%PDF- %PDF-
Direktori : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/src/ |
Current File : /home/vacivi36/vittasync.vacivitta.com.br/vittasync/node/src/util-inl.h |
// Copyright Joyent, Inc. and other Node contributors. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to permit // persons to whom the Software is furnished to do so, subject to the // following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN // NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, // DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE // USE OR OTHER DEALINGS IN THE SOFTWARE. #ifndef SRC_UTIL_INL_H_ #define SRC_UTIL_INL_H_ #if defined(NODE_WANT_INTERNALS) && NODE_WANT_INTERNALS #include <cmath> #include <cstring> #include <locale> #include "util.h" // These are defined by <sys/byteorder.h> or <netinet/in.h> on some systems. // To avoid warnings, undefine them before redefining them. #ifdef BSWAP_2 # undef BSWAP_2 #endif #ifdef BSWAP_4 # undef BSWAP_4 #endif #ifdef BSWAP_8 # undef BSWAP_8 #endif #if defined(_MSC_VER) #include <intrin.h> #define BSWAP_2(x) _byteswap_ushort(x) #define BSWAP_4(x) _byteswap_ulong(x) #define BSWAP_8(x) _byteswap_uint64(x) #else #define BSWAP_2(x) ((x) << 8) | ((x) >> 8) #define BSWAP_4(x) \ (((x) & 0xFF) << 24) | \ (((x) & 0xFF00) << 8) | \ (((x) >> 8) & 0xFF00) | \ (((x) >> 24) & 0xFF) #define BSWAP_8(x) \ (((x) & 0xFF00000000000000ull) >> 56) | \ (((x) & 0x00FF000000000000ull) >> 40) | \ (((x) & 0x0000FF0000000000ull) >> 24) | \ (((x) & 0x000000FF00000000ull) >> 8) | \ (((x) & 0x00000000FF000000ull) << 8) | \ (((x) & 0x0000000000FF0000ull) << 24) | \ (((x) & 0x000000000000FF00ull) << 40) | \ (((x) & 0x00000000000000FFull) << 56) #endif #define CHAR_TEST(bits, name, expr) \ template <typename T> \ bool name(const T ch) { \ static_assert(sizeof(ch) >= (bits) / 8, \ "Character must be wider than " #bits " bits"); \ return (expr); \ } namespace node { template <typename T> ListNode<T>::ListNode() : prev_(this), next_(this) {} template <typename T> ListNode<T>::~ListNode() { Remove(); } template <typename T> void ListNode<T>::Remove() { prev_->next_ = next_; next_->prev_ = prev_; prev_ = this; next_ = this; } template <typename T> bool ListNode<T>::IsEmpty() const { return prev_ == this; } template <typename T, ListNode<T> (T::*M)> ListHead<T, M>::Iterator::Iterator(ListNode<T>* node) : node_(node) {} template <typename T, ListNode<T> (T::*M)> T* ListHead<T, M>::Iterator::operator*() const { return ContainerOf(M, node_); } template <typename T, ListNode<T> (T::*M)> const typename ListHead<T, M>::Iterator& ListHead<T, M>::Iterator::operator++() { node_ = node_->next_; return *this; } template <typename T, ListNode<T> (T::*M)> bool ListHead<T, M>::Iterator::operator!=(const Iterator& that) const { return node_ != that.node_; } template <typename T, ListNode<T> (T::*M)> ListHead<T, M>::~ListHead() { while (IsEmpty() == false) head_.next_->Remove(); } template <typename T, ListNode<T> (T::*M)> void ListHead<T, M>::PushBack(T* element) { ListNode<T>* that = &(element->*M); head_.prev_->next_ = that; that->prev_ = head_.prev_; that->next_ = &head_; head_.prev_ = that; } template <typename T, ListNode<T> (T::*M)> void ListHead<T, M>::PushFront(T* element) { ListNode<T>* that = &(element->*M); head_.next_->prev_ = that; that->prev_ = &head_; that->next_ = head_.next_; head_.next_ = that; } template <typename T, ListNode<T> (T::*M)> bool ListHead<T, M>::IsEmpty() const { return head_.IsEmpty(); } template <typename T, ListNode<T> (T::*M)> T* ListHead<T, M>::PopFront() { if (IsEmpty()) return nullptr; ListNode<T>* node = head_.next_; node->Remove(); return ContainerOf(M, node); } template <typename T, ListNode<T> (T::*M)> typename ListHead<T, M>::Iterator ListHead<T, M>::begin() const { return Iterator(head_.next_); } template <typename T, ListNode<T> (T::*M)> typename ListHead<T, M>::Iterator ListHead<T, M>::end() const { return Iterator(const_cast<ListNode<T>*>(&head_)); } template <typename Inner, typename Outer> constexpr uintptr_t OffsetOf(Inner Outer::*field) { return reinterpret_cast<uintptr_t>(&(static_cast<Outer*>(nullptr)->*field)); } template <typename Inner, typename Outer> ContainerOfHelper<Inner, Outer>::ContainerOfHelper(Inner Outer::*field, Inner* pointer) : pointer_( reinterpret_cast<Outer*>( reinterpret_cast<uintptr_t>(pointer) - OffsetOf(field))) {} template <typename Inner, typename Outer> template <typename TypeName> ContainerOfHelper<Inner, Outer>::operator TypeName*() const { return static_cast<TypeName*>(pointer_); } template <typename Inner, typename Outer> constexpr ContainerOfHelper<Inner, Outer> ContainerOf(Inner Outer::*field, Inner* pointer) { return ContainerOfHelper<Inner, Outer>(field, pointer); } inline v8::Local<v8::String> OneByteString(v8::Isolate* isolate, const char* data, int length) { return v8::String::NewFromOneByte(isolate, reinterpret_cast<const uint8_t*>(data), v8::NewStringType::kNormal, length).ToLocalChecked(); } inline v8::Local<v8::String> OneByteString(v8::Isolate* isolate, const signed char* data, int length) { return v8::String::NewFromOneByte(isolate, reinterpret_cast<const uint8_t*>(data), v8::NewStringType::kNormal, length).ToLocalChecked(); } inline v8::Local<v8::String> OneByteString(v8::Isolate* isolate, const unsigned char* data, int length) { return v8::String::NewFromOneByte( isolate, data, v8::NewStringType::kNormal, length) .ToLocalChecked(); } void SwapBytes16(char* data, size_t nbytes) { CHECK_EQ(nbytes % 2, 0); #if defined(_MSC_VER) if (AlignUp(data, sizeof(uint16_t)) == data) { // MSVC has no strict aliasing, and is able to highly optimize this case. uint16_t* data16 = reinterpret_cast<uint16_t*>(data); size_t len16 = nbytes / sizeof(*data16); for (size_t i = 0; i < len16; i++) { data16[i] = BSWAP_2(data16[i]); } return; } #endif uint16_t temp; for (size_t i = 0; i < nbytes; i += sizeof(temp)) { memcpy(&temp, &data[i], sizeof(temp)); temp = BSWAP_2(temp); memcpy(&data[i], &temp, sizeof(temp)); } } void SwapBytes32(char* data, size_t nbytes) { CHECK_EQ(nbytes % 4, 0); #if defined(_MSC_VER) // MSVC has no strict aliasing, and is able to highly optimize this case. if (AlignUp(data, sizeof(uint32_t)) == data) { uint32_t* data32 = reinterpret_cast<uint32_t*>(data); size_t len32 = nbytes / sizeof(*data32); for (size_t i = 0; i < len32; i++) { data32[i] = BSWAP_4(data32[i]); } return; } #endif uint32_t temp; for (size_t i = 0; i < nbytes; i += sizeof(temp)) { memcpy(&temp, &data[i], sizeof(temp)); temp = BSWAP_4(temp); memcpy(&data[i], &temp, sizeof(temp)); } } void SwapBytes64(char* data, size_t nbytes) { CHECK_EQ(nbytes % 8, 0); #if defined(_MSC_VER) if (AlignUp(data, sizeof(uint64_t)) == data) { // MSVC has no strict aliasing, and is able to highly optimize this case. uint64_t* data64 = reinterpret_cast<uint64_t*>(data); size_t len64 = nbytes / sizeof(*data64); for (size_t i = 0; i < len64; i++) { data64[i] = BSWAP_8(data64[i]); } return; } #endif uint64_t temp; for (size_t i = 0; i < nbytes; i += sizeof(temp)) { memcpy(&temp, &data[i], sizeof(temp)); temp = BSWAP_8(temp); memcpy(&data[i], &temp, sizeof(temp)); } } char ToLower(char c) { return std::tolower(c, std::locale::classic()); } std::string ToLower(const std::string& in) { std::string out(in.size(), 0); for (size_t i = 0; i < in.size(); ++i) out[i] = ToLower(in[i]); return out; } char ToUpper(char c) { return std::toupper(c, std::locale::classic()); } std::string ToUpper(const std::string& in) { std::string out(in.size(), 0); for (size_t i = 0; i < in.size(); ++i) out[i] = ToUpper(in[i]); return out; } bool StringEqualNoCase(const char* a, const char* b) { while (ToLower(*a) == ToLower(*b++)) { if (*a++ == '\0') return true; } return false; } bool StringEqualNoCaseN(const char* a, const char* b, size_t length) { for (size_t i = 0; i < length; i++) { if (ToLower(a[i]) != ToLower(b[i])) return false; if (a[i] == '\0') return true; } return true; } template <typename T> inline T MultiplyWithOverflowCheck(T a, T b) { auto ret = a * b; if (a != 0) CHECK_EQ(b, ret / a); return ret; } // These should be used in our code as opposed to the native // versions as they abstract out some platform and or // compiler version specific functionality. // malloc(0) and realloc(ptr, 0) have implementation-defined behavior in // that the standard allows them to either return a unique pointer or a // nullptr for zero-sized allocation requests. Normalize by always using // a nullptr. template <typename T> T* UncheckedRealloc(T* pointer, size_t n) { size_t full_size = MultiplyWithOverflowCheck(sizeof(T), n); if (full_size == 0) { free(pointer); return nullptr; } void* allocated = realloc(pointer, full_size); if (UNLIKELY(allocated == nullptr)) { // Tell V8 that memory is low and retry. LowMemoryNotification(); allocated = realloc(pointer, full_size); } return static_cast<T*>(allocated); } // As per spec realloc behaves like malloc if passed nullptr. template <typename T> inline T* UncheckedMalloc(size_t n) { return UncheckedRealloc<T>(nullptr, n); } template <typename T> inline T* UncheckedCalloc(size_t n) { if (MultiplyWithOverflowCheck(sizeof(T), n) == 0) return nullptr; return static_cast<T*>(calloc(n, sizeof(T))); } template <typename T> inline T* Realloc(T* pointer, size_t n) { T* ret = UncheckedRealloc(pointer, n); CHECK_IMPLIES(n > 0, ret != nullptr); return ret; } template <typename T> inline T* Malloc(size_t n) { T* ret = UncheckedMalloc<T>(n); CHECK_IMPLIES(n > 0, ret != nullptr); return ret; } template <typename T> inline T* Calloc(size_t n) { T* ret = UncheckedCalloc<T>(n); CHECK_IMPLIES(n > 0, ret != nullptr); return ret; } // Shortcuts for char*. inline char* Malloc(size_t n) { return Malloc<char>(n); } inline char* Calloc(size_t n) { return Calloc<char>(n); } inline char* UncheckedMalloc(size_t n) { return UncheckedMalloc<char>(n); } inline char* UncheckedCalloc(size_t n) { return UncheckedCalloc<char>(n); } // This is a helper in the .cc file so including util-inl.h doesn't include more // headers than we really need to. void ThrowErrStringTooLong(v8::Isolate* isolate); struct ArrayIterationData { std::vector<v8::Global<v8::Value>>* out; v8::Isolate* isolate = nullptr; }; inline v8::Array::CallbackResult PushItemToVector(uint32_t index, v8::Local<v8::Value> element, void* data) { auto vec = static_cast<ArrayIterationData*>(data)->out; auto isolate = static_cast<ArrayIterationData*>(data)->isolate; vec->push_back(v8::Global<v8::Value>(isolate, element)); return v8::Array::CallbackResult::kContinue; } v8::Maybe<void> FromV8Array(v8::Local<v8::Context> context, v8::Local<v8::Array> js_array, std::vector<v8::Global<v8::Value>>* out) { uint32_t count = js_array->Length(); out->reserve(count); ArrayIterationData data{out, context->GetIsolate()}; return js_array->Iterate(context, PushItemToVector, &data); } v8::MaybeLocal<v8::Value> ToV8Value(v8::Local<v8::Context> context, std::string_view str, v8::Isolate* isolate) { if (isolate == nullptr) isolate = context->GetIsolate(); if (UNLIKELY(str.size() >= static_cast<size_t>(v8::String::kMaxLength))) { // V8 only has a TODO comment about adding an exception when the maximum // string size is exceeded. ThrowErrStringTooLong(isolate); return v8::MaybeLocal<v8::Value>(); } return v8::String::NewFromUtf8( isolate, str.data(), v8::NewStringType::kNormal, str.size()) .FromMaybe(v8::Local<v8::String>()); } template <typename T> v8::MaybeLocal<v8::Value> ToV8Value(v8::Local<v8::Context> context, const std::vector<T>& vec, v8::Isolate* isolate) { if (isolate == nullptr) isolate = context->GetIsolate(); v8::EscapableHandleScope handle_scope(isolate); MaybeStackBuffer<v8::Local<v8::Value>, 128> arr(vec.size()); arr.SetLength(vec.size()); for (size_t i = 0; i < vec.size(); ++i) { if (!ToV8Value(context, vec[i], isolate).ToLocal(&arr[i])) return v8::MaybeLocal<v8::Value>(); } return handle_scope.Escape(v8::Array::New(isolate, arr.out(), arr.length())); } template <typename T> v8::MaybeLocal<v8::Value> ToV8Value(v8::Local<v8::Context> context, const std::set<T>& set, v8::Isolate* isolate) { if (isolate == nullptr) isolate = context->GetIsolate(); v8::Local<v8::Set> set_js = v8::Set::New(isolate); v8::HandleScope handle_scope(isolate); for (const T& entry : set) { v8::Local<v8::Value> value; if (!ToV8Value(context, entry, isolate).ToLocal(&value)) return {}; if (set_js->Add(context, value).IsEmpty()) return {}; } return set_js; } template <typename T, typename U> v8::MaybeLocal<v8::Value> ToV8Value(v8::Local<v8::Context> context, const std::unordered_map<T, U>& map, v8::Isolate* isolate) { if (isolate == nullptr) isolate = context->GetIsolate(); v8::EscapableHandleScope handle_scope(isolate); v8::Local<v8::Map> ret = v8::Map::New(isolate); for (const auto& item : map) { v8::Local<v8::Value> first, second; if (!ToV8Value(context, item.first, isolate).ToLocal(&first) || !ToV8Value(context, item.second, isolate).ToLocal(&second) || ret->Set(context, first, second).IsEmpty()) { return v8::MaybeLocal<v8::Value>(); } } return handle_scope.Escape(ret); } template <typename T, typename > v8::MaybeLocal<v8::Value> ToV8Value(v8::Local<v8::Context> context, const T& number, v8::Isolate* isolate) { if (isolate == nullptr) isolate = context->GetIsolate(); using Limits = std::numeric_limits<T>; // Choose Uint32, Int32, or Double depending on range checks. // These checks should all collapse at compile time. if (static_cast<uint32_t>(Limits::max()) <= std::numeric_limits<uint32_t>::max() && static_cast<uint32_t>(Limits::min()) >= std::numeric_limits<uint32_t>::min() && Limits::is_exact) { return v8::Integer::NewFromUnsigned(isolate, static_cast<uint32_t>(number)); } if (static_cast<int32_t>(Limits::max()) <= std::numeric_limits<int32_t>::max() && static_cast<int32_t>(Limits::min()) >= std::numeric_limits<int32_t>::min() && Limits::is_exact) { return v8::Integer::New(isolate, static_cast<int32_t>(number)); } return v8::Number::New(isolate, static_cast<double>(number)); } SlicedArguments::SlicedArguments( const v8::FunctionCallbackInfo<v8::Value>& args, size_t start) { const size_t length = static_cast<size_t>(args.Length()); if (start >= length) return; const size_t size = length - start; AllocateSufficientStorage(size); for (size_t i = 0; i < size; ++i) (*this)[i] = args[i + start]; } template <typename T, size_t kStackStorageSize> void MaybeStackBuffer<T, kStackStorageSize>::AllocateSufficientStorage( size_t storage) { CHECK(!IsInvalidated()); if (storage > capacity()) { bool was_allocated = IsAllocated(); T* allocated_ptr = was_allocated ? buf_ : nullptr; buf_ = Realloc(allocated_ptr, storage); capacity_ = storage; if (!was_allocated && length_ > 0) memcpy(buf_, buf_st_, length_ * sizeof(buf_[0])); } length_ = storage; } template <typename T, size_t S> ArrayBufferViewContents<T, S>::ArrayBufferViewContents( v8::Local<v8::Value> value) { DCHECK(value->IsArrayBufferView() || value->IsSharedArrayBuffer() || value->IsArrayBuffer()); ReadValue(value); } template <typename T, size_t S> ArrayBufferViewContents<T, S>::ArrayBufferViewContents( v8::Local<v8::Object> value) { CHECK(value->IsArrayBufferView()); Read(value.As<v8::ArrayBufferView>()); } template <typename T, size_t S> ArrayBufferViewContents<T, S>::ArrayBufferViewContents( v8::Local<v8::ArrayBufferView> abv) { Read(abv); } template <typename T, size_t S> void ArrayBufferViewContents<T, S>::Read(v8::Local<v8::ArrayBufferView> abv) { static_assert(sizeof(T) == 1, "Only supports one-byte data at the moment"); length_ = abv->ByteLength(); if (length_ > sizeof(stack_storage_) || abv->HasBuffer()) { data_ = static_cast<T*>(abv->Buffer()->Data()) + abv->ByteOffset(); } else { abv->CopyContents(stack_storage_, sizeof(stack_storage_)); data_ = stack_storage_; } } template <typename T, size_t S> void ArrayBufferViewContents<T, S>::ReadValue(v8::Local<v8::Value> buf) { static_assert(sizeof(T) == 1, "Only supports one-byte data at the moment"); DCHECK(buf->IsArrayBufferView() || buf->IsSharedArrayBuffer() || buf->IsArrayBuffer()); if (buf->IsArrayBufferView()) { Read(buf.As<v8::ArrayBufferView>()); } else if (buf->IsArrayBuffer()) { auto ab = buf.As<v8::ArrayBuffer>(); length_ = ab->ByteLength(); data_ = static_cast<T*>(ab->Data()); was_detached_ = ab->WasDetached(); } else { CHECK(buf->IsSharedArrayBuffer()); auto sab = buf.As<v8::SharedArrayBuffer>(); length_ = sab->ByteLength(); data_ = static_cast<T*>(sab->Data()); } } // ECMA262 20.1.2.5 inline bool IsSafeJsInt(v8::Local<v8::Value> v) { if (!v->IsNumber()) return false; double v_d = v.As<v8::Number>()->Value(); if (std::isnan(v_d)) return false; if (std::isinf(v_d)) return false; if (std::trunc(v_d) != v_d) return false; // not int if (std::abs(v_d) <= static_cast<double>(kMaxSafeJsInteger)) return true; return false; } constexpr size_t FastStringKey::HashImpl(std::string_view str) { // Low-quality hash (djb2), but just fine for current use cases. size_t h = 5381; for (const char c : str) { h = h * 33 + c; } return h; } constexpr size_t FastStringKey::Hash::operator()( const FastStringKey& key) const { return key.cached_hash_; } constexpr bool FastStringKey::operator==(const FastStringKey& other) const { return name_ == other.name_; } constexpr FastStringKey::FastStringKey(std::string_view name) : name_(name), cached_hash_(HashImpl(name)) {} constexpr std::string_view FastStringKey::as_string_view() const { return name_; } } // namespace node #endif // defined(NODE_WANT_INTERNALS) && NODE_WANT_INTERNALS #endif // SRC_UTIL_INL_H_