%PDF- %PDF-
Direktori : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/test/cctest/heap/ |
Current File : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/test/cctest/heap/test-spaces.cc |
// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include <stdlib.h> #include <memory> #include "include/v8-initialization.h" #include "include/v8-platform.h" #include "src/base/bounded-page-allocator.h" #include "src/base/macros.h" #include "src/base/platform/platform.h" #include "src/common/globals.h" #include "src/heap/allocation-result.h" #include "src/heap/factory.h" #include "src/heap/heap.h" #include "src/heap/large-spaces.h" #include "src/heap/memory-allocator.h" #include "src/heap/memory-chunk.h" #include "src/heap/spaces-inl.h" #include "src/heap/spaces.h" #include "src/objects/free-space.h" #include "src/objects/objects-inl.h" #include "src/snapshot/snapshot.h" #include "test/cctest/cctest.h" #include "test/cctest/heap/heap-tester.h" #include "test/cctest/heap/heap-utils.h" namespace v8 { namespace internal { namespace heap { // Temporarily sets a given allocator in an isolate. class V8_NODISCARD TestMemoryAllocatorScope { public: TestMemoryAllocatorScope(Isolate* isolate, size_t max_capacity, PageAllocator* page_allocator = nullptr) : isolate_(isolate), old_allocator_(std::move(isolate->heap()->memory_allocator_)) { // Save the code pages for restoring them later on because the constructor // of MemoryAllocator will change them. isolate->GetCodePages()->swap(code_pages_); isolate->heap()->memory_allocator_.reset(new MemoryAllocator( isolate, page_allocator != nullptr ? page_allocator : isolate->page_allocator(), max_capacity)); if (page_allocator != nullptr) { isolate->heap()->memory_allocator_->data_page_allocator_ = page_allocator; } } MemoryAllocator* allocator() { return isolate_->heap()->memory_allocator(); } ~TestMemoryAllocatorScope() { isolate_->heap()->memory_allocator()->TearDown(); isolate_->heap()->memory_allocator_.swap(old_allocator_); isolate_->GetCodePages()->swap(code_pages_); } TestMemoryAllocatorScope(const TestMemoryAllocatorScope&) = delete; TestMemoryAllocatorScope& operator=(const TestMemoryAllocatorScope&) = delete; private: Isolate* isolate_; std::unique_ptr<MemoryAllocator> old_allocator_; std::vector<MemoryRange> code_pages_; }; // Temporarily sets a given code page allocator in an isolate. class V8_NODISCARD TestCodePageAllocatorScope { public: TestCodePageAllocatorScope(Isolate* isolate, v8::PageAllocator* code_page_allocator) : isolate_(isolate), old_code_page_allocator_( isolate->heap()->memory_allocator()->code_page_allocator()) { isolate->heap()->memory_allocator()->code_page_allocator_ = code_page_allocator; } ~TestCodePageAllocatorScope() { isolate_->heap()->memory_allocator()->code_page_allocator_ = old_code_page_allocator_; } TestCodePageAllocatorScope(const TestCodePageAllocatorScope&) = delete; TestCodePageAllocatorScope& operator=(const TestCodePageAllocatorScope&) = delete; private: Isolate* isolate_; v8::PageAllocator* old_code_page_allocator_; }; static void VerifyMemoryChunk(Isolate* isolate, Heap* heap, v8::PageAllocator* code_page_allocator, size_t area_size, Executability executable, PageSize page_size, LargeObjectSpace* space) { TestMemoryAllocatorScope test_allocator_scope(isolate, heap->MaxReserved()); MemoryAllocator* memory_allocator = test_allocator_scope.allocator(); TestCodePageAllocatorScope test_code_page_allocator_scope( isolate, code_page_allocator); v8::PageAllocator* page_allocator = memory_allocator->page_allocator(space->identity()); size_t allocatable_memory_area_offset = MemoryChunkLayout::ObjectStartOffsetInMemoryChunk(space->identity()); size_t guard_size = (executable == EXECUTABLE) ? MemoryChunkLayout::CodePageGuardSize() : 0; MemoryChunk* memory_chunk = memory_allocator->AllocateLargePage(space, area_size, executable); size_t reserved_size = ((executable == EXECUTABLE)) ? RoundUp(allocatable_memory_area_offset + RoundUp(area_size, page_allocator->CommitPageSize()) + guard_size, page_allocator->CommitPageSize()) : RoundUp(allocatable_memory_area_offset + area_size, page_allocator->CommitPageSize()); CHECK(memory_chunk->size() == reserved_size); CHECK(memory_chunk->area_start() < memory_chunk->address() + memory_chunk->size()); CHECK(memory_chunk->area_end() <= memory_chunk->address() + memory_chunk->size()); CHECK(static_cast<size_t>(memory_chunk->area_size()) == area_size); memory_allocator->Free(MemoryAllocator::FreeMode::kImmediately, memory_chunk); } static unsigned int PseudorandomAreaSize() { static uint32_t lo = 2345; lo = 18273 * (lo & 0xFFFFF) + (lo >> 16); return lo & 0xFFFFF; } TEST(MemoryChunk) { Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); IsolateSafepointScope safepoint(heap); v8::PageAllocator* page_allocator = GetPlatformPageAllocator(); size_t area_size; bool jitless = isolate->jitless(); for (int i = 0; i < 100; i++) { area_size = RoundUp(PseudorandomAreaSize(), page_allocator->CommitPageSize()); // With CodeRange. const size_t code_range_size = 32 * MB; VirtualMemory code_range_reservation( page_allocator, code_range_size, nullptr, MemoryChunk::kAlignment, jitless ? JitPermission::kNoJit : JitPermission::kMapAsJittable); base::PageFreeingMode page_freeing_mode = base::PageFreeingMode::kMakeInaccessible; // On MacOS on ARM64 the code range reservation must be committed as RWX. if (V8_HEAP_USE_PTHREAD_JIT_WRITE_PROTECT && !jitless) { page_freeing_mode = base::PageFreeingMode::kDiscard; void* base = reinterpret_cast<void*>(code_range_reservation.address()); CHECK(page_allocator->SetPermissions(base, code_range_size, PageAllocator::kReadWriteExecute)); CHECK(page_allocator->DiscardSystemPages(base, code_range_size)); } CHECK(code_range_reservation.IsReserved()); base::BoundedPageAllocator code_page_allocator( page_allocator, code_range_reservation.address(), code_range_reservation.size(), MemoryChunk::kAlignment, base::PageInitializationMode::kAllocatedPagesCanBeUninitialized, page_freeing_mode); // Modification of pages in code_range_reservation requires write access. RwxMemoryWriteScopeForTesting rwx_write_scope; VerifyMemoryChunk(isolate, heap, &code_page_allocator, area_size, EXECUTABLE, PageSize::kLarge, heap->code_lo_space()); VerifyMemoryChunk(isolate, heap, &code_page_allocator, area_size, NOT_EXECUTABLE, PageSize::kLarge, heap->lo_space()); } } TEST(MemoryAllocator) { Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); TestMemoryAllocatorScope test_allocator_scope(isolate, heap->MaxReserved()); MemoryAllocator* memory_allocator = test_allocator_scope.allocator(); LinearAllocationArea allocation_info; int total_pages = 0; OldSpace faked_space(heap, allocation_info); CHECK(!faked_space.first_page()); CHECK(!faked_space.last_page()); Page* first_page = memory_allocator->AllocatePage( MemoryAllocator::AllocationMode::kRegular, static_cast<PagedSpace*>(&faked_space), NOT_EXECUTABLE); faked_space.memory_chunk_list().PushBack(first_page); CHECK(first_page->next_page() == nullptr); total_pages++; for (Page* p = first_page; p != nullptr; p = p->next_page()) { CHECK(p->owner() == &faked_space); } // Again, we should get n or n - 1 pages. Page* other = memory_allocator->AllocatePage( MemoryAllocator::AllocationMode::kRegular, static_cast<PagedSpace*>(&faked_space), NOT_EXECUTABLE); total_pages++; faked_space.memory_chunk_list().PushBack(other); int page_count = 0; for (Page* p = first_page; p != nullptr; p = p->next_page()) { CHECK(p->owner() == &faked_space); page_count++; } CHECK(total_pages == page_count); Page* second_page = first_page->next_page(); CHECK_NOT_NULL(second_page); // OldSpace's destructor will tear down the space and free up all pages. } TEST(ComputeDiscardMemoryAreas) { base::AddressRegion memory_area; size_t page_size = MemoryAllocator::GetCommitPageSize(); size_t free_header_size = FreeSpace::kSize; memory_area = MemoryAllocator::ComputeDiscardMemoryArea(0, 0); CHECK_EQ(memory_area.begin(), 0); CHECK_EQ(memory_area.size(), 0); memory_area = MemoryAllocator::ComputeDiscardMemoryArea( 0, page_size + free_header_size); CHECK_EQ(memory_area.begin(), 0); CHECK_EQ(memory_area.size(), 0); memory_area = MemoryAllocator::ComputeDiscardMemoryArea( page_size - free_header_size, page_size + free_header_size); CHECK_EQ(memory_area.begin(), page_size); CHECK_EQ(memory_area.size(), page_size); memory_area = MemoryAllocator::ComputeDiscardMemoryArea(page_size, page_size); CHECK_EQ(memory_area.begin(), 0); CHECK_EQ(memory_area.size(), 0); memory_area = MemoryAllocator::ComputeDiscardMemoryArea( page_size / 2, page_size + page_size / 2); CHECK_EQ(memory_area.begin(), page_size); CHECK_EQ(memory_area.size(), page_size); memory_area = MemoryAllocator::ComputeDiscardMemoryArea( page_size / 2, page_size + page_size / 4); CHECK_EQ(memory_area.begin(), 0); CHECK_EQ(memory_area.size(), 0); memory_area = MemoryAllocator::ComputeDiscardMemoryArea(page_size / 2, page_size * 3); CHECK_EQ(memory_area.begin(), page_size); CHECK_EQ(memory_area.size(), page_size * 2); } TEST(SemiSpaceNewSpace) { if (v8_flags.single_generation) return; Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); TestMemoryAllocatorScope test_allocator_scope(isolate, heap->MaxReserved()); MemoryAllocator* memory_allocator = test_allocator_scope.allocator(); LinearAllocationArea allocation_info; auto new_space = std::make_unique<SemiSpaceNewSpace>( heap, heap->InitialSemiSpaceSize(), heap->InitialSemiSpaceSize(), allocation_info); CHECK(new_space->MaximumCapacity()); size_t successful_allocations = 0; while (new_space->Available() >= kMaxRegularHeapObjectSize) { AllocationResult allocation = new_space->AllocateRaw(kMaxRegularHeapObjectSize, kTaggedAligned); if (allocation.IsFailure()) break; successful_allocations++; Tagged<Object> obj = allocation.ToObjectChecked(); Tagged<HeapObject> ho = HeapObject::cast(obj); CHECK(new_space->Contains(ho)); } CHECK_LT(0, successful_allocations); new_space.reset(); memory_allocator->unmapper()->EnsureUnmappingCompleted(); } TEST(PagedNewSpace) { if (v8_flags.single_generation) return; ManualGCScope manual_gc_scope; Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); TestMemoryAllocatorScope test_allocator_scope(isolate, heap->MaxReserved()); MemoryAllocator* memory_allocator = test_allocator_scope.allocator(); LinearAllocationArea allocation_info; auto new_space = std::make_unique<PagedNewSpace>( heap, heap->InitialSemiSpaceSize(), heap->InitialSemiSpaceSize(), allocation_info); CHECK(new_space->MaximumCapacity()); CHECK(new_space->EnsureCurrentCapacity()); CHECK_LT(0, new_space->TotalCapacity()); size_t successful_allocations = 0; while (true) { AllocationResult allocation = new_space->AllocateRaw(kMaxRegularHeapObjectSize, kTaggedAligned); if (allocation.IsFailure()) break; successful_allocations++; Tagged<Object> obj = allocation.ToObjectChecked(); Tagged<HeapObject> ho = HeapObject::cast(obj); CHECK(new_space->Contains(ho)); } CHECK_LT(0, successful_allocations); new_space.reset(); memory_allocator->unmapper()->EnsureUnmappingCompleted(); } TEST(OldSpace) { v8_flags.max_heap_size = 20; // This test uses its own old space, which confuses the incremental marker. v8_flags.incremental_marking = false; // This test doesn't expect GCs caused by concurrent allocations in the // background thread. v8_flags.stress_concurrent_allocation = false; Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); TestMemoryAllocatorScope test_allocator_scope(isolate, heap->MaxReserved()); LinearAllocationArea allocation_info; auto old_space = std::make_unique<OldSpace>(heap, allocation_info); const int obj_size = kMaxRegularHeapObjectSize; size_t successful_allocations = 0; while (true) { AllocationResult allocation = old_space->AllocateRaw(obj_size, kTaggedAligned); if (allocation.IsFailure()) break; successful_allocations++; Tagged<Object> obj = allocation.ToObjectChecked(); Tagged<HeapObject> ho = HeapObject::cast(obj); CHECK(old_space->Contains(ho)); } CHECK_LT(0, successful_allocations); } TEST(OldLargeObjectSpace) { v8_flags.max_heap_size = 20; // This test uses its own old large object space, which confuses the // incremental marker. v8_flags.incremental_marking = false; // This test doesn't expect GCs caused by concurrent allocations in the // background thread. v8_flags.stress_concurrent_allocation = false; Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); auto lo = std::make_unique<OldLargeObjectSpace>(heap); const int lo_size = Page::kPageSize; HandleScope handle_scope(isolate); Tagged<Map> map = ReadOnlyRoots(isolate).fixed_double_array_map(); size_t successful_allocations = 0; while (true) { AllocationResult allocation = lo->AllocateRaw(lo_size); if (allocation.IsFailure()) break; successful_allocations++; Tagged<Object> obj = allocation.ToObjectChecked(); CHECK(IsHeapObject(obj)); Tagged<HeapObject> ho = HeapObject::cast(obj); CHECK(lo->Contains(ho)); CHECK_EQ(0, Heap::GetFillToAlign(ho.address(), kTaggedAligned)); // All large objects have the same alignment because they start at the // same offset within a page. Fixed double arrays have the most strict // alignment requirements. CHECK_EQ(0, Heap::GetFillToAlign(ho.address(), HeapObject::RequiredAlignment(map))); Handle<HeapObject> keep_alive(ho, isolate); } CHECK_LT(0, successful_allocations); CHECK(!lo->IsEmpty()); CHECK(lo->AllocateRaw(lo_size).IsFailure()); } #ifndef DEBUG // The test verifies that committed size of a space is less then some threshold. // Debug builds pull in all sorts of additional instrumentation that increases // heap sizes. E.g. CSA_DCHECK creates on-heap strings for error messages. These // messages are also not stable if files are moved and modified during the build // process (jumbo builds). TEST(SizeOfInitialHeap) { ManualGCScope manual_gc_scope; if (i::v8_flags.always_turbofan) return; // Bootstrapping without a snapshot causes more allocations. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); if (!isolate->snapshot_available()) return; HandleScope scope(isolate); v8::Local<v8::Context> context = CcTest::isolate()->GetCurrentContext(); // Skip this test on the custom snapshot builder. if (!CcTest::global() ->Get(context, v8_str("assertEquals")) .ToLocalChecked() ->IsUndefined()) { return; } // Initial size of LO_SPACE size_t initial_lo_space = isolate->heap()->lo_space()->Size(); // The limit for each space for an empty isolate containing just the // snapshot. // In PPC the page size is 64K, causing more internal fragmentation // hence requiring a larger limit. #if V8_OS_LINUX && (V8_HOST_ARCH_PPC || V8_HOST_ARCH_PPC64) const size_t kMaxInitialSizePerSpace = 3 * MB; #else const size_t kMaxInitialSizePerSpace = 2 * MB; #endif // Freshly initialized VM gets by with the snapshot size (which is below // kMaxInitialSizePerSpace per space). Heap* heap = isolate->heap(); for (int i = FIRST_GROWABLE_PAGED_SPACE; i <= LAST_GROWABLE_PAGED_SPACE; i++) { if (!heap->paged_space(i)) continue; // Debug code can be very large, so skip CODE_SPACE if we are generating it. if (i == CODE_SPACE && i::v8_flags.debug_code) continue; // Check that the initial heap is also below the limit. CHECK_LE(heap->paged_space(i)->CommittedMemory(), kMaxInitialSizePerSpace); } CompileRun("/*empty*/"); // No large objects required to perform the above steps. CHECK_EQ(initial_lo_space, static_cast<size_t>(isolate->heap()->lo_space()->Size())); } #endif // DEBUG class Observer : public AllocationObserver { public: explicit Observer(intptr_t step_size) : AllocationObserver(step_size), count_(0) {} void Step(int bytes_allocated, Address addr, size_t) override { count_++; } int count() const { return count_; } private: int count_; }; HEAP_TEST(Regress777177) { v8_flags.stress_concurrent_allocation = false; // For SimulateFullSpace. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); HandleScope scope(isolate); OldSpace* old_space = heap->old_space(); MainAllocator* old_space_allocator = heap->allocator()->old_space_allocator(); Observer observer(128); old_space_allocator->AddAllocationObserver(&observer); int area_size = old_space->AreaSize(); int max_object_size = kMaxRegularHeapObjectSize; int filler_size = area_size - max_object_size; { // Ensure a new linear allocation area on a fresh page. AlwaysAllocateScopeForTesting always_allocate(heap); heap::SimulateFullSpace(old_space); AllocationResult result = old_space->AllocateRaw(filler_size, kTaggedAligned); Tagged<HeapObject> obj = result.ToObjectChecked(); heap->CreateFillerObjectAt(obj.address(), filler_size); } { // Allocate all bytes of the linear allocation area. This moves top_ and // top_on_previous_step_ to the next page. AllocationResult result = old_space->AllocateRaw(max_object_size, kTaggedAligned); Tagged<HeapObject> obj = result.ToObjectChecked(); // Simulate allocation folding moving the top pointer back. old_space->SetTopAndLimit( obj.address(), heap->allocator()->old_space_allocator()->limit(), heap->allocator()->old_space_allocator()->limit()); } { // This triggers assert in crbug.com/777177. AllocationResult result = old_space->AllocateRaw(filler_size, kTaggedAligned); Tagged<HeapObject> obj = result.ToObjectChecked(); heap->CreateFillerObjectAt(obj.address(), filler_size); } old_space_allocator->RemoveAllocationObserver(&observer); } HEAP_TEST(Regress791582) { if (v8_flags.single_generation) return; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); HandleScope scope(isolate); NewSpace* new_space = heap->new_space(); MainAllocator* new_space_allocator = heap->allocator()->new_space_allocator(); GrowNewSpace(heap); int until_page_end = static_cast<int>(heap->NewSpaceLimit() - heap->NewSpaceTop()); if (!IsAligned(until_page_end, kTaggedSize)) { // The test works if the size of allocation area size is a multiple of // pointer size. This is usually the case unless some allocation observer // is already active (e.g. incremental marking observer). return; } Observer observer(128); new_space_allocator->AddAllocationObserver(&observer); { AllocationResult result = new_space->AllocateRaw(until_page_end, kTaggedAligned); Tagged<HeapObject> obj = result.ToObjectChecked(); heap->CreateFillerObjectAt(obj.address(), until_page_end); // Simulate allocation folding moving the top pointer back. *heap->NewSpaceAllocationTopAddress() = obj.address(); } { // This triggers assert in crbug.com/791582 AllocationResult result = new_space->AllocateRaw(256, kTaggedAligned); Tagged<HeapObject> obj = result.ToObjectChecked(); heap->CreateFillerObjectAt(obj.address(), 256); } new_space_allocator->RemoveAllocationObserver(&observer); } TEST(ShrinkPageToHighWaterMarkFreeSpaceEnd) { v8_flags.stress_incremental_marking = false; v8_flags.stress_concurrent_allocation = false; // For SealCurrentObjects. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); heap::SealCurrentObjects(CcTest::heap()); // Prepare page that only contains a single object and a trailing FreeSpace // filler. Handle<FixedArray> array = isolate->factory()->NewFixedArray(128, AllocationType::kOld); Page* page = Page::FromHeapObject(*array); // Reset space so high water mark is consistent. PagedSpace* old_space = CcTest::heap()->old_space(); old_space->FreeLinearAllocationArea(); old_space->ResetFreeList(); Tagged<HeapObject> filler = HeapObject::FromAddress(array->address() + array->Size()); CHECK(IsFreeSpace(filler)); size_t shrunk = old_space->ShrinkPageToHighWaterMark(page); size_t should_have_shrunk = RoundDown( static_cast<size_t>(MemoryChunkLayout::AllocatableMemoryInDataPage() - array->Size()), CommitPageSize()); CHECK_EQ(should_have_shrunk, shrunk); } TEST(ShrinkPageToHighWaterMarkNoFiller) { v8_flags.stress_concurrent_allocation = false; // For SealCurrentObjects. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); heap::SealCurrentObjects(CcTest::heap()); const int kFillerSize = 0; std::vector<Handle<FixedArray>> arrays = heap::FillOldSpacePageWithFixedArrays(CcTest::heap(), kFillerSize); Handle<FixedArray> array = arrays.back(); Page* page = Page::FromHeapObject(*array); CHECK_EQ(page->area_end(), array->address() + array->Size() + kFillerSize); // Reset space so high water mark and fillers are consistent. PagedSpace* old_space = CcTest::heap()->old_space(); old_space->ResetFreeList(); old_space->FreeLinearAllocationArea(); size_t shrunk = old_space->ShrinkPageToHighWaterMark(page); CHECK_EQ(0u, shrunk); } TEST(ShrinkPageToHighWaterMarkOneWordFiller) { v8_flags.stress_concurrent_allocation = false; // For SealCurrentObjects. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); heap::SealCurrentObjects(CcTest::heap()); const int kFillerSize = kTaggedSize; std::vector<Handle<FixedArray>> arrays = heap::FillOldSpacePageWithFixedArrays(CcTest::heap(), kFillerSize); Handle<FixedArray> array = arrays.back(); Page* page = Page::FromHeapObject(*array); CHECK_EQ(page->area_end(), array->address() + array->Size() + kFillerSize); // Reset space so high water mark and fillers are consistent. PagedSpace* old_space = CcTest::heap()->old_space(); old_space->FreeLinearAllocationArea(); old_space->ResetFreeList(); Tagged<HeapObject> filler = HeapObject::FromAddress(array->address() + array->Size()); CHECK_EQ(filler->map(), ReadOnlyRoots(CcTest::heap()).one_pointer_filler_map()); size_t shrunk = old_space->ShrinkPageToHighWaterMark(page); CHECK_EQ(0u, shrunk); } TEST(ShrinkPageToHighWaterMarkTwoWordFiller) { v8_flags.stress_concurrent_allocation = false; // For SealCurrentObjects. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); heap::SealCurrentObjects(CcTest::heap()); const int kFillerSize = 2 * kTaggedSize; std::vector<Handle<FixedArray>> arrays = heap::FillOldSpacePageWithFixedArrays(CcTest::heap(), kFillerSize); Handle<FixedArray> array = arrays.back(); Page* page = Page::FromHeapObject(*array); CHECK_EQ(page->area_end(), array->address() + array->Size() + kFillerSize); // Reset space so high water mark and fillers are consistent. PagedSpace* old_space = CcTest::heap()->old_space(); old_space->FreeLinearAllocationArea(); old_space->ResetFreeList(); Tagged<HeapObject> filler = HeapObject::FromAddress(array->address() + array->Size()); CHECK_EQ(filler->map(), ReadOnlyRoots(CcTest::heap()).two_pointer_filler_map()); size_t shrunk = old_space->ShrinkPageToHighWaterMark(page); CHECK_EQ(0u, shrunk); } namespace { // PageAllocator that always fails. class FailingPageAllocator : public v8::PageAllocator { public: size_t AllocatePageSize() override { return 1024; } size_t CommitPageSize() override { return 1024; } void SetRandomMmapSeed(int64_t seed) override {} void* GetRandomMmapAddr() override { return nullptr; } void* AllocatePages(void* address, size_t length, size_t alignment, Permission permissions) override { return nullptr; } bool FreePages(void* address, size_t length) override { return false; } bool ReleasePages(void* address, size_t length, size_t new_length) override { return false; } bool SetPermissions(void* address, size_t length, Permission permissions) override { return false; } bool RecommitPages(void* address, size_t length, Permission permissions) override { return false; } bool DecommitPages(void* address, size_t length) override { return false; } }; } // namespace TEST(NoMemoryForNewPage) { Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); // Memory allocator that will fail to allocate any pages. FailingPageAllocator failing_allocator; TestMemoryAllocatorScope test_allocator_scope(isolate, 0, &failing_allocator); MemoryAllocator* memory_allocator = test_allocator_scope.allocator(); LinearAllocationArea allocation_info; OldSpace faked_space(heap, allocation_info); Page* page = memory_allocator->AllocatePage( MemoryAllocator::AllocationMode::kRegular, static_cast<PagedSpace*>(&faked_space), NOT_EXECUTABLE); CHECK_NULL(page); } namespace { // ReadOnlySpace cannot be torn down by a destructor because the destructor // cannot take an argument. Since these tests create ReadOnlySpaces not attached // to the Heap directly, they need to be destroyed to ensure the // MemoryAllocator's stats are all 0 at exit. class V8_NODISCARD ReadOnlySpaceScope { public: explicit ReadOnlySpaceScope(Heap* heap) : ro_space_(heap) {} ~ReadOnlySpaceScope() { ro_space_.TearDown(CcTest::heap()->memory_allocator()); } ReadOnlySpace* space() { return &ro_space_; } private: ReadOnlySpace ro_space_; }; } // namespace TEST(ReadOnlySpaceMetrics_OnePage) { Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); // Create a read-only space and allocate some memory, shrink the pages and // check the allocated object size is as expected. ReadOnlySpaceScope scope(heap); ReadOnlySpace* faked_space = scope.space(); // Initially no memory. CHECK_EQ(faked_space->Size(), 0); CHECK_EQ(faked_space->Capacity(), 0); CHECK_EQ(faked_space->CommittedMemory(), 0); CHECK_EQ(faked_space->CommittedPhysicalMemory(), 0); faked_space->AllocateRaw(16, kTaggedAligned); faked_space->ShrinkPages(); faked_space->Seal(ReadOnlySpace::SealMode::kDoNotDetachFromHeap); // Allocated objects size. CHECK_EQ(faked_space->Size(), 16); size_t committed_memory = RoundUp(MemoryChunkLayout::ObjectStartOffsetInReadOnlyPage() + faked_space->Size(), MemoryAllocator::GetCommitPageSize()); // Amount of OS allocated memory. CHECK_EQ(faked_space->CommittedMemory(), committed_memory); CHECK_EQ(faked_space->CommittedPhysicalMemory(), committed_memory); // Capacity will be one OS page minus the page header. CHECK_EQ( faked_space->Capacity(), committed_memory - MemoryChunkLayout::ObjectStartOffsetInReadOnlyPage()); } TEST(ReadOnlySpaceMetrics_AlignedAllocations) { Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); // Create a read-only space and allocate some memory, shrink the pages and // check the allocated object size is as expected. ReadOnlySpaceScope scope(heap); ReadOnlySpace* faked_space = scope.space(); // Initially no memory. CHECK_EQ(faked_space->Size(), 0); CHECK_EQ(faked_space->Capacity(), 0); CHECK_EQ(faked_space->CommittedMemory(), 0); CHECK_EQ(faked_space->CommittedPhysicalMemory(), 0); // Allocate an object just under an OS page in size. int object_size = static_cast<int>(MemoryAllocator::GetCommitPageSize() - kApiTaggedSize); int alignment = USE_ALLOCATION_ALIGNMENT_BOOL ? kDoubleSize : kTaggedSize; Tagged<HeapObject> object = faked_space->AllocateRaw(object_size, kDoubleAligned).ToObjectChecked(); CHECK_EQ(object.address() % alignment, 0); object = faked_space->AllocateRaw(object_size, kDoubleAligned).ToObjectChecked(); CHECK_EQ(object.address() % alignment, 0); // Calculate size of allocations based on area_start. Address area_start = faked_space->pages().back()->GetAreaStart(); Address top = RoundUp(area_start, alignment) + object_size; top = RoundUp(top, alignment) + object_size; size_t expected_size = top - area_start; faked_space->ShrinkPages(); faked_space->Seal(ReadOnlySpace::SealMode::kDoNotDetachFromHeap); // Allocated objects size may will contain 4 bytes of padding on 32-bit or // with pointer compression. CHECK_EQ(faked_space->Size(), expected_size); size_t committed_memory = RoundUp(MemoryChunkLayout::ObjectStartOffsetInReadOnlyPage() + faked_space->Size(), MemoryAllocator::GetCommitPageSize()); CHECK_EQ(faked_space->CommittedMemory(), committed_memory); CHECK_EQ(faked_space->CommittedPhysicalMemory(), committed_memory); // Capacity will be 3 OS pages minus the page header. CHECK_EQ( faked_space->Capacity(), committed_memory - MemoryChunkLayout::ObjectStartOffsetInReadOnlyPage()); } TEST(ReadOnlySpaceMetrics_TwoPages) { Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); // Create a read-only space and allocate some memory, shrink the pages and // check the allocated object size is as expected. ReadOnlySpaceScope scope(heap); ReadOnlySpace* faked_space = scope.space(); // Initially no memory. CHECK_EQ(faked_space->Size(), 0); CHECK_EQ(faked_space->Capacity(), 0); CHECK_EQ(faked_space->CommittedMemory(), 0); CHECK_EQ(faked_space->CommittedPhysicalMemory(), 0); // Allocate an object that's too big to have more than one on a page. int object_size = RoundUp( static_cast<int>( MemoryChunkLayout::AllocatableMemoryInMemoryChunk(RO_SPACE) / 2 + 16), kTaggedSize); CHECK_GT(object_size * 2, MemoryChunkLayout::AllocatableMemoryInMemoryChunk(RO_SPACE)); faked_space->AllocateRaw(object_size, kTaggedAligned); // Then allocate another so it expands the space to two pages. faked_space->AllocateRaw(object_size, kTaggedAligned); faked_space->ShrinkPages(); faked_space->Seal(ReadOnlySpace::SealMode::kDoNotDetachFromHeap); // Allocated objects size. CHECK_EQ(faked_space->Size(), object_size * 2); // Amount of OS allocated memory. size_t committed_memory_per_page = RoundUp( MemoryChunkLayout::ObjectStartOffsetInReadOnlyPage() + object_size, MemoryAllocator::GetCommitPageSize()); CHECK_EQ(faked_space->CommittedMemory(), 2 * committed_memory_per_page); CHECK_EQ(faked_space->CommittedPhysicalMemory(), 2 * committed_memory_per_page); // Capacity will be the space up to the amount of committed memory minus the // page headers. size_t capacity_per_page = RoundUp( MemoryChunkLayout::ObjectStartOffsetInReadOnlyPage() + object_size, MemoryAllocator::GetCommitPageSize()) - MemoryChunkLayout::ObjectStartOffsetInReadOnlyPage(); CHECK_EQ(faked_space->Capacity(), 2 * capacity_per_page); } } // namespace heap } // namespace internal } // namespace v8