index]; DCHECK(!import->name.empty()); buffer->write_u32v(function_index); buffer->write_string(import->name); } if (num_function_names > 0) { for (auto* function : functions_) { DCHECK_EQ(function_index, function->func_index() + function_imports_.size()); if (!function->name_.empty()) { buffer->write_u32v(function_index); buffer->write_string(function->name_); } ++function_index; } } FixupSection(buffer, functions_start); FixupSection(buffer, start); } } void WasmModuleBuilder::WriteAsmJsOffsetTable(ZoneBuffer* buffer) const { // == Emit asm.js offset table =============================================== buffer->write_size(functions_.size()); // Emit the offset table per function. for (auto* function : functions_) { function->WriteAsmWasmOffsetTable(buffer); } } } // namespace wasm } // namespace internal } // namespace v8