%PDF- %PDF-
Direktori : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/test/fuzzer/ |
Current File : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/deps/v8/test/fuzzer/wasm-fuzzer-common.cc |
// Copyright 2016 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "test/fuzzer/wasm-fuzzer-common.h" #include <ctime> #include "include/v8-context.h" #include "include/v8-exception.h" #include "include/v8-isolate.h" #include "include/v8-local-handle.h" #include "include/v8-metrics.h" #include "src/execution/isolate.h" #include "src/utils/ostreams.h" #include "src/wasm/baseline/liftoff-compiler.h" #include "src/wasm/function-body-decoder-impl.h" #include "src/wasm/module-decoder-impl.h" #include "src/wasm/module-instantiate.h" #include "src/wasm/wasm-engine.h" #include "src/wasm/wasm-feature-flags.h" #include "src/wasm/wasm-module-builder.h" #include "src/wasm/wasm-module.h" #include "src/wasm/wasm-objects-inl.h" #include "src/wasm/wasm-opcodes-inl.h" #include "src/zone/accounting-allocator.h" #include "src/zone/zone.h" #include "test/common/flag-utils.h" #include "test/common/wasm/wasm-module-runner.h" #include "test/fuzzer/fuzzer-support.h" namespace v8::internal::wasm::fuzzer { // Compile a baseline module. We pass a pointer to a max step counter and a // nondeterminsm flag that are updated during execution by Liftoff. Handle<WasmModuleObject> CompileReferenceModule( Isolate* isolate, base::Vector<const uint8_t> wire_bytes, int32_t* max_steps, int32_t* nondeterminism) { // Create the native module. std::shared_ptr<NativeModule> native_module; constexpr bool kNoVerifyFunctions = false; auto enabled_features = WasmFeatures::FromIsolate(isolate); ModuleResult module_res = DecodeWasmModule(enabled_features, wire_bytes, kNoVerifyFunctions, ModuleOrigin::kWasmOrigin); CHECK(module_res.ok()); std::shared_ptr<WasmModule> module = module_res.value(); CHECK_NOT_NULL(module); native_module = GetWasmEngine()->NewNativeModule(isolate, enabled_features, module, 0); native_module->SetWireBytes(base::OwnedVector<uint8_t>::Of(wire_bytes)); // The module is known to be valid as this point (it was compiled by the // caller before). module->set_all_functions_validated(); // Compile all functions with Liftoff. WasmCodeRefScope code_ref_scope; auto env = native_module->CreateCompilationEnv(); ModuleWireBytes wire_bytes_accessor{wire_bytes}; for (size_t i = module->num_imported_functions; i < module->functions.size(); ++i) { auto& func = module->functions[i]; base::Vector<const uint8_t> func_code = wire_bytes_accessor.GetFunctionBytes(&func); FunctionBody func_body(func.sig, func.code.offset(), func_code.begin(), func_code.end()); auto result = ExecuteLiftoffCompilation(&env, func_body, LiftoffOptions{} .set_func_index(func.func_index) .set_for_debugging(kForDebugging) .set_max_steps(max_steps) .set_nondeterminism(nondeterminism)); if (!result.succeeded()) { FATAL( "Liftoff compilation failed on a valid module. Run with " "--trace-wasm-decoder (in a debug build) to see why."); } native_module->PublishCode(native_module->AddCompiledCode(result)); } // Create the module object. constexpr base::Vector<const char> kNoSourceUrl; Handle<Script> script = GetWasmEngine()->GetOrCreateScript(isolate, native_module, kNoSourceUrl); isolate->heap()->EnsureWasmCanonicalRttsSize(module->MaxCanonicalTypeIndex() + 1); return WasmModuleObject::New(isolate, std::move(native_module), script); } void ExecuteAgainstReference(Isolate* isolate, Handle<WasmModuleObject> module_object, int32_t max_executed_instructions) { // We do not instantiate the module if there is a start function, because a // start function can contain an infinite loop which we cannot handle. if (module_object->module()->start_function_index >= 0) return; int32_t max_steps = max_executed_instructions; int32_t nondeterminism = 0; HandleScope handle_scope(isolate); // Avoid leaking handles. Zone reference_module_zone(isolate->allocator(), "wasm reference module"); Handle<WasmModuleObject> module_ref = CompileReferenceModule( isolate, module_object->native_module()->wire_bytes(), &max_steps, &nondeterminism); Handle<WasmInstanceObject> instance_ref; // Try to instantiate the reference instance, return if it fails. { ErrorThrower thrower(isolate, "ExecuteAgainstReference"); if (!GetWasmEngine() ->SyncInstantiate(isolate, &thrower, module_ref, {}, {}) // no imports & memory .ToHandle(&instance_ref)) { isolate->clear_pending_exception(); thrower.Reset(); // Ignore errors. return; } } // Get the "main" exported function. Do nothing if it does not exist. Handle<WasmExportedFunction> main_function; if (!testing::GetExportedFunction(isolate, instance_ref, "main") .ToHandle(&main_function)) { return; } base::OwnedVector<Handle<Object>> compiled_args = testing::MakeDefaultArguments(isolate, main_function->sig()); std::unique_ptr<const char[]> exception_ref; int32_t result_ref = testing::CallWasmFunctionForTesting( isolate, instance_ref, "main", compiled_args.as_vector(), &exception_ref); // Reached max steps, do not try to execute the test module as it might // never terminate. if (max_steps < 0) return; // If there is nondeterminism, we cannot guarantee the behavior of the test // module, and in particular it may not terminate. if (nondeterminism != 0) return; if (exception_ref) { if (strcmp(exception_ref.get(), "RangeError: Maximum call stack size exceeded") == 0) { // There was a stack overflow, which may happen nondeterministically. We // cannot guarantee the behavior of the test module, and in particular it // may not terminate. return; } } // Instantiate a fresh instance for the actual (non-ref) execution. Handle<WasmInstanceObject> instance; { ErrorThrower thrower(isolate, "ExecuteAgainstReference (second)"); // We instantiated before, so the second instantiation must also succeed. if (!GetWasmEngine() ->SyncInstantiate(isolate, &thrower, module_object, {}, {}) // no imports & memory .ToHandle(&instance)) { DCHECK(thrower.error()); // The only reason to fail the second instantiation should be OOM. Make // this a proper OOM crash so that ClusterFuzz categorizes it as such. if (strstr(thrower.error_msg(), "Out of memory")) { V8::FatalProcessOutOfMemory(isolate, "Wasm fuzzer second instantiation", thrower.error_msg()); } FATAL("Second instantiation failed unexpectedly: %s", thrower.error_msg()); } DCHECK(!thrower.error()); } std::unique_ptr<const char[]> exception; int32_t result = testing::CallWasmFunctionForTesting( isolate, instance, "main", compiled_args.as_vector(), &exception); if ((exception_ref != nullptr) != (exception != nullptr)) { FATAL("Exception mismatch! Expected: <%s>; got: <%s>", exception_ref ? exception_ref.get() : "<no exception>", exception ? exception.get() : "<no exception>"); } if (!exception) { CHECK_EQ(result_ref, result); } } namespace { struct PrintSig { const size_t num; const std::function<ValueType(size_t)> getter; }; PrintSig PrintParameters(const FunctionSig* sig) { return {sig->parameter_count(), [=](size_t i) { return sig->GetParam(i); }}; } PrintSig PrintReturns(const FunctionSig* sig) { return {sig->return_count(), [=](size_t i) { return sig->GetReturn(i); }}; } std::string index_raw(uint32_t arg) { return arg < 128 ? std::to_string(arg) : "wasmUnsignedLeb(" + std::to_string(arg) + ")"; } std::string index(uint32_t arg) { return index_raw(arg) + ", "; } std::string HeapTypeToJSByteEncoding(HeapType heap_type) { switch (heap_type.representation()) { case HeapType::kFunc: return "kFuncRefCode"; case HeapType::kEq: return "kEqRefCode"; case HeapType::kI31: return "kI31RefCode"; case HeapType::kStruct: return "kStructRefCode"; case HeapType::kArray: return "kArrayRefCode"; case HeapType::kAny: return "kAnyRefCode"; case HeapType::kExtern: return "kExternRefCode"; case HeapType::kNone: return "kNullRefCode"; case HeapType::kNoFunc: return "kNullFuncRefCode"; case HeapType::kNoExtern: return "kNullExternRefCode"; case HeapType::kBottom: UNREACHABLE(); default: return index_raw(heap_type.ref_index()); } } std::string HeapTypeToConstantName(HeapType heap_type) { switch (heap_type.representation()) { case HeapType::kFunc: return "kWasmFuncRef"; case HeapType::kEq: return "kWasmEqRef"; case HeapType::kI31: return "kWasmI31Ref"; case HeapType::kStruct: return "kWasmStructRef"; case HeapType::kArray: return "kWasmArrayRef"; case HeapType::kExtern: return "kWasmExternRef"; case HeapType::kAny: return "kWasmAnyRef"; case HeapType::kNone: return "kWasmNullRef"; case HeapType::kNoFunc: return "kWasmNullFuncRef"; case HeapType::kNoExtern: return "kWasmNullExternRef"; case HeapType::kBottom: UNREACHABLE(); default: return std::to_string(heap_type.ref_index()); } } std::string ValueTypeToConstantName(ValueType type) { switch (type.kind()) { case kI8: return "kWasmI8"; case kI16: return "kWasmI16"; case kI32: return "kWasmI32"; case kI64: return "kWasmI64"; case kF32: return "kWasmF32"; case kF64: return "kWasmF64"; case kS128: return "kWasmS128"; case kRefNull: switch (type.heap_representation()) { case HeapType::kFunc: return "kWasmFuncRef"; case HeapType::kEq: return "kWasmEqRef"; case HeapType::kExtern: return "kWasmExternRef"; case HeapType::kAny: return "kWasmAnyRef"; case HeapType::kBottom: UNREACHABLE(); case HeapType::kStruct: case HeapType::kArray: case HeapType::kI31: default: return "wasmRefNullType(" + HeapTypeToConstantName(type.heap_type()) + ")"; } case kRef: return "wasmRefType(" + HeapTypeToConstantName(type.heap_type()) + ")"; case kRtt: case kVoid: case kBottom: UNREACHABLE(); } } std::ostream& operator<<(std::ostream& os, const PrintSig& print) { os << "["; for (size_t i = 0; i < print.num; ++i) { os << (i == 0 ? "" : ", ") << ValueTypeToConstantName(print.getter(i)); } return os << "]"; } struct PrintName { WasmName name; PrintName(ModuleWireBytes wire_bytes, WireBytesRef ref) : name(wire_bytes.GetNameOrNull(ref)) {} }; std::ostream& operator<<(std::ostream& os, const PrintName& name) { return os.put('\'').write(name.name.begin(), name.name.size()).put('\''); } // An interface for WasmFullDecoder which appends to a stream a textual // representation of the expression, compatible with wasm-module-builder.js. class InitExprInterface { public: using ValidationTag = Decoder::FullValidationTag; static constexpr DecodingMode decoding_mode = kConstantExpression; static constexpr bool kUsesPoppedArgs = false; struct Value : public ValueBase<ValidationTag> { template <typename... Args> explicit Value(Args&&... args) V8_NOEXCEPT : ValueBase(std::forward<Args>(args)...) {} }; using Control = ControlBase<Value, ValidationTag>; using FullDecoder = WasmFullDecoder<ValidationTag, InitExprInterface, decoding_mode>; explicit InitExprInterface(StdoutStream& os) : os_(os) { os_ << "["; } #define EMPTY_INTERFACE_FUNCTION(name, ...) \ V8_INLINE void name(FullDecoder* decoder, ##__VA_ARGS__) {} INTERFACE_META_FUNCTIONS(EMPTY_INTERFACE_FUNCTION) #undef EMPTY_INTERFACE_FUNCTION #define UNREACHABLE_INTERFACE_FUNCTION(name, ...) \ V8_INLINE void name(FullDecoder* decoder, ##__VA_ARGS__) { UNREACHABLE(); } INTERFACE_NON_CONSTANT_FUNCTIONS(UNREACHABLE_INTERFACE_FUNCTION) #undef UNREACHABLE_INTERFACE_FUNCTION void I32Const(FullDecoder* decoder, Value* result, int32_t value) { os_ << "...wasmI32Const(" << value << "), "; } void I64Const(FullDecoder* decoder, Value* result, int64_t value) { os_ << "...wasmI64Const(" << value << "), "; } void F32Const(FullDecoder* decoder, Value* result, float value) { os_ << "...wasmF32Const(" << value << "), "; } void F64Const(FullDecoder* decoder, Value* result, double value) { os_ << "...wasmF64Const(" << value << "), "; } void S128Const(FullDecoder* decoder, Simd128Immediate& imm, Value* result) { os_ << "kSimdPrefix, kExprS128Const, " << std::hex; for (int i = 0; i < kSimd128Size; i++) { os_ << "0x" << static_cast<int>(imm.value[i]) << ", "; } os_ << std::dec; } void BinOp(FullDecoder* decoder, WasmOpcode opcode, const Value& lhs, const Value& rhs, Value* result) { switch (opcode) { case kExprI32Add: os_ << "kExprI32Add, "; break; case kExprI32Sub: os_ << "kExprI32Sub, "; break; case kExprI32Mul: os_ << "kExprI32Mul, "; break; case kExprI64Add: os_ << "kExprI64Add, "; break; case kExprI64Sub: os_ << "kExprI64Sub, "; break; case kExprI64Mul: os_ << "kExprI64Mul, "; break; default: UNREACHABLE(); } } void UnOp(FullDecoder* decoder, WasmOpcode opcode, const Value& value, Value* result) { switch (opcode) { case kExprExternInternalize: os_ << "kGCPrefix, kExprExternInternalize, "; break; case kExprExternExternalize: os_ << "kGCPrefix, kExprExternExternalize, "; break; default: UNREACHABLE(); } } void RefNull(FullDecoder* decoder, ValueType type, Value* result) { os_ << "kExprRefNull, " << HeapTypeToJSByteEncoding(type.heap_type()) << ", "; } void RefFunc(FullDecoder* decoder, uint32_t function_index, Value* result) { os_ << "kExprRefFunc, " << index(function_index); } void GlobalGet(FullDecoder* decoder, Value* result, const GlobalIndexImmediate& imm) { os_ << "kWasmGlobalGet, " << index(imm.index); } // The following operations assume non-rtt versions of the instructions. void StructNew(FullDecoder* decoder, const StructIndexImmediate& imm, const Value args[], Value* result) { os_ << "kGCPrefix, kExprStructNew, " << index(imm.index); } void StructNewDefault(FullDecoder* decoder, const StructIndexImmediate& imm, Value* result) { os_ << "kGCPrefix, kExprStructNewDefault, " << index(imm.index); } void ArrayNew(FullDecoder* decoder, const ArrayIndexImmediate& imm, const Value& length, const Value& initial_value, Value* result) { os_ << "kGCPrefix, kExprArrayNew, " << index(imm.index); } void ArrayNewDefault(FullDecoder* decoder, const ArrayIndexImmediate& imm, const Value& length, Value* result) { os_ << "kGCPrefix, kExprArrayNewDefault, " << index(imm.index); } void ArrayNewFixed(FullDecoder* decoder, const ArrayIndexImmediate& array_imm, const IndexImmediate& length_imm, const Value elements[], Value* result) { os_ << "kGCPrefix, kExprArrayNewFixed, " << index(array_imm.index) << index(length_imm.index); } void ArrayNewSegment(FullDecoder* decoder, const ArrayIndexImmediate& array_imm, const IndexImmediate& data_segment_imm, const Value& offset_value, const Value& length_value, Value* result) { // TODO(14034): Implement when/if array.new_data/element becomes const. UNIMPLEMENTED(); } void RefI31(FullDecoder* decoder, const Value& input, Value* result) { os_ << "kGCPrefix, kExprRefI31, "; } // Since we treat all instructions as rtt-less, we should not print rtts. void RttCanon(FullDecoder* decoder, uint32_t type_index, Value* result) {} void StringConst(FullDecoder* decoder, const StringConstImmediate& imm, Value* result) { os_ << "...GCInstr(kExprStringConst), " << index(imm.index); } void DoReturn(FullDecoder* decoder, uint32_t /*drop_values*/) { os_ << "]"; } private: StdoutStream& os_; }; void DecodeAndAppendInitExpr(StdoutStream& os, Zone* zone, const WasmModule* module, ModuleWireBytes module_bytes, ConstantExpression init, ValueType expected) { switch (init.kind()) { case ConstantExpression::kEmpty: UNREACHABLE(); case ConstantExpression::kI32Const: os << "wasmI32Const(" << init.i32_value() << ")"; break; case ConstantExpression::kRefNull: os << "[kExprRefNull, " << HeapTypeToJSByteEncoding(HeapType(init.repr())) << "]"; break; case ConstantExpression::kRefFunc: os << "[kExprRefFunc, " << index(init.index()) << "]"; break; case ConstantExpression::kWireBytesRef: { WireBytesRef ref = init.wire_bytes_ref(); auto sig = FixedSizeSignature<ValueType>::Returns(expected); FunctionBody body(&sig, ref.offset(), module_bytes.start() + ref.offset(), module_bytes.start() + ref.end_offset()); WasmFeatures detected; WasmFullDecoder<Decoder::FullValidationTag, InitExprInterface, kConstantExpression> decoder(zone, module, WasmFeatures::All(), &detected, body, os); decoder.DecodeFunctionBody(); break; } } } } // namespace void GenerateTestCase(Isolate* isolate, ModuleWireBytes wire_bytes, bool compiles) { constexpr bool kVerifyFunctions = false; auto enabled_features = WasmFeatures::FromIsolate(isolate); ModuleResult module_res = DecodeWasmModule( enabled_features, wire_bytes.module_bytes(), kVerifyFunctions, ModuleOrigin::kWasmOrigin, kPopulateExplicitRecGroups); CHECK_WITH_MSG(module_res.ok(), module_res.error().message().c_str()); WasmModule* module = module_res.value().get(); CHECK_NOT_NULL(module); AccountingAllocator allocator; Zone zone(&allocator, "constant expression zone"); StdoutStream os; tzset(); time_t current_time = time(nullptr); struct tm current_localtime; #ifdef V8_OS_WIN localtime_s(¤t_localtime, ¤t_time); #else localtime_r(¤t_time, ¤t_localtime); #endif int year = 1900 + current_localtime.tm_year; os << "// Copyright " << year << " the V8 project authors. All rights reserved.\n" "// Use of this source code is governed by a BSD-style license that " "can be\n" "// found in the LICENSE file.\n" "\n" "// Flags: --wasm-staging --experimental-wasm-gc\n" "// Flags: --experimental-wasm-relaxed-simd\n" "\n" "d8.file.execute('test/mjsunit/wasm/wasm-module-builder.js');\n" "\n" "const builder = new WasmModuleBuilder();\n"; int recursive_group_end = -1; for (int i = 0; i < static_cast<int>(module->types.size()); i++) { auto rec_group = module->explicit_recursive_type_groups.find(i); if (rec_group != module->explicit_recursive_type_groups.end()) { os << "builder.startRecGroup();\n"; recursive_group_end = rec_group->first + rec_group->second - 1; } if (module->has_struct(i)) { const StructType* struct_type = module->types[i].struct_type; os << "builder.addStruct(["; int field_count = struct_type->field_count(); for (int index = 0; index < field_count; index++) { os << "makeField(" << ValueTypeToConstantName(struct_type->field(index)) << ", " << (struct_type->mutability(index) ? "true" : "false") << ")"; if (index + 1 < field_count) os << ", "; } os << "]"; if (module->types[i].supertype != kNoSuperType) { os << ", " << module->types[i].supertype; } os << ");\n"; } else if (module->has_array(i)) { const ArrayType* array_type = module->types[i].array_type; os << "builder.addArray(" << ValueTypeToConstantName(array_type->element_type()) << ", " << (array_type->mutability() ? "true" : "false"); if (module->types[i].supertype != kNoSuperType) { os << ", " << module->types[i].supertype; } os << ");\n"; } else { DCHECK(module->has_signature(i)); const FunctionSig* sig = module->types[i].function_sig; os << "builder.addType(makeSig(" << PrintParameters(sig) << ", " << PrintReturns(sig) << "));\n"; } if (i == recursive_group_end) { os << "builder.endRecGroup();\n"; } } for (WasmImport imported : module->import_table) { // TODO(wasm): Support other imports when needed. CHECK_EQ(kExternalFunction, imported.kind); auto module_name = PrintName(wire_bytes, imported.module_name); auto field_name = PrintName(wire_bytes, imported.field_name); int sig_index = module->functions[imported.index].sig_index; os << "builder.addImport(" << module_name << ", " << field_name << ", " << sig_index << " /* sig */);\n"; } for (const WasmMemory& memory : module->memories) { os << "builder.addMemory(" << memory.initial_pages; if (memory.has_maximum_pages) { os << ", " << memory.maximum_pages; } else { os << ", undefined"; } if (memory.is_shared) { os << ", true"; } os << ");\n"; } for (WasmDataSegment segment : module->data_segments) { base::Vector<const uint8_t> data = wire_bytes.module_bytes().SubVector( segment.source.offset(), segment.source.end_offset()); if (segment.active) { // TODO(wasm): Add other expressions when needed. CHECK_EQ(ConstantExpression::kI32Const, segment.dest_addr.kind()); os << "builder.addDataSegment(" << segment.dest_addr.i32_value() << ", "; } else { os << "builder.addPassiveDataSegment("; } os << "["; if (!data.empty()) { os << unsigned{data[0]}; for (unsigned byte : data + 1) os << ", " << byte; } os << "]);\n"; } for (WasmGlobal& global : module->globals) { os << "builder.addGlobal(" << ValueTypeToConstantName(global.type) << ", " << global.mutability << ", "; DecodeAndAppendInitExpr(os, &zone, module, wire_bytes, global.init, global.type); os << ");\n"; } Zone tmp_zone(isolate->allocator(), ZONE_NAME); for (const WasmTable& table : module->tables) { os << "builder.addTable(" << ValueTypeToConstantName(table.type) << ", " << table.initial_size << ", " << (table.has_maximum_size ? std::to_string(table.maximum_size) : "undefined") << ", "; if (table.initial_value.is_set()) { DecodeAndAppendInitExpr(os, &zone, module, wire_bytes, table.initial_value, table.type); } else { os << "undefined"; } os << ")\n"; } for (const WasmElemSegment& elem_segment : module->elem_segments) { const char* status_str = elem_segment.status == WasmElemSegment::kStatusActive ? "Active" : elem_segment.status == WasmElemSegment::kStatusPassive ? "Passive" : "Declarative"; os << "builder.add" << status_str << "ElementSegment("; if (elem_segment.status == WasmElemSegment::kStatusActive) { os << elem_segment.table_index << ", "; DecodeAndAppendInitExpr(os, &zone, module, wire_bytes, elem_segment.offset, kWasmI32); os << ", "; } os << "["; ModuleDecoderImpl decoder(WasmFeatures::All(), wire_bytes.module_bytes().SubVectorFrom( elem_segment.elements_wire_bytes_offset), ModuleOrigin::kWasmOrigin); for (uint32_t i = 0; i < elem_segment.element_count; i++) { ConstantExpression expr = decoder.consume_element_segment_entry(module, elem_segment); if (elem_segment.element_type == WasmElemSegment::kExpressionElements) { DecodeAndAppendInitExpr(os, &zone, module, wire_bytes, expr, elem_segment.type); } else { os << expr.index(); } if (i < elem_segment.element_count - 1) os << ", "; } os << "], " << (elem_segment.element_type == WasmElemSegment::kExpressionElements ? ValueTypeToConstantName(elem_segment.type) : "undefined") << ");\n"; } for (const WasmTag& tag : module->tags) { os << "builder.addTag(makeSig(" << PrintParameters(tag.ToFunctionSig()) << ", []));\n"; } for (const WasmFunction& func : module->functions) { if (func.imported) continue; base::Vector<const uint8_t> func_code = wire_bytes.GetFunctionBytes(&func); os << "// Generate function " << (func.func_index + 1) << " (out of " << module->functions.size() << ").\n"; // Add function. os << "builder.addFunction(undefined, " << func.sig_index << " /* sig */)\n"; // Add locals. BodyLocalDecls decls; DecodeLocalDecls(enabled_features, &decls, func_code.begin(), func_code.end(), &tmp_zone); if (decls.num_locals) { os << " "; for (size_t pos = 0, count = 1, locals = decls.num_locals; pos < locals; pos += count, count = 1) { ValueType type = decls.local_types[pos]; while (pos + count < locals && decls.local_types[pos + count] == type) { ++count; } os << ".addLocals(" << ValueTypeToConstantName(type) << ", " << count << ")"; } os << "\n"; } // Add body. os << " .addBodyWithEnd([\n"; FunctionBody func_body(func.sig, func.code.offset(), func_code.begin(), func_code.end()); PrintRawWasmCode(isolate->allocator(), func_body, module, kOmitLocals); os << "]);\n"; } for (WasmExport& exp : module->export_table) { switch (exp.kind) { case kExternalFunction: os << "builder.addExport(" << PrintName(wire_bytes, exp.name) << ", " << exp.index << ");\n"; break; case kExternalMemory: os << "builder.exportMemoryAs(" << PrintName(wire_bytes, exp.name) << ", " << exp.index << ");\n"; break; default: os << "// Unsupported export of '" << PrintName(wire_bytes, exp.name) << "'.\n"; break; } } if (compiles) { os << "const instance = builder.instantiate();\n" "print(instance.exports.main(1, 2, 3));\n"; } else { os << "assertThrows(function() { builder.instantiate(); }, " "WebAssembly.CompileError);\n"; } } void EnableExperimentalWasmFeatures(v8::Isolate* isolate) { struct EnableExperimentalWasmFeatures { explicit EnableExperimentalWasmFeatures(v8::Isolate* isolate) { // Enable all staged features. #define ENABLE_STAGED_FEATURES(feat, ...) \ v8_flags.experimental_wasm_##feat = true; FOREACH_WASM_STAGING_FEATURE_FLAG(ENABLE_STAGED_FEATURES) #undef ENABLE_STAGED_FEATURES // Enable non-staged experimental features that we also want to fuzz. v8_flags.experimental_wasm_gc = true; // Enforce implications from enabling features. FlagList::EnforceFlagImplications(); // Last, install any conditional features. Implications are handled // implicitly. isolate->InstallConditionalFeatures(isolate->GetCurrentContext()); } }; // The compiler will properly synchronize the constructor call. static EnableExperimentalWasmFeatures one_time_enable_experimental_features( isolate); } void WasmExecutionFuzzer::FuzzWasmModule(base::Vector<const uint8_t> data, bool require_valid) { v8_fuzzer::FuzzerSupport* support = v8_fuzzer::FuzzerSupport::Get(); v8::Isolate* isolate = support->GetIsolate(); // Strictly enforce the input size limit. Note that setting "max_len" on the // fuzzer target is not enough, since different fuzzers are used and not all // respect that limit. if (data.size() > max_input_size()) return; Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate); v8::Isolate::Scope isolate_scope(isolate); // Clear any pending exceptions from a prior run. if (i_isolate->has_pending_exception()) { i_isolate->clear_pending_exception(); } v8::HandleScope handle_scope(isolate); v8::Context::Scope context_scope(support->GetContext()); // We explicitly enable staged WebAssembly features here to increase fuzzer // coverage. For libfuzzer fuzzers it is not possible that the fuzzer enables // the flag by itself. EnableExperimentalWasmFeatures(isolate); v8::TryCatch try_catch(isolate); HandleScope scope(i_isolate); AccountingAllocator allocator; Zone zone(&allocator, ZONE_NAME); ZoneBuffer buffer(&zone); // The first byte specifies some internal configuration, like which function // is compiled with with compiler, and other flags. uint8_t configuration_byte = data.empty() ? 0 : data[0]; if (!data.empty()) data += 1; // Derive the compiler configuration for the first four functions from the // configuration byte, to choose for each function between: // 0: TurboFan // 1: Liftoff // 2: Liftoff for debugging // 3: Turboshaft uint8_t tier_mask = 0; uint8_t debug_mask = 0; uint8_t turboshaft_mask = 0; for (int i = 0; i < 4; ++i, configuration_byte /= 4) { int compiler_config = configuration_byte % 4; tier_mask |= (compiler_config == 0) << i; debug_mask |= (compiler_config == 2) << i; turboshaft_mask |= (compiler_config == 3) << i; } // Enable tierup for all turboshaft functions. tier_mask |= turboshaft_mask; if (!GenerateModule(i_isolate, &zone, data, &buffer)) { return; } testing::SetupIsolateForWasmModule(i_isolate); ModuleWireBytes wire_bytes(buffer.begin(), buffer.end()); auto enabled_features = WasmFeatures::FromIsolate(i_isolate); bool valid = GetWasmEngine()->SyncValidate(i_isolate, enabled_features, wire_bytes); if (v8_flags.wasm_fuzzer_gen_test) { GenerateTestCase(i_isolate, wire_bytes, valid); } // Explicitly enable Liftoff, disable tiering and set the tier_mask. This // way, we deterministically test a combination of Liftoff and Turbofan. FlagScope<bool> liftoff(&v8_flags.liftoff, true); FlagScope<bool> no_tier_up(&v8_flags.wasm_tier_up, false); FlagScope<int> tier_mask_scope(&v8_flags.wasm_tier_mask_for_testing, tier_mask); FlagScope<int> debug_mask_scope(&v8_flags.wasm_debug_mask_for_testing, debug_mask); FlagScope<int> turboshaft_mask_scope( &v8_flags.wasm_turboshaft_mask_for_testing, turboshaft_mask); ErrorThrower thrower(i_isolate, "WasmFuzzerSyncCompile"); MaybeHandle<WasmModuleObject> compiled_module = GetWasmEngine()->SyncCompile( i_isolate, enabled_features, &thrower, wire_bytes); CHECK_EQ(valid, !compiled_module.is_null()); CHECK_EQ(!valid, thrower.error()); if (require_valid && !valid) { FATAL("Generated module should validate, but got: %s", thrower.error_msg()); } thrower.Reset(); if (valid) { ExecuteAgainstReference(i_isolate, compiled_module.ToHandleChecked(), kDefaultMaxFuzzerExecutedInstructions); } } } // namespace v8::internal::wasm::fuzzer